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Abstract

Most accidents occur because the driver can only see, with the sensors and the current
electronic driver aids, as far as the vehicles directly in front of him/her, behind him/her, or
on either side. A competent driver might notice more than one car ahead or behind, notice
the signal lights and act preemptively to prevent any sudden actions or accidents. However,
sometimes this isn’t enough. If any sudden action was taken faster than the driver’s reaction
such as a vehicle coming in a very high speed next to him/her or realizing there’s a huge
obstacle when the car is too near to take the needed precautions, this will lead to dangerous
consequences. As a result, there has to be another solution that will car itself notice the
sudden changes to take precautions if the driver couldn’t. Also there has to be a solution to
make the able to see more than 2 vehicles ahead or behind to alert the driver of the changes
that happen a little further than his/her sight so that the driver can act smoothly and
preemptively. Car accidents have risen to 14500 accident in 2015. A total of 63.3 percent
of car accidents were caused by humans. A total of 6203 were killed and 19325 were
injured due to such accidents in 2015.

One of the technological advances that could solve this problem is vehicle to vehicle
communication. This report will include more information about V2V communication, its
benefits and its market nowadays. Next, an overview of the IEEE standard that is used to
implement the PHY layer of the V2V communication system is explained. After that, the
project design is discussed along with the tools used as well as the importance of each tool
in our project. Then, the actual implementation of our project along with the testing
methods and results are furtherly explained. Finally, the lessons learned while working on
our project as well as the next phases are discussed.
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Chapter 1

Introduction

1.1 About V2X

ehicle to vehicle communication is, as its name describes, a way for
vehicles to send and receive signals to each other to explain their location,
speed and direction. If there was a car that decided to change lanes and the
driver didn’t pay attention to the other cars who want to do the same, the
car that fall behind in line with 3-4 cars between will send signals to this vehicle to inform
it to wait until it passes to prevent future possible accidents. That way, the car can know
what other out-of-sight cars, are doing or about to do.
In addition to that, the communication will not be between vehicles only, but between
vehicles and infrastructure as well (\V2l), reducing any human errors that lead to accidents.
V2V and V2| have become one name, V2X.
VV2X communications are being standardized in various countries and are anticipated to be
an important technology for achieving autonomous driving. Development of this
technology by automotive manufacturers, chip manufacturers, and technology and solution
providers is accelerating.
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1.2 V2X market

V2X communication’s market is growing every year due to the enhancement of
technology use in vehicles. A lot of investment is done in this field nowadays. Middle
Eastern countries are considered a great potential for this technology due to the increase in
population as well as the focus of many automobile companies on regions such as the
Middle East and Africa. The development of this technology by automotive manufacturers,
chip manufacturers as well as technology and solution providers is accelerating.

Figure 1-2 the future of V2X systems
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1.3 V2X competition landscape

There are many companies interested in this technology such as BMW, Audi, Daimler,
Volvo, and Ford- Applink. Among the solution providers Etrans Systems, Qualcomm
Technologies Inc., Cisco Systems Inc., Delphi Automotive PLC, Autotalks Ltd., Denso,
Arada Systems, Kapsch Group and Savari Inc., are included in the vehicle to vehicle
communication market.

1.4 Standardized V2X protocols

Since, V2X requires devices and vehicles of different manufacturers communicate with
each other, there has to be a standard that all companies and manufacturers will follow.
That’s why IEEE developed the 802.11p standard which explains the physical and mac
layers of vehicular transceivers. That way, any other European or American standards
developed, will have to be based on the lower-level IEEE 802.11p standard, to ensure the
compatibility of different devices communicating with each other.

1.5 Project description

Our project is to build a prototype of the V2V transceiver on the PHY layer to be used
as a testbed of the actual V2V transceivers. That way we can test any other device by
sending data to it or receiving data from it to make sure it’s working properly and to
measure how far the data can travel.
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Chapter 2

OFDM PHY Lavyer Specification

his chapter includes the basic information that is needed to be known to
implement OFDM PHY layer. The first part is the standard part which will
go through OFDM PHY layer structure, its sublayers and the frame structure
that is sent by the transmitter. The standard mainly helps in transmitter implementation,
that’s why it is needed to study some receiving concepts to implement the receiver which

is discussed in the second part of this chapter.
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2.1 Standard IEEE-802.11p overview
2.1.1 Introduction

This standard is developed by IEEE (Institute of electrical and electronics engineers)
organization to describe telecommunications and information exchange between systems
Local and metropolitan area networks— Specific requirements and it’s mainly determines
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

The standard has more than one amendment:

e IEEE Std 802.11k™-2008: Radio Resource Measurement of Wireless LANs

e [EEE Std 802.11r™-2008: Fast Basic Service Set (BSS) Transition (Amendment 2)
e IEEE Std 802.11y™-2008: 3650-3700 MHz Operation in USA (Amendment 3)

e |EEE Std 802.11w™-2009: Protected Management Frames (Amendment 4)

e IEEE Std 802.11n™-2009: Enhancements for Higher Throughput (Amendment 5)
e IEEE Std 802.11p™-2010: Wireless Access in Vehicular Environments

e IEEE Std 802.112z™-2010: Extensions to Direct-Link Setup (DLS) (Amendment 7)
e IEEE Std 802.11v™-2011: IEEE 802.11 Wireless Network Management

e IEEE Std 802.11u™-2011: Interworking with External Networks (Amendment 9)

e IEEE Std 802.11s™-2011: Mesh Networking (Amendment 10)

Our project is following mainly amendment IEEE Std 802.11p™-2010: Wireless
Access in Vehicular Environments (Amendment 6). Specifically it is an implementation
for orthogonal frequency division multiplexing (OFDM) PHY specification part in the

standard.
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2.1.2 Reasons of using OFDM

OFDM transceiver has a lot of advantages that enhance the communication systems
and also solves main problems. There are two main problems that are solved using (OFDM)

First one: Multi-path problem in the channel, There is a lot of interacting objects in the
channel that cause the problem of multi-path fading as shown in (Fig.2-1), But (OFDM) or
mainly the family of (FDM) solves this problem as it divides the band to sub-bands or sub
carriers which mean that the signal will be extended in time domain what leads to
minimization of effect of the delay on the incoming signal as its time is much greater than
the delay.

Figure 2-1 MPC effect

Second problem: Is the frequency selective nature of the channel and this was solved in
(FDM) as the signal is carried over more than one channel, in only one channel carrier
whole signal will be corrupted but in multi-carrier some of the channel will be corrupted
not whole the signal and more over using the concepts of coding and frequency diversity
will prevent these corrupted subcarriers from corrupting the original signal. Moreover
(OFDM) is better than (FDM) as it is more efficient usage of the bandwidth as shown in
(Fig.2-2)
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¥
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Figure 2-2 Illustration of Frequency selectivity in FDM and OFDM techniques

2.1.3 PHY layer structure in the standard
The physical layer consists of three main sub-layers as shown in the next figure

e PLCP sub-layer
e PMD sub-layer
e PLME sub-layer

—— -
MAC Sublayer
Data Link MAC_SAP Management MLME SAP
Layer MAC Sublayer S Entity &
L A Station
Layer PLCP Sublayer <> Entity

PHY Sublayer
‘ = Management PLME_SAP

PMD_SAP Entity
PMD Sublayer

Figure 2-3 Sub-layers in PHY layer

Provides a convergence procedure in which PSDUs (PLCP Service Data Unit) are
converted to and from PPDUs (PLCP protocol data unit).During transmission, the PSDU
shall be provided with a PLCP preamble and header to create the PPDU. At the receiver,
the PLCP preamble and header are processed to aid in demodulation and delivery of the
PSDU.
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I PLCP Header I
-t L
RATE |Reserved| LENGTH | Parity | Tail | SERVICE Tail e
Abits | 1bit | 12bits | 1bit | 6bits| 16 bits PSDU 6 bits P29 BIts
T~ o | | |
- _ Coded/OFDM Coded/OFDM
T~ (BPSK.r=1/2) | (RATE is indicated in SIGNAL) |
PLCP Preamble SIGNAL DATA
12 Symbols One OFDM Symboll Variable Number of OFDM Symbols

Figure 2-4 PPDU frame format

Overview of the PPDU encoding process

Produce the PLCP Preamble field, composed of 10 repetitions of a “short training
sequence” (used for AGC convergence, diversity selection, timing acquisition,
and coarse frequency acquisition in the receiver) and two repetitions of a “long
training sequence” (used for channel estimation and fine frequency acquisition in
the receiver), preceded by a guard interval (Gl)

Produce the PLCP header field from the RATE, LENGTH, and SERVICE fields
of the TXVECTOR by filling the appropriate bit fields. The RATE and LENGTH
fields of the PLCP header are encoded by a convolutional code at a rate of R =
1/2, and are subsequently mapped onto a single BPSK encoded OFDM symbol,
denoted as the SIGNAL symbol. In order to facilitate a reliable and timely
detection of the RATE and LENGTH fields, 6 zero tail bits are inserted into the
PLCP header. The encoding of the SIGNAL field into an OFDM symbol follows
the same steps for convolutional encoding, interleaving, BPSK modulation, pilot
insertion, Fourier transform, and prepending a Gl as described subsequently for
data transmission with BPSK-OFDM modulated at coding rate 1/2. The contents
of the SIGNAL field are not scrambled as shown in the next figure.

< 8+8=16 s g
. 10%08=8 s |‘ 2x08+2x32=80Us | 08+3.2=40 _us,_Lo_s+3.2=4.0 ps | 08+3.2=40ps
-« — Lt ] Lt
T T I TT T ] T T \/ T _ T T
ity ttststrts totig GT 1 Ty 1 T, |GIISIGNAL{GI| Datal | GI| Data2
T T T T O | | | | , ,

Signal Detect,
AGC, Diversity
Selection

4 —rt+—>
Coarse Freq. Channel and Fine Frequency  RATE

O_HS?t Estunzmon. Offset Estimation LENGTH
Timing Synchromze

> |

|

SERVICE + DATA  DATA

Figure 2-5 PLCP header field
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e Calculate from RATE field of the TXVECTOR the number of data bits per OFDM
symbol (NDBPS), the coding rate (R), the number of bits in each OFDM subcarrier
(NBPSC), and the number of coded bits per OFDM symbol (NCBPS).

e Append the PSDU to the SERVICE field of the TXVECTOR. Extend the resulting
bit string with zero bits (at least 6 bits) so that the resulting length is a multiple of
NDBPS. The resulting bit string constitutes the DATA part of the packet.

e |Initiate the scrambler with a pseudorandom nonzero seed, generate a scrambling
sequence, and XOR it with the extended string of data bits.

¢ Replace the six scrambled zero bits following the data with six non-scrambled zero
bits. (Those bits return the convolutional encoder to the zero state and are denoted
as tail bits).

e Divide the encoded bit string into groups of NCBPS bits. Within each group,
perform an “interleaving” (reordering) of the bits according to a rule corresponding
to the desired RATE.

e Divide the encoded bit string into groups of NCBPS bits. Within each group,
perform an “interleaving” (reordering) of the bits according to a rule corresponding
to the desired RATE.

e Divide the complex number string into groups of 48 complex numbers. Each such
group is associated with one OFDM symbol. In each group, the complex numbers
are numbered 0 to 47 and mapped hereafter into OFDM subcarriers numbered —26
to —22,-20to-8,-6t0 -1, 1to 6, 8 to 20, and 22 to 26. The subcarriers -21, -7, 7,
and 21 are skipped and, subsequently, used for inserting pilot subcarriers. The 0
subcarrier, associated with center frequency, is omitted and filled with the value 0.

e For each group of subcarriers —26 to 26, convert the subcarriers to time domain
using inverse Fourier transform. Prepend to the Fourier-transformed waveform a
circular extension of itself thus forming a Gl, and truncate the resulting periodic
waveform to a single OFDM symbol length by applying time domain windowing.

e Up-convert the resulting “complex baseband” waveform to an RF according to
the center frequency of the desired channel and transmit.
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Declarations

Coding (rate): Every bit in the data stream is coded (repeated) to allow error
correction.

Eg 1

0

111 (“1/3” coding)
00  (“1/2” coding)

vy

Interleaving: This is done to achieve frequency diversity to resist the frequecy
selectivity nature of the channel.

Preamble: Samples known by the receiver to support in the process of retreiving the
original data at it has three functionalities :

e Time sync

e Frequency offset determining

e Channel estimation

Pilot insertion: The preamble is not sufficient for retreiving the original data process
as the channel is suffering from variations all the time, to make perfect estimation of the
channel some known bits are sent inside the data over some subchannels called pilots.

Service field: Used to send the type of the modulation , number of symbols and the
required information to correctly de-modulate the signal

Cyclic extension: It is added to overcome the problems of ISI and ICI, It must be
removed from the received frame in order to have the information only.
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The PMD sublayer accepts the PLCP sub layer primitives and provides the actual
means by which data are transmitted or received from the medium.

The PMD sublayer primitives and services for the transmission and reception functions
include data stream, timing information, and associated signal parameters being delivered
to and from the PLCP sublayer.

THE OFDM sublayer primitives are divided into two different categories:

1- Service primitives that support PLCP__ peer-to-peer _interactions
PMD_DATA.request: This primitive defines the transfer of data from the PLCP
sublayer to the PMD entity. When generated, this primitive shall be generated by the
PLCP sublayer to request transmission of one OFDM symbol. The data clock for this
primitive shall be supplied by the PMD layer based on the OFDM symbol clock.

PMD_DATA.indication: This primitive defines the transfer of data from the PMD
entity to the PLCP sublayer. When generated by the PMD, it forwards received data
to the PLCP sublayer. The data clock for this primitive shall be supplied by the PMD
layer based on the OFDM symbol clock.

2- Service primitives that have local significance and support sublayer-to-
sublayer interactions

PMD_TXSTART.request: This primitive is generated by the PHY PLCP sublayer. It
initiates PPDU transmission by the PMD layer.

PMD_TXEND.request: This primitive is generated by the PHY PLCP sublayer. It
ends PPDU transmission by the PMD layer.

PMD_TXPWRLVL.request: This primitive is generated by the PHY PLCP sublayer
to select the power level used by the PHY for transmission.

PMD_RATE.request: This primitive is generated by the PHY PLCP sublayer to select
the modulation rate that shall be used by the OFDM PHY for transmission.
PMD_RSSl.indication: This primitive, generated by the PMD sublayer, provides the
receive signal strength to the PLCP and MAC entity.

PMD_RCPl.indication: This primitive, generated by the PMD sublayer, provides the
RCPI to the PLCP and MAC entity.
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The PLME performs management of the local PHY functions in conjunction with the
MLME. It also has the MIB (Management Information Base) attributes which are used in
the communication process.

Its parameters are divided into 3 categories:

TXVECTOR parameters

Table 1 Transmitter vector parameters in PLME sublayer

Parameter Description Associated primitive Value

This value is used by the PHY

to determine the number of octet

_ PHY-
transfers that will occur between
LENGTH TXSTART.request 1-4095

the MAC and the PHY after
o (TXVECTOR)

receiving a request to start the

transmission.

6,9, 12, 18, 24, 36, 48,
and 54 Mb/s for 20 MHz
channel spacing (Support of
6, 12, and 24 Mb/s data
rates is mandatory.)

3,45,6,9, 12, 18, 24,

. . and 27 Mb/s for 10 MHz
It describes the bit rate at PHY- )
] ) channel spacing (Support of
DATATRATE which the PLCP shall transmit the | TXSTART.request
3, 6, and 12 Mb/s data rates
PSDU. (TXVECTOR) _
is mandatory.)
15,2.25,3,45,6,9,
12, and 13.5 Mb/s for 5
MHz channel spacing
(Support of 1.5, 3, and 6
Mb/s data rates is
mandatory.)
The SERVICE parameter
PHY- Scrambler
consists of 7 null bits used for the o )
SERVICE o TXSTART.request initialization; 7 null bits + 9
scrambler initialization and 9 null .
(TXVECTOR) reserved null bits

bits reserved for future use.

CCE-E
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This parameter is used to
indicate which of the available PHY-
TXPWR_LEVEL | TxPowerLevel attributes defined in | TXSTART.request 1-8
the MIB shall be used for the (TXVECTOR)
current transmission.
False, true. When true,
the MAC entity requests
A parameter value of true that the PHY PLCP entity
indicates that the MAC sublayer is measures and reports time
requesting that the PLCP entity of departure parameters
TIME_OF_ provides measurement of when the PHY- corresponding to the time
DEPARTURE_ | first frame energy is sent by the TXSTART.request when the first frame energy
REQUESTED transmitting port and reporting (TXVECTOR) is sent by the transmitting

within the PHY-
TXSTART.confirm(TXSTATUS)
primitive

port; when false, the MAC
entity requests that the PHY
PLCP entity neither
measures nor reports time

of departure parameters.

RXVECTOR parameters

Table 2 Receiver vector parameters in PLME sublayer

Parameter Description Associated Primitive Value
The MAC and PLCP use this
value to determine the number of
LENGTH octet transfers that will occur PRY” o 1-4095
between the two sublayers during RXSTART.indication
the transfer of the received PSDU.
RSSI shall be measured during PHY-
RSSI the reception of the PLCP RXSTART.indication 0-RSSI maximum
preamble. (RXVECTOR)

6,9, 12, 18, 24, 36, 48,
and 54 Mb/s for 20 MHz
channel spacing (Support of

DATARATE shall represent PHY- 6, 12, and 24 Mb/s data
DATARATE the data rate at which the current RXSTART.indication rates is mandatory.)
PPDU was received. (RXVECTOR) 3,4.5,6,9, 12,18, 24,

and 27 Mb/s for 10 MHz
channel spacing (Support of
3, 6, and 12 Mb/s data rates

CCE-E
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is mandatory.)

15,2.25,3,45,6,9,
12, and 13.5 Mb/s for 5
MHz channel spacing
(Support of 1.5, 3, and 6
Mb/s data rates is

mandatory.)
PHY-
SERVICE RXSTART.indication Null
(RXVECTOR)
This parameter is a measure
by the PHY of the received channel PHY-
RCPI power, RXSTART.indication 0-255
(RXVECTOR)
An estimate of the offset from
the point in time at which the start
RX_START OF of the preamble corresponding to PHY-
the incoming frame arrived at the RXSTART.indication 0to 2732 - 1.
FRAME_OFFSET receive antenna port to the point in (RXVECTOR)

time at which this primitive is
issued to the MAC

CCE-E
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Associated
Parameter Description o Value
Primitive
The locally measured time
when the first frame energy is sent
by the transmitting port, in units
equal to
TIME_OF_DEP | 1/TIME_OF_DEPARTURE_Clock PHY _
. . TXSTART.confirm 0to 2732 1.
ARTURE S:Itj.i:'hls parameter is present (TXSTATUS)
TIME_OF_DEPARTURE_REQU
ESTED is true in the corresponding
request.
The clock rate, in units of
MHz, is used to generate the
TIME_OF_DEP | 1\ME_OF DEPARTUREvale. PHY-
ARTURE_ClockRa | This parameter is present only if TXSTART.confirm O0to2716-1
te TIME_OF_DEPARTURE_RE (TXSTATUS)
QUESTED is true in the
corresponding request.
An estimate of the offset (in
10 ns units) from the point in time
TX_START_O at which the start of the preamble PHY-
F FRAME_OFFSE | corresponding to the frame was TXSTART.confirm 0to2732-1
T transmitted at the transmit antenna (TXSTATUS)
port to the point in time at which
this primitive is issued to the MAC.
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2.2 Receiver Overview

This part will go through some concepts in the PHY layer receiver. As noticed, what

the standard mostly state about the receiver functionality that it is the opposite of

transmitting functions, which is correct. However, it is needed to discover some receiving

concepts to be able to implement those opposite operations such as synchronization,

decoding ...etc. This part will go through these concepts one by one and mention important

notes related to the OFDM receiver.

To receive a frame, the following steps take place:

1.
2.

o gk w

Start of frame is detected

Transition from short sequence to channel estimation sequence is detected and fine
timing is established

Coarse and fine frequency offsets are estimated

The packet is then compensated with the estimated frequency offset

The complex channel response coefficients are estimated for each subcarrier

For each symbol inside the OFDM symbol, the symbol is transformed into
subcarrier received values, then the phase is estimated using the four pilots and the
subcarriers are compensated with this phase. After that, every subcarrier is divided
with the complex estimated channel response coefficient.

The signal field is then further analyzed to find out the modulating technique, the
parsing rate and the number of data octets

Finally, the output data is de-interleaved, de-scrambled and de-punctured and
decoded to produce the message.
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2.2.1 Frame detection

The first step in the receiver is to detect the start of the frame received. Each OFDM
frame starts with a short preamble sequence followed by long training sequence then
followed by the data as shown in the following figure. To detect the data, operations on
each part in the frame should be made. Firstly, with the short preamble sequence which
consists of a pattern of 16 samples and repeated 10 times.

16 samples N= 64 samples N=064 samples TH:4 Hsec N = 16 samples
—- - - - - -
tolty| by |ty t e t|t )t [ GI2 T, l T, H Signal |G] Data, |==== {Gl Data, k
Short Training, 8 |Lsec Long Training. 8 [isec OFDM Symbols ime

Figure 2-6 Detailed OFDM frame structure

The frame detection algorithm is based on autocorrelation of the short training sequence.
Then in order the values to be independent of the absolute values, autocorrelation value
will be divided by the average power. Firstly, the autocorrelation absolute value is
calculated by the following equation, the value of a[n] results of the incoming sample
stream s [n+k] multiplied with the complex conjugate of s lagged by 16. By summing up
over an adjustable window we can get the auto correlated values. Secondly, to have
independent correlated values of the absolute level of incoming samples, a[n] will be
normalized with the average power p[n] and calculate the auto correlation coefficients c[n].

-'\rwin"‘
an]= Y slh+k]sn+k+ 16].
k=0

Figure 2-7 Autocorrelation calculation algorithm
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Figure 2-8 Normalized auto correlation values with the average power
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Due to cyclic property of the short training sequence, the autocorrelation values will be
high at the start of OFDM frame which will detect the start of the frame by comparing
values with a threshold. Final thing to do to be sure that the frame start is detected is to

leave the first three values (called plateau) more than the threshold value. And if the values

after that still greater than the threshold, then the frame start is detected. If they are still
less than threshold then the frame is not detected yet. Note that the size of plateau and the

value of threshold can vary from a receiver to another. The following figure is an example

of autocorrelation distribution in frame detection.

Autocorrelation

1.00 1 ~
=1
m threshold
0.754 i g
i
0.50 1 8
f=T1]
E
0.25 - =
£
3
0.00 1 | o
T T T T T
0 100 200 300 400

Sample Index

Figure 2-9 Autocorrelation function behavior in the frame detection
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2.2.2 Frequency offset correction

Frequency offset correction is required due to the fact of receiving slightly different
frequencies. To compensate these differences, there are many algorithms to recover this
frequency offset. One of these algorithms is applicable on OFDM receiver which depends
on the frame cyclic property. In another words, it’s expected in the normal case that a
sample s[n] should correspond to the sample s [n+16]. But, due noise and frequency offset
occurrence this is no longer the case and s[n]*conj(s [n+16]) is not a real number as in the
ideal case.

In order to neglect the noise, the argument of the product that corresponds to 16 times the
rotation that is introduced by the frequency offset between samples. Then to estimate the
final frequency offset value, averaging is applied (dividing by 16) as shown in df equation
in the next figure. Where Nshort is the length of the short training sequence.

Using the argument of sum of the products is more robust against noise, as samples with
small magnitudes which are more affected by noise are weighted less.

Finally, the frequency offset is applied to each sample as shown in the next figure.

Figure 2-10 Frequency offset calculation equation and updating frame with the new phase
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2.2.3 Symbol Alignment

After the frequency offset estimation. Symbol alignment is then performed. The main
mission of the symbol alignment is to calculate where the symbol starts, extract the data
symbols and send them to FFT algorithm to be transformed from time domain to frequency
domain. This task is done with the help of the long training sequence which is composed
of 64 samples that repeat 2.5 times. As the alignment have to be very precise, matched
filtering is applied first for this operation.

In the next figure, a graph is showing the correlation of the input stream with the known
sequence.

three best matches
in window

i latest best match

Correlation
=
Lh
T

T T T
0 100 200 300

Figure 2-11 Sample Index

The indices of the highest three peaks are calculated using this equation
63

Np = arg(max3) Z s[n + k]LT[k] = wheren € {0,1,...., Npreamble}
k=0

Where N preamble represents the added length of the short and long preambles, LT is the
long preamble pattern that spans 64 samples and arg (max3) return the top three indices
maximizing this expression.
The first data symbol starts at the following sample index as the latest peak of the matched
filter output is 64 samples before the end of the long training sequence.

np = max(Np) + 64
After the relative frame start is detected, the data symbols are then extracted and passed to
the FFT algorithm as samples multiples of 64 to perform the FFT with size 64.
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In addition to that, knowing the start of the data symbols, the cyclic prefix can be removed
by sub setting the data stream and grouping samples that correspond to individual data
symbols

(s[np + 16], .....,s[np + 79],s[np + 80 + 16],,,,,,)

Where s [np+16] up to s [np+79] are considered the first symbol and the rest is the second
symbol and so on.

2.2.4 Phase offset correction

After the symbol alignment, the output symbols are turned from time domain to
frequency domain using the FFT algorithm of size 64. Then, the phase offset correction is
done. This phase offset is calculated using the pilot symbols that are inserted inside each
OFDM symbol. The phase correction is not only done using the pilots of each symbol
independently, but the residual offset is also calculated through the phase offset between
the pilot symbols of subsequent symbols. That way, the phase offset can be calculated,
compensated and updated frequently to compensate with the fast channel changes.

2.2.5 Channel estimation

After the phase and frequency correction, the data is transformed from complex
numbers to octets to be further decoded. This is done using channel coefficients that are
extracted using different channel estimation techniques. They perform the same task but
with different techniques that give them different efficiencies. These techniques are further
discussed in the code description and code design.

2.2.6 Signal field decoding

The first step at the receiver after correct channel equalization and synchronization is
to decode the signal field. In each frame, the short and long training sequences are followed
by the signal field, which is a BPSK modulated OFDM symbol encoded with a rate of 1/2
that carries information about the length and encoding of the following symbols. In order
to do so, we use the deinterleaver function to deinterleave the received signal field bits and
a Viterbi decoder to decode the output of the deinterleaver.
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If the signal field is decoded successfully, i.e., if the rate field contains a valid value
and if the parity bit is correct, the Decode Signal Field return the type of encoding of the
data and the number of symbols in each frame and pass it to the next block Frame Decode

block.
RATE LENGTH SIGNAL TAII
(4 bits) (12 bits) (6 bits)
R1 R2 R3 R4| R|LSB MSB| P PO =07 0" 0" 0" “0"
Uill.’. 3 |4 *'h|" 8 |9 I()Ill\ll l‘wlltl* 16 |17 |18 [19 3(')31_‘1\22 23
Transnut Ordet
>
Figure 2-12 Signal field assignment
2.2.7 Frame decoding

The final step in the receiver after correct decoding of signal field is the decoding of

the actual payload. It is performed in multiple sub-steps, as follows.

Demodulation: The OFDM Decode block receives vectors of 48 constellation
points in the complex plane, corresponding to the 48 data subcarriers per OFDM
symbol. According to the used modulation scheme, these constellations are mapped
to floating point values, representing the soft-bits of the employed modulation.
DE interleaving: At which the bits of a symbol are permuted. The permutation is
the same for all symbols of a frame.

Convolutional Decoding and Puncturing: Depending on the coding rate we use
Viterbi decoder for decoding a bit stream that has been encoded using Forward
error correction.

Descrambling: The final step in the decoding process is descrambling. In the
encoder the initial state of the scrambler is set to a pseudo random value. As the
scrambler is implemented with a seven bit feedback shift register, 27= 128 initial
states are possible. The first 7 bit of the payload are part of the service field and
always set to zero, in order to allow the receiver to deduce the initial state of the
scrambler.

The mapping from these first bits to the initial state is implemented via a lookup
table.
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Chapter 3

Project Design

n this chapter, we’ll focus on how we designed the project to achieve its

functionality and what were the needed components. We will state a quick

overview on everything we used to create the picture of the project for the

reader to understand the following chapters. Also we’ll discuss our testing
plan, project phases and cost.
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3.1 Implementation Overview

Our implementation started by the need of a development kit to process the TX/RX
code and a RF antenna to send and receive data stream. It was found that the model of the
PHY layer can be represented by two ways:

3.1.1 Standalone device model
e Steps of model creation:

1- Develop codes of transmitter and receiver

2- Burn the code of transmitter or receiver to the DSP kit for processing data

3- Connect DSP kit with an RF tool to start sending

4- On the other side of reception, there will be the same components receiving data
Notes:

- The standalone model didn’t work with USRP since its driver didn’t work on DSP

kit when we tried to make it. That’s why we needed another RF tool that will be made
by Consultix corporate (our sponsor).

3.1.2 Step by step model

>GNURadio

ViaUSB 3.0 Via Jtag Debugger

e Code Composer™ Studio v6

N\

Figure 3-1 USRP and DSP kit connection
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e Steps of model creation:

1- Develop codes of transmitter and receiver

2- Connect DSP kit with its emulator (debugger) to the laptop

3- Set the configuration file to deal with DSP emulator xdvs100

4- Start running transmitter code on CCS

5- Save Transmitter output to file

6- In GNUTradio transceiver blocks (USRP channel), add the transmitter processed
data

7- Connect USRP and save the data received on GNUradio

8- In CCS receiver, insert the data received and debug the code

9- Data received successfully

3.2 Project Testing
3.2.1 Functional Testing

We tested each function in the code by comparing its results by GNUradio block
results using Octave tool.

3.2.2 Integration Testing

To test TX, we used GNUradio blocks and implemented the following:
1- Disabled the transmitter blocks from GNUradio

2- Add our transmitter results to be sent instead of disabled blocks

3- Receiver blocks is unchanged to check our transmitter functionality

To test the RX, we used CCS and GNUradio and implemented the following:

1- From GNUradio, take the input to the receiver by the help of octave
2- Read the file in CCS to the receiver code and run
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3.3 Project phases

The project is divided into two main phases. Phase 1 which was done in the first half
of the year and phase two in the second half.

3.3.1 Phasel

- Standard IEEE802.11p understanding

- Adapting with GNU radio and studying IEEE blocks

- Standard verification with GNU radio blocks

- Studying USRP and try sending and receiving through two antennas and GNU radio
- DSP SDK understanding

3.3.2 Phase 2

- Setting up the environment either software or hardware tools
- Start implementing TX and RX C functions on DSP kit

- Testing

- Project Documentation

3.4 Project Cost

Table 4 Project Budget

Model: B200 686 $ (already available-
Board only)
Model: VERT900 36 $ each (already
available)
Model:mityDSP OMAP- 708 $
L138f

Model: XDS100 79%

Total Cost: 1545 $
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Chapter 4

Tools Used
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4.1 Software Tools
4.1.1 Gnu radio

In this section, we'll describe GNU radio a very important software that was used in
the V2V PHY layer implementation, we’ll first make an overview on it and describe its
general usage, and then we’ll go through how it was in the project.

GNU Radio is a free software development toolkit that provides signal processing
blocks to implement software-defined radios and signal-processing systems. It can be used
with external RF hardware to create software-defined radios, or without hardware in a
simulation-like environment. It is widely used in hobbyist, academic, and commercial
environments to support both wireless communications research and real-world radio
systems.

The GNU Radio software provides the framework and tools to build and run software radio
or just general signal-processing applications. The GNU Radio applications themselves are
generally known as 'flow graphs', which are a series of signal processing blocks connected
together, thus describing a data flow. As with all software-defined radio systems, re-
configurability is a key feature. Instead of using different radios designed for specific but
disparate purposes, a single, general-purpose, radio can be used as the radio front-end, and
the signal-processing software (here, GNU Radio), handles the processing specific to the
radio application.

These flow graphs can be written in either C++or the Python programming language. The
GNU Radio infrastructure is written entirely in C++, and many of the user tools are written
in Python.

We used the GNU Radio Companion as a graphical Ul used to develop GNU Radio
applications. This is the front-end to the GNU Radio libraries for signal processing.

The main advantage of the gnu radio is that the standard 802.11is already implemented
using C++and is an open source, so we used it as a test bed to verify that it’s working with
the 802.11p standard. Thus, we can use it for validation method when implementing the
standard on the DSP kit.
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Figure 4-1 Physical hierarchy block diagram

The previous block diagram shows the blocks of the physical hierarchy in details and as
explained in the standard. The Wi-Fi Mapper does the functions of the PLCP; scrambling,
interleaving and splitting the data into symbols. The OFDM carrier allocator puts the
symbols into the destined subcarriers, adds the pilots and prepares the OFDM symbol for
the IFFT block to perform inverse fast Fourier transform. At the end, before transmitting,
the cyclic prefix is added through the OFDM Cyclic pre-fixer block.

On the other half of the block diagram is the physical hierarchy of the receiver. This half

reverses all the operations done on the transmitter after removing the cyclic prefix and
recovering the signal from the traffic.
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Figure 4-2 Transmitter block diagram

The physical hierarchy is all inserted into a single block called Wi-Fi PHY hierarchy. This
block diagram shows the insertion of data into the MAC layer, then into the physical layer

up to the USRP block which puts the data on the channel to be sent.
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Figure 4-3 Receiver block diagram

This block diagram takes the receiver part of the physical hierarchy to receive the data from

the channel first using the USRP block, then recover the data from the channel
de-modulating, de-interleaving and de-scrambling the data.
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Figure 4-4 Transceiver block diagram

To show both sides in one block diagram, this block diagram shows the transmitter, the
channel and the receiver. The channel here is created using USRP.

CCE-E

Page | 32



Graduation Project-2 V2V PHY layer Implementation

Wi-Fi loopback

Final Report

Ophiens QT GUI Cnpener QT CHT Chmmnn QT SV Renge | OF S Rarge QT GUI Range | QT GUt Bange
10 v tncoboch 10 o ent W excotvg W 0wyt 0 exvior ] "
Geserate Optionn: U7 G Nurn Opeina! L v Commne Lie Dot Wabvn: 500 | | Dwfest Wabse: 0 | | Defesl Vakse: 300 | | Detwat Vobes
Sutucit s O | Ot b (D Moo 0 Saen: 1 Stae:
Vertatile Othn 04 I Mo L0 Stog 0y (I Stop %)
[P Labein: L5 LMY Lvwer Corme | Galbwie: BPSC 1) 0304M 35 Shew | Step 1 L Shegr: 100w
Vebse: 50 )
Mussage Strane = 1
= WATS MAC
ﬂ""""'f’“' """""" f-®Eacmcnn nxx I
tod (oms: ONY MAC: i W6 b6 66 B 1y
Hoamnmac i s 14 0 o
i Sire
oo troet s N Semnpo
[T 1 ‘“’"‘_"u - -
Apwesd Be: Oerrwets Osbog: Duut
WP Parse MAC e
: Dhdtie fe- o WAL DI Hiwr '
.- jl’..lla:l - e -8 <l §
! Shceia POU o Topyed Sunem 1 | protpeeary -
L Lergt™ 1ng rame: peche :«j & -.‘0-0.-‘ ' .'
= Feemocy: 590
s [ ANy Ao
5 | 1
! i y
—~ -
! t
el
-]
sf 1
38 H
- -
: 1l
vy '
GT SV Murber Sink 35 l i
Autoscale: ke -
""i Average: U »S ‘
Coraen Yoy e
Pochwt Pud2 Chanrvel Modes
Oebug: [t = = Moy Vatsge: 1
Culayp: [rasiton pas TRty Canet Froguancy Ofteec: &
-D. Bedap osi Im ’l Coempbmnt! 3 07381 l "’l Spetons |
Pk Proem 530 ) Tape !
Pt Tak § Seed: )

Stop-sere Ateeesmtier: 100

l—

Figure 4-5 Loopback block diagram

Loopback also shows both sides in one block diagram, which are the transmitter, the
channel and the receiver. The difference from transceiver is that the channel here is virtual

channel model.
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4.1.2 CCS (Code Composer Studio)

Code composer studio is an integrated development environment that supports TI’s
microcontrollers. It has tools to develop and debug embedded applications. These tools are
an optimizing C/C++ compiler, source code editor, project build environment, debugger,
profiler, and many other features. Code composer studio combines the advantages of
Eclipse with advanced embedded debug capabilities of TI microcontrollers.

Code composer studio V7 is the latest version. It’s efficient with the debugger used with
the mitydsp kit (XDS 100v2). However, sometimes only a simulator is needed to make
testing and trying easier. This is not available in v7 but it’s available in CCS v5. CCS v5
has simulators that work for several DSP kits and processors. Since our project is DSP
based, it was easy to find a simulator for (C674x processor) in CCS v5

In addition to that, there is a DSP library available for C674x processor. It has various
useful functions that are rather used in our code such as FFT, IFFT and FIR filter. What’s
impressive about this library is that it’s done using Assembly which increases its efficiency.
Also, there are functions that are especially made for complex numbers which makes it a
lot easier and more efficient for us to use this library.

e Code Composer™ Studio v5

Figure 4-6 CCS logo
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4.1.3 GNU Octave

In this section, we'll describe GNU Octave a very important software that was used in
the V2V PHY layer implementation, we’ll first make an overview on it and describe its
general usage, and then we’ll go through how it was in the project.

GNU Octave is software featuring a high-level programming language, primarily
intended for numerical computations. Octave helps in solving linear and nonlinear
problems numerically, and for performing other numerical experiments using a language
that is mostly compatible with MATLAB. It also provides extensive graphics capabilities

G

GNU Octave

Figure 4-7 Octave logo

for data visualization and manipulation. It is free software under the terms of the GNU
General Public License.

The Octave language is an interpreted programming language. It is a structured
programming language (similar to C) and supports many common C standard
library functions, and also certain UNIX system calls and functions. However, it does not
support passing arguments by reference.

Its syntax is very similar to MATLAB, and careful programming of a script will allow it to
run on both Octave and MATLAB.

Because Octave is made available under the GNU General Public License, it may be freely
changed, copied and wused. The program runs on Microsoft Windows and
most Unix and Unix-like operating systems, including macOS.
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Since Octave can read the output file from any block in the gnu radio using a file sink,
Octave has been used in this project to test the output from each block by comparing it to
the output of the gnu radio block. It can read any type of data stored in a file with any size,
with any format and convert to any type of data for displaying, here is a sample code for
reading from a file.

1. PS1(">>"

2. addpath(*'/home/UserName/gnuradio/gr-utils/octave™)

3. c=read_char_binary("File_Sink_Output.txt")

The second line of code is used to direct the path to the octave folder, the third line will
read the file sink output that contains data in the form of characters and convert it to binary
data and display it on the screen.
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Figure 4-8 File Sink block
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4.2 Hardware Tools

4.2.1 USRP

It stands for Universal Software Radio peripheral, the device is used as transceiver for
radio frequency signals in wireless communication systems through the development of
Software-defined radios.

Figure 4-9 USRP B200

"Following a common software-defined radio architecture, NI USRP hardware
implements a direct conversion analog front end with high-speed analog-to-digital
converters (ADCs) and digital-to-analog converters (DACs) featuring a fixed-personality
FPGA for the digital down conversion (DDC) and digital up conversion (DUC) steps. The
receiver chain begins with a highly sensitive analog front end capable of receiving very
small signals and digitizing them using direct down conversion to in-phase (1) and
quadrature (Q) baseband signals. Down conversion is followed by high-speed analog-to-
digital conversion and a DDC that reduces the sampling rate and packetizes | and Q for
transmission to a host computer using Gigabit Ethernet for further processing. The
transmitter chain starts with the host computer where | and Q are generated and transferred
over the Ethernet cable to the NI USRP hardware. A DUC prepares the signals for the DAC
after which 1-Q mixing occurs to directly up convert the signals to produce an RF frequency
signal, which is then amplified and transmitted.” ("What Is NI USRP Hardware? - National
Instruments”, 2017)
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Figure 4-10 USRP 2920 system level diagram

In this project the USRP B200 used to transfer the data from one end to the other end
after setting the required antenna parameters and bandwidth occupied by the transferred
data this happened through two principle blocks in  GNU radio
USRP sink is that responsible for adjusting the parameters at the transmitter side
USRP source is that responsible for adjusting the parameters at the receiver side

In the following figure, the channel is represented by block called "channel model™ in the
loopback code for the IEEE standard 802.11, which is substituted by the USRP blocks for
real transceiver connected through the USRP device.
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Figure 4-11 Simulated channel model using GNU radio

'
WIFI PHY Hler :
bandwidth: 10M H
J
chan_est: 0 ]4
encoding: 0
frequency: 509G
sensitivity: 560m

Multiply Const
B "I constant: 600m - Y

UHD: USRP Sink
Synec: PC Clock
Samp Rate (Sps): 10M
ChO: Center Freq (Hz): 5.89G
ChO: Galn Value: 750m
ChO: Gain Type: Normallzed
ChO: Antenna: TX/RX
ChO: Bandwidth (Mz): 10M
TSD tag name: packet len

UHD: USRP Source
Sync: PC Clock
Samp Rate (Sps): 10M
ChO: Center Freq (Hz): 509G
ChO: Gain Value: 750m
ChO: Galn Type: Normallzed
ChO: Antenna: RX2
Cho: Bandwidth (Mz): 10M

Packet Pad2
Debug: Disable
Delay: Disable
Delay Sec: 1m
Pad Front: 10k
Pad Tall: 10k

Figure 4-12 USRP channel using GNU radio

One of our goals was to connect the USRP with the mitydsp kit directly. However, the DSP
kit was considered a third party device with an operating system that is different than most
operating systems that can install the USRP driver easily. A lot of challenges were faced
while trying to install the libraries needed for the USRP driver. As a result, using the PC
with Gnuradio as a communication host between the USRP and the DSP kit was a suitable
satisfactory solution.
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How we used the USRP and Gnuradio with our transmitter:

Gnu radio uses C++ language to make its blocks and Python to connect the blocks and
make them communicate with each other. Using the C++ code of the last block of the
transmitter, we managed to replace its code and make it write our own data that was made
by our transmitter. That way, we can send our own data but by using Gnu radio’s method
of communication to send the data with no errors.

OFDM Cyclic Prefixer

Pad Sink FFT Length: 64
Label: samp out | cpLength: 16 P E——
Rolloff: 2

Length Tag Key: packet len

Figure 4-13 the last block in GNU Radio transmitter

COMMENT THIS /
/] 1) Flgure out LT we're in freewheeling or packet mode

\f (d_length _tag key str.empty()) {

synbols_to_read = ninput_ttems(a];
= synbols_to_read * ¢_output_sfze + d delay 1ine.slze():
_read « std::nin{noutput_Lt int) d_outpat_size, ninput_iters[0});

s = synbols to read *

END OF COMPENT

Figure 4-14 commenting code that is not needed

L 8 AIH-V
tpe §9; /JAdging the number of outpet Ltems comiag fram our own recetiver
MDD 1 efMalng ] 1y 1} plr
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nency ’ szeof .
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Figure 4-15 adding our own data
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How we used the USRP and Gnuradio with our receiver:

Since Gnu radio has a block that communicates with the USRP, there wasn’t any problems
communicating with the USRP. However, the main concern was how to read the data after
it’s received and transfer it to our own receiver. So, we decided to add a file sink block
after the USRP block. This block reads the received data and saves it into a file. After that,
our receiver reads the data from this file and starts to analyze it and operate normally. That
way, we facilitated the communication between Gnu radio, USRP and our own receiver
using normal .txt files.

| WiFi Parse MAC

T‘ Debug: Erable L vendwidth: 1t

________________________________________ & chan est: 0 &
s L encoding: S s
—1 Multiply Canst frequency: 535G -
L 1l scastivmy: s60m

‘ File Sink
Fie: _ oudyDeskiopREC tet
Unbuffered: G5

| Append file: Cusrwrite

UHD: USRP Sink

m | Symc: PC Cinck ) UHD: USRP Source
Debug: Disshie Samp Rate {Sps): 1M ; Sync: PC Clock
Delay: Disabée Chi: Center Freq (Hz): 539G | ﬂ Samp Rate (Sps): 10M
—>l Delay Sec: 1m h } ' Chix: Gain Value: 750m [ Qvo:CenterFf:q(Hl):SEQZ-.——
Pad Front: 1% Cho: Gain Type: Normalizea Cho: Gain Value: 730m
Pad Tall: 10 | Chi: Antemna: TERX ChO: Gain Type: Normalizsd
TSB tag name: packet len ChO: Antenma: 22

Figure 4-16 USRP blocks and File sink block

In this figure, the USRP sink is the block that takes the data to USRP to be sent. The USRP
source is the block that receives the data from the receiving antenna and puts it to Gnu
Radio. This received data is then written in the file that’s path is written inside the block.
Flnally, our receiver reads the data from that same file and starts analyzing it.
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4.2.2 MitydspL138F

In this section, we'll describe the kit that we used to create an environment applicable
to test the V2V PHY layer implementation, we’ll first make an introduction to DSP and its
general usage, and then we will go through an overview on its Hardware and Software
usage.

4.2.2.1 Introduction to DSP

It is an electronic board with Digital Signal Processor used for experiments, evaluation
and development. A digital signal processor is a specialized microprocessor used to
measure continuous real-world analog signals. Applications are developed in DSP Kits
using a software usually referred as an Integrated Development Environment. Texas
Instruments and Spectrum Digital are some of the companies who produce these Kits.

Figure 4-17 MityDsp-L138F
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In our project, we are going to use a MitydspL138-F shown in the following figure,

developed by Critical link an electronics product development company.

The MityDSP-L138F System on Module (SoM) is the highest performance module in
the OMAP-L138 family (a family of development kits) of MityDSPs. It features the dual-
core OMAP-L138 CPU from Texas Instruments which provides both an ARM9
applications processor and a C674x Fixed / Floating Point DSP.

1
1

T

© o N kR WNRE

Embedded Instrumentation
Industrial Automation
Industrial Instrumentation
Medical Instrumentation
Embedded Control Processing
Network Enabled Data Acquisition
Test and Measurement
Software Defined Radio

. Bar Code Scanners

0. Power Protection Systems

1. Portable Data Terminals

C674x Fixed / Floating point DSP

| DSP Processor C674x Fixed / Floating Point DSP

Max CPU Speed 456MHz

1 Program Cache 32KB

1 Data Cache 12KB

L2 Cache [ Internal RAM 256KB

Table 4-1 C674x Fixed / Floating point DSP
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* ARM processor

TI Applications Processor
Max CPL Speed

L1 Program Cache

L1 Data Cache

Internal RAM

=  Memory

;System Memory
jRAM

?NOR Flash
.NAND Flash

= FPGA

FPGA Options
Slices
Logic Cells

Block RAM

V2V PHY layer Implementation Final Report
'ARM926E3-S MPU
‘456MH2
|16KB
.lGKB
8KB
Table 4-2 ARM processor
' Available for Both CPUs
‘128MB to 256MB
8MB
256MB to 512MB
Table 4-3 Memory
' XC6SLX16 ‘ XC6SLX45
| 2,278 .6,822
14,579 ‘43.661
576Kb 12,088Kb

Table 4-4 FPGA
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10/100 EMAC SATA eHRPWM
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Table 4-5 Interfaces
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Table 4-6 Mechanical

Width

2.0
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Table 11 Software support

Software Support

Real-time Linux Operating System

[hreadX RTOS from ExpressLogic

uBoot

QNX Real-time Operating System

Windows CE 6

Qt Embedded Graphics

DSP/BIOS Real-time Operating System
Table 4-8 Development tools

Development Tool

lexas Instruments Code Composer Studio

GNU Toolchain

Xilinx ISE

Nimesys LinuxLink

Final Report

CPU Subsystem
ARM9
ARM9
ARMS
ARM9
ARMY

ARM9

Subsystem

ARMOY and C674x DSP
ARM9

Xilinx FPGA

ARMS

The uPP (Universal Parallel Port) interface is one of the most important interfaces
found in the mitydspL138F, It is particularly well suited to data acquisition through the on-

board Xilinx FPGA.

It offers a very high-speed parallel data bus with several important features:

Two independent channels with separate data buses

e Channels can operate in same or opposing directions simultaneously
e 1/O speeds up to 75 MHz with 8-16 bit data width per channel

¢ Internal DMA — leaves CPU EDMA free

o Simple protocol with few control pins (configurable: 2-4 per channel)
« Single and double data rates (use one or both edges of clock signal)

« Double data rate imposes a maximum clock speed of 37.5 MHz
o Multiple data packing formats for 9-15 bit data widths

o Data interleave mode (single channel only)

CCE-E
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The choice of this particular kit comes back to the fact that it’s C674x Fixed / Floating
Point DSP features an optimized general-purpose DSP function library as well asa MATH
library for C Programmers typically used in computationally intensive applications. These
libraries were very useful in the course of this project because many complex functions
were needed through the implementation of the signal processing for both the transmitter
and the receiver.

Another motive for choosing this particular kit, because of the UPP interface that was
supposed to be used to transmit data with very high rates from the transmitter to the USRP.
An XDS100v2 low cost JTAG debug probes (emulators) is used for the connection with
the mitydsp kit in the software development using code composer studio. It provides the
feature of debugging the code line by line without the need to download the code on the
kit.

Figure 4-20 XDS100v2 low cost JTAG debug probe

CCE-E Page | 48



Graduation Project-2 V2V PHY layer Implementation Final Report

Chapter 5

Code Description
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5.1 Transmitter

5.1.1 Mapper

In this section, we will explain the Mapper block, the first block in the transmitter chain
that performs all the signal processing on the data PSDU and append service bits,tail bits
and pad bits to it to create multiple OFDM symbols depending on the length of the PSDU
then pass it to the chunks to symbols for modulation.

The signal processing in the Mapper is composed of many detailed steps, which are
described fully later in the implementation, the following overview intends to facilitate
understanding the details of the design procedure sequence:

1.

Calculate from the type of encoding the number of data bits per OFDM symbol
(NDBPS), the coding rate (R), he number of bits in each OFDM subcarrier
(NBPSC), and the number of coded bits per OFDM symbol (NCBPS). Refer to
Table 1-1 for details.

Append the PSDU to the SERVICE field of the TXVECTOR. Extend the
resulting bit string with zero bits (at least 6 bits) so that the resulting length is a
multiple of NDBPS. The resulting bit string constitutes the DATA part of the
packet. Refer to Figure 1-1for details.

Initiate the scrambler with a pseudorandom nonzero seed, generate a
scrambling sequence, and XOR it with the extended string of data bits.

Replace the six scrambled zero bits following the data with six unscrambled
zero bits (Those bits return the convolutional encoder to the zero state and are
denoted as tail bits).

Encode the extended, scrambled data string with a convolutional encoder (R =

1/2). Omit (puncture) some of the encoder output string (chosen according to
“puncturing pattern”) to reach the desired “coding rate”.
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Figure 5-1 PPDU Frame format

Table 13 Modulation dependent parameters
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The Mapper is divided into ten major functions, these functions contributes in the
signal processing of the data and in the implementation of other blocks rather than the
Mapper, and these functions are:

1. Void ofdm_param_intialization(Encoding e, ofdm_param* ofdm):

This function is used to initialize the OFDM parameters depending on the type of
encoding as mentioned in Table 1-1, the OFDM parameters variable is implemented as a
struct and consists of the following:

Encoding encoding; // Encoding type

char rate_field; // rate field of the SIGNAL header

int n_bpsc; // number of coded bits per sub carrier

int n_cbps; // number of coded bits per OFDM symbol
int n_dbps; // number of data bits per OFDM symbol

® o0 o

2. Void frame_param_intialization(ofdm_param* ofdm, frame_param*
frame,int psdu_length):

This function is used to initialize the frame parameters depending on the parameter of the

OFDM calculated in ofdm_param_intialization function and the PSDU size, the FRAME

parameters variable is implemented as a struct and consists of the following:

int psdu_size; // PSDU size in bytes

int n_sym; // number of OFDM symbols (17-11)

int n_pad; // number of padding bits in the DATA field (17-13)

int n_encoded_bits;

int n_data_bits; // number of data bits, including service and padding (17-12)

® o0 o

3. Void generate_bits(const unsigned char *psdu, char *data_bits,
frame_param™* frame):

This function is used to append the 16 zero service bits before data, 6 tail bits and

padding bits to the end of the PSDU, It also take a copy of every bit of the data into a

separate byte to facilitate the signal processing later on.

The PSDU consists of an array of characters contain the data field, while the output of

this function is an array of characters, the first 16 bits are the services bits ,then each
character represent one bit of the data then 6 tail bits then pad bits.
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4. Void scramble(const char *input, char *out, frame_param* frame,char
initial_state):

This function implements the scrambler, the DATA field, composed of SERVICE,
PSDU, tail, and pad parts that shall be scrambled with a length-127 frame-synchronous
scrambler. The octets of the PSDU are placed in the transmit serial bit stream, bit O first
and bit 7 last. The frame synchronous scrambler uses the generator polynomial S(x) as
follows:

S(x) = x S ]

Equation 1 Scrambler

The 127-bit sequence generated repeatedly by the scrambler shall be (leftmost used first),
0000111011110010 11001001 00000010 00100110 00101110 10110110 00001100
11010100 11100111 1011010000101010 11111010 01010001 10111000 1111111, when
the all ones initial state is used. The same scrambler is used to scramble transmit data and
to descramble receive data. When transmitting, the initial state of the scrambler shall be set
to a pseudorandom nonzero state. The seven LSBs of the SERVICE field shall be set to all
zeros prior to scrambling to enable estimation of the initial state of the scrambler in the
receiver.

Data In

| x7 X6 X5 | Cxé ox3 x2 x!

Descrambled
Data Out

Figure 5-2 Data Scrambler

5. void reset_tail_bits(char *scrambled_data, frame_param™* frame):

The 6 tails bits should be unscrambled as mentioned in the design process that follows
the instructions of the standard of IEEE 802.11, since those bits return the convolutional
encoder to the zero state. This function is used to reset these 6 tail bits to the zero state.
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6. void convolutional_encoding(const char *input, char *out, frame_param*
frame):

The DATA field, composed of SERVICE, PSDU, tail, and pad parts, shall be coded
with a convolutional encoder of coding rate R = 1/2, 2/3, or 3/4, corresponding to the
desired data rate. The convolutional encoder shall use the industry-standard generator
polynomials, g0 = 1338 and g1 = 1718, of rate R = 1/2, as shown in Figure 1-3. The bit
denoted as “A” shall be output from the encoder before the bit denoted as “B.”

/'T"\\
o :&.‘L g——__ " OutputDataA
J-’,r‘____r /’/_/' 4r \'\‘_;_\\““\-‘
Input Data Ty o MM T ™ T " Ty Ty '?
--‘%,‘ “-\_‘ \\_ --;-—A-H
e W, NP N e
“\‘-i:(/j[ N . Output Data B
{ X -

Figure 5-3 Convolutional encoding (k=7)

7. Void puncturing(const char *input, char *out, frame_param* frame,
ofdm_param* ofdm):

Higher rates (2/3,3/4) are derived from convolutional encoding by employing
“puncturing.” Puncturing is a procedure for omitting some of the encoded bits in the
transmitter (thus reducing the number of transmitted bits and increasing the coding rate)
and inserting a dummy “zero” metric into the convolutional decoder on the receive side in
place of the omitted bits.
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8. Void interleave(const char *input, char *out, frame_param* frame,,
ofdm_param* ofdm):

All encoded data bits shall be interleaved by a block interleaver with a block size
corresponding to the number of bits in a single OFDM symbol, NCBPS. The interleaver is
defined by a two-step permutation. The first permutation ensures that adjacent coded bits
are mapped onto nonadjacent subcarriers. The second ensures that adjacent coded bits are
mapped alternately onto less and more significant bits of the constellation and, thereby,
long runs of low reliability (LSB) bits are avoided.

The index of the coded bit before the first permutation shall be denoted by k; i shall be the
index after the first and before the second permutation; and j shall be the index after the
second permutation, just prior to modulation mapping.

e The first permutation is defined by the rule:

i = (Negps/16) (k mod 16) + Floor(k/16) k= 0.1.... Negps— 1

Equation 2 Interleaver first permutation

The function Floor (.) denotes the largest integer not exceeding the parameter.
e The second permutation is defined by the rule:

] =S X PlOOl"(i 5) o ofl § & ¢ '\.CBPS == FIOOI‘( 16 xi ‘\'CBPS.)) modsi=0.1.... '\'CBPS_ |

Equation 3 Interleaver second permutation

The value of s is determined by the number of coded bits per subcarrier, NBPSC, according
to s = max (NBPSC/2, 1)

9. Void split_symbols(const char *input, char *out, frame_param*
frame,ofdm_param* ofdm):

This function is used to split the data symbols according to the modulation type,e.g case of
BPSK each symbol contains only one bit, so each element in the output array will contain
only one bit,case QPSK each symbol contains 2 bits ,so each element in the output array
will contain 2 bits,other Bits Per Symbol For Common Modulation Formats can be found
in Table 1-2 ,this function is implemented using bit wise operations and shifting of the
data bits according to the modulation type.
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Table 10 Bits Per Symbol For Common Modulation Formats

Modulation Format Bits/Symbol
BPSK 1
QPSK

8 PSK
8 QAM
16 QAM

10. unsigned char* mapper_general _work_function(const unsigned char*
psdu,int psdu_length, ofdm_param* d_ofdm, frame_param * frame):

This function is the main function of the Mapper block, it calls all the functions stated
above in the same order as they were mentioned to preform the signal processing
mentioned in the design process.

In order to test this block, the correct output from each function is read from the Gnu
radio by adding a print line in the code of the block after the function that needs to be
tested, then the output is copied as an array to the CSS, subsequently compared to the
output of the CSS by subtracting the two arrays.
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5.1.2 Packet header generator

In this section, we will explain the packet header generator block, a parallel block to
the Mapper in the transmitter chain, it produces the PLCP header excluding the service
bits, it contains the LENGTH, RATE, reserved bit, and parity bit (with 6 zero tail bits
appended) that constitute a separate single OFDM symbol, denoted SIGNAL, that is

necessary for the demodulation, synchronization process at the receiver side.

I PLCP Header |
|~ L
;‘ ) e I ! 1. .
RATE | Reserved| LENGTH | Parity Tal SERVICE ey Tall |p ;
L 1 bits ! I bir 12 bits l 1 bt | 6 bits | 16 bits | PSDU 6 bLits _["d Bits
Coded OFDM | Coded/ OFDM
(BPSK.r— 1/2) | (RATE is indicated in SIGNAL)
- - < |
PLCP Preamble | SIGNAI ‘ DATA
12 Svmbols One OFDM Symboll Variable Number of OFDM Symbols

Figure 5-4 PPDU Frame Format

The OFDM training symbols shall be followed by the SIGNAL field, which contains
the RATE and the LENGTH fields of the TXVECTOR. The RATE field conveys
information about the type of modulation and the coding rate as used in the rest of the
packet. The encoding of the SIGNAL single OFDM symbol shall be performed with BPSK
modulation of the subcarriers and using convolutional coding at R = 1/2.

The encoding procedure of the signal field includes convolutional encoding, interleaving
as used for transmission of data in the Mapper with BPSK-OFDM modulated at coding
rate 1/2. The contents of the SIGNAL field are not scrambled.

The SIGNAL field shall be composed of 24 bits, as illustrated in Figure 1-2. The four bits
0 to 3 shall encode the RATE. Bit 4 shall be reserved for future use. Bits 5-16 shall encode
the LENGTH field of the TXVECTOR, with the LSB being transmitted first.
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Figure 5-5 Signal field assignment

There is only Two new functions implemented for the signal field block:
1. intget bit(int b, inti) :

This function returns the i bit in the int b variable,it is used to set the Rate field and the
Length field consequently from the rate field in the OFDM parameters, and the psdu size
in the FRAME parameters mentioned above in the explanation of the Mapper block.

int get_bit(int b, int i) {

return (b & (1<<i)?1:0);
}

2. unsigned char * generate _signal_field(frame_param*  signal_param,
ofdm_param*  signal_ofdm,frame_param*  data_frame, ofdm_param*
data_ofdm):

This function calls the get_bit function to set the RATE field. Bit 4 is reserved. It shall be
set to 0 on transmit and ignored on receive. Then the LENGTH field is set using the get_bit
function, Bit 17 shall be a positive parity (even parity) bit for bits 0-16, finally 6 zero tail
bits are inserted in order to facilitate a reliable and timely detection of the RATE and
LENGTH fields.

It then preforms convolutional encoding with rate %2 then interleaving using the same
functions implemented in the Mapper block in order to transmit the Signal field with the
most robust combination of BPSK modulation and a coding rate of R = 1/2.

In order to test this block, the correct output from each function is read from the Gnu radio
by adding a print line in the code of the block after the function that needs to be tested, then
the output is copied as an array to the CSS, subsequently compared to the output of the
CSS by subtracting the two arrays.
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5.1.3 Chunks to symbols

The output divided Chunks of the encoded and interleaved binary serial input data bits
as groups of (1, 2, 4, or 6) bits from the previous block are modulated by using BPSK,
QPSK, 16-QAM, or 64-QAM, depending on the Encoding type and converted into
complex numbers representing BPSK, QPSK, 16-QAM, or 64-QAM constellation points.
The conversion is performed according to Gray-coded constellation mappings, illustrated
in the standard.

Finally, it appends the modulated data field and to the modulated signal field in one array

as an input for the next block.

To implement the modulation we use two functions:
1. The Constellation_implemenation function:

This function is responsible for generating the constellation by creating an array containing
the complex numbers of this constellation and the size of this array is determined according
to the coding type.

For example : if the encoding type is QPSK , then the array size will be four complex
elements and as in this block we don’t use the complex library for simplicity , we will have
eight elements as shown in Figure 1 .

float *constellation_qpsk_impl() {
const float level = sqrit((float) (2.5));
float *d_constellation = calloc(4 * 2, sizeof(float));

/ Gray-coded

d;consfellation[e]

= -level;
d_constellation[1] = -level;
d_constellation[2] = level;
d_constellation[3] = -level;
d_constellation[4] = -level;
d_constellation[5] = level;
d_constellation[6] = level;
d_constellation[7] = level;

return d_constellation;

-

Figure 5-6 QPSK constellation implementation function
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Then this function returns a pointer to the created array to be used by the other function
which is the Chunks to symbols implementation function.

2. The Chunks to symbols implementation function:

This function uses the constellation implementation function to create the array according
to the encoding type and uses the created array to map each chunk of bits into the suitable
complex number.

The idea of mapping is based on using the decimal value of the chunk bits as an index to
the constellation array to get the suitable complex number corresponding to these bits.
For example: if we have this chunk of four binary bits [1000] , the chunks to symbols
function maps these bits to the complex number at index =8 which is the equivalent decimal
value of the chunk [1000] as shown in figure 2.

int i;

int index=0;

for (i=0 ; i < data_size ; i++ )

{
index=(int)input_items[i];
output_items[i*2]=d mapping[index*2];
output_items[(i*2)+1]=d mapping[(index*2)+1];

}

Figure 5-7 Mapping of the chunks into the complex numbers

5.1.4 Tagged stream MUX

This block simply creates a frame that contains signal field followed by the rest of the
frame.
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5.1.5 OFDM carrier allocator

According to the standard it is required to rearrange the 64 subcarriers entering the FFT
with a certain sequence specified in the standard
The 64 subcarriers will be:

e Data carriers 48 subcarrier
e Pilot carriers 4 subcarriers
e Zero padding 12 subcarriers

Data carriers will be in {-26,-25,-24,-23,-22,-20,-19,-18,-17,-16,-15,-14,-13,-12,-11,-10,-
9,-8,-6,-5,-4,-3,-2,-1, 26,25,24,23,22,20,19,18,17,16,15,14,13,12,11,10,9,8,6,5,4,3,2,1}
Pilot carriers will be in {-21,-7, 7, 21} subcarriers

Data to be put on the OFDM frame

FFT-length which is 64 in the transceiver

Occupied_carriers 48 subcarrier positions specified in the standard
Pilot_carriers 4 subcarrier positions specified in the standard
Pilot_symbols the values of the pilot symbols

Sync word to be put in the beginning of the frame

o arwnE

The sync words will be placed in the beginning of the frame directly. Then the input will
be divided such that each part consists of 64 subcarriers to be delivered to the FFT.

The block consists of three objects for this, typically called occupied carriers (for
the data symbols), pilot carriersandpilot symbols (for the pilot symbols).
occupied carriers and pilot carriers identify the position within a frame
where data and pilot symbols are stored, respectively.

e Clarification example:
occupied carriers = (-2, -1, 1, 3)
pilot carriers = (-3, 2)
Every OFDM symbol carries 4 data symbols. They are on carriers -2, -1, 1 and 3. Carriers

-3 and 2 are not used, so they are where the pilot symbols can be placed.

CCE-E Page | 61



Graduation Project-2 V2V PHY layer Implementation Final Report

5.1.6 IFFT

This block only performs the IFFT (Inverse Fast Fourier Transform) of the data to turn
it from frequency domain to time domain to be sent to the channel after adding the cyclic
prefix to it. The FFT size is 64. The only addition is that before it performs the IFFT to
every 64 elements, it scales the data to the actual number of sub carriers ( 52) and performs
a shift on the data before transforming it into time domain. Every 64 elements are divided
into two arrays, the first array is shifted to be in the place of the second array and vice
versa. Then the two arrays are combined again and an IFFT is performed on the data.

One of the advantages of digital signal processing is the availability of a lot of DSP
libraries in C language. Our DSP library has a ready—made function for the IFFT. However,
this function doesn’t perform the scaling or the shifting. So, we had to do both manually.
First, every 64 elements are multiplied by 64 (to reverse the original normalization) and
then divided by the square root of 52. Then the shifting is done using (memcpy()) function.
Finally, the IFFT function is called to perform the Fourier transform. One of the great
advantages of the IFFT function in the DSP library is that it’s implemented in assembly to
maximize the performance. Also, the function takes the complex numbers in the form of
an array; the real numbers have an even index while the imaginary numbers have an odd
index.

Since the window scale is not part of the normative specifications of the standard, there
was no need to compare it to the standard. However, comparing it to Gnu Radio. It was
easy to take the output of the IFFT block and store it into a file using File sink, then read
the contents of this file using Octave. Comparing the ouput of IFFT to our own IFFT, the
results were identical.
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5.1.7 Cyclic prefix

It consists of two parts:
First part cyclic prefix:
e Cyclic prefix usage:
It increases the immunity to multipath fading.
Second part cyclic suffix and windowing:
e Cyclic suffix usage:
It creates a smooth transition between the last sample of one symbol and the first
sample of the next symbol.

1. Cyclic prefix implementation:

It is implemented in CyclicPrefix function which exists in CyclicPrefix.c file as shown in
figurel. It appends the last 16 samples of the 64 point IFFT to the front of the symbol,
creating a composite symbol that is 80 samples long.

memcpy((out + (d_cp _size*2)),in, PtrToStruct->d fft len * sizeof(float)* 2);
memcpy(out, (in + (PtrToStruct->d fft len*2) - (d_cp size*2)), d cp size * sizeof(float)* 2);

Figure 5-8 Implementation of cyclic prefix function in code

2. Cyclic suffix and windowing implementation:

It is implemented in CyclicPrefix function which exists in CyclicPrefix.c file as

shown in figure2.

* (1 + cos{¥ PI *(float) i/(float)PtrToStruct->d_rclleff_len - N PI));
ff len - M PI));

* (1 + cos{M PI *{float)(PtrioStruct->d_rolloff len-i)/(float)PtrioStruct->d relloef

Figure 5-9 Implementation of cyclic suffix and windowing function in code
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The window and the cyclic suffix length depend on the value of roll length of the raised
cosine used.

Two windows are applied, one being the mathematical inverse of the other. The first raised
cosine window is applied to the cyclic suffix of the previous symbol, and rolls off from 1
to 0 over its duration (down flank window). The second raised cosine window is applied
to the cyclic prefix of the current symbol, and rolls on from 0 tol over its duration (up flank
window).

The cyclic suffix of the previous symbol multiplied by down flank window (delay line) is
summed with the cyclic prefix of the next symbol multiplied by the up flank window as
shown in figure3.

Symbol A with prefix and suffix Symbol B with prefix and suffix

------ - “

Suffix window B :] C Prafix window
1

16 l 64 samples

g, P

Suffix A after windowing 17- 1_L Prefix B after windowing
Rt

b{'& Merged suffix A and prefix B

by 27N\ 2

0y

,/\A'; 0 \1 o . P, -

w | B4 samples | 1

Assembled symbol A and symbol B

Figure 5-10 Cyclic prefix implementation

First read input of cyclic prefix block in GNURADIO using OCTAVE and store it in
an array called gnuradio_input in CCS then use it as input array of cyclic prefix function
in CCS. After that read output of cyclic prefix block in GNURADIO using OCTAVE and
store it in an array called gnuradio_output in CCS. Finally subtract gnuradio_output array
from output of cyclic prefix function in CCS if we get an array of zeros then we succeed
to implement the cyclic prefix function.

CCE-E Page | 64



Graduation Project-2 V2V PHY layer Implementation Final Report

5.2 Receiver

5.2.1 The blocks before Synch short
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Figure 5-11 Blocks before sync short

These blocks take the Input to the receiver which comes from the channel (either the
channel model in GNuradio or USRP channel). As we discussed before, this part is
responsible for frame detection and to detect the frame start we must make some

calculations to reach to the auto correlated values
There are mainly three inputs to the sync short which are:
1. Delayed input
2. Window summation result
3. Auto-correlated values

1. void delayy(const float complex *input, float complex *output, short int

delay , short int input_size, float complex delay_before_sync_short[])

- The function delay is used to pad zeros at the beginning of the frame by size

delay
- The output array size is input size + delay

- Therefore, when the input is multiplied by delayed input, it will result to
neglecting the 16 short sequence

2. void movingAverage(float* arr,float* out ,short int size ,short int
length,float*sum,float x[])

- Used to calculate the summation of each window frame
- In the delayed path, we assume the window size to be (64-16 = 48)
- In the non-delayed path, the window size is normally 64
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5.2.2 Synch Short

Completing the frame detection operation, sync short calculates the frame start, the
frequency offset and calculates the indices that has some special conditions that will be
discussed in the following part. Sync short mainly consists of two main cases which are:

Case Search:

It is used to search an index. This index describes the start of data that is more than
0.56 threshold. Known that there is a check which says that to return the index there must
be three successive input more than threshold value (min plateau).

Consider the following example:

Assume that the following is the frame that is received from autocorrelation function
0.123 022 045 06 057 04 02 058 057 062 0.7
The start index that will come out in case of the previous table is 10 (value = 0.62)

Case Copy:
Once the index of the start of data is found. Case copy is used to copy all the rest of

frame taking into consideration two things:

1- Minimum Gap case
Reaching min gap condition indicates that the case copy copied number of samples more
than threshold which exceed the min gap value. In other words, if another frame arrives
shortly after the first one, it won’t be detected without minimum gap condition. Therefore
when it reaches that condition it indicates that there is a start of a new frame (either it is a
correct or wrong frame but it completed the size of min gap). The response to min gap case

is normal, it will complete copying as it is and will break in two cases:

. If we reached input size (break and complete rest of the operations on the
frames detected from min gap condition)

o If the counter copying (d_copied) reached max_samples
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2- Maximum samples case
This case solves a limitation that may happen while copying. Which is the size of the frame
that can be decoded is limited to a configurable number of OFDM symbols which doesn’t
contain a frame yet (all noise less than threshold after accessing case copy), Therefore, if
we set a maximum number of samples which is a multiples of the OFDM frame size, we
could set size limitation to solve the problem of not finding a frame (minimum gap case
doesn’t happen) which will let us return to Search case again and it will be stuck in sync

short between search and copy if the minimum gap case doesn’t happen.

5.2.3 Sync Long

This block is responsible for frequency offset correction and the symbol alignment.
As mentioned above, the symbol alignment as well as the frequency offset is calculated
by getting the correlation of the received data with the long training sequence, getting the
maximum peaks of this correlation and then detecting the frame start.
In our design, the correlation is extracted by using an FIR (Finite Impulse Response)
filter.

1. Case SYNC:
In this case we are preparing the incoming data samples to detect the exact
frame start of the frame and frequency offset of the samples by executing
some functions that are described as follows

1.1.FIR Filter(...):
It is used to calculate the correlation between the received samples with
the well-known long training samples to calculate the exact frame start.
this operation of the FIR filter is described as in Fig 5.12 such that:

y[n] = h0.x[n] + hl.x[n — 1]+ -+ hN —1.x[n — N + 1]

Xn: nth element of the input data samples
hn: nth element of the long training sequence array
N: Number of complex long training sequence which is 64 in out case
Yn: nth element of the FIR filter response
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Figure 5-12 the logical structure of the FIR filter
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1.2.Search_frame_start(...):
It is used to calculate the frequency offset and the index of the first
training sample in the received frame to be fed to the FFT.
So first we reorder the resulted correlation from the FIR filter to get the
maximal two correlated samples so that we can get the start of the frame
and the frequency offset to be corrected.

2. Case COPY:
In this case the output of sync long is being constructed taking into account the
beginning of long training sequence followed by the OFDM data symbols, removing
the cyclic prefix and correcting the frequency by multiplying by frequency offset that
was calculated previously.

The testing process here is achieved through testing three parts:

1. FIR_Filter testing: The input and the output of the FIR filter is read through
OCTAVE from the GNU Radio simulation results then the results is compared
through showing the difference from that in GNU Radio and what is
implemented.

2. Frequency offset and frame start testing: It is achieved by enforcing the same
input array of samples obtained from the GNU Radio to the implemented
Search_frame_start() and observing the frequency offset and the frame start
achieved.

3. Output array: By observing the difference between the output array of sync
long and that obtained from the GNU radio
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5.2.4 FFT

The FFT block is very similar to the IFFT. The only difference is that it doesn’t need
scaling. Also, the shifting is done after the FFT not before it; unlike the IFFT block.

Using the FFT function from the DSP library, which is also written in Assembly to
maximize the performance, the data was transformed to frequency domain. After that, the
data was shifted using (memcpy()) function to return it to its original positions.

By reading the output of GNU radio’s FFT block though Octave and comparing the data
with our FFT output, the results were identical.
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5.2.5 Frame Equalizer

This block has four main important roles

1. Compensating the frequency and phase offsets through the Sync long and Sync
short offsets and through the pilots

2. Calculating the model channel through various techniques (LS, LMS, STA or
COMB)

3. ldentifying the Data length, modulation technique and parsing technigue used
through analyzing the signal field

4. Compensating the data and transforming them from complex numbers to octets
to be further analyzed by the next block

This block deals with each OFDM symbol before it goes to the other. After reading 64
complex numbers (1 OFDM symbol), it compensates every sample in the data with the
frequency offsets calculated from the previous blocks (Sync short and Sync long) as well
as the sampling offsets. Next, residual frequency offset is calculated by adding the phase
of the four pilots of every symbol and compensating the OFDM symbol with this offset.
To update this offset and correct the next symbol with it as well, the phase difference
between the pilots of adjacent OFDM symbols is calculated as well to correct the next
symbol. Then, the channel model is calculated using the long preamble sequence which are
the first two OFDM symbols entering the equalizer. After that, the signal field is estimated
using the channel model and de-modulated then further analyzed to know the data length,
the modulating technique and the parsing rate. Finally, every data symbol is compensated
like the others, estimated using the pre-calculated channel model, de-modulated and
becomes the output of the block.

Signal field decoding

In each frame, the short and long training sequences are followed by the signal _field,
which is a BPSK modulated OFDM symbol encoded with a rate of 1/2 that carries
information about the length and encoding of the following symbols. The first step done in
this function is to de-interleave the signal field and then decode the output bits using a
Viterbi decoder.

If the signal _field is decoded successfully, i.e., if the rate_field contains a valid value and
the parity bit is correct, the Decode Signal Field returns the type of encoding of the data
and the number of symbols in each frame and passes it to the next block Frame Decode
block.
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Figure 5-13 Signal Field Assignment

Channel estimation techniques
1- LS

This technique is called the least squares. It uses the received long preamble symbols and
the saved version of the symbols to estimate the channel. Then, it uses the channel to
estimate all 48 symbols inside the OFDM symbol.
Y1(k) +Y2(k)
2X1t(k)
H(K) is the channel model. Y1(k) and Y2(k) are the received long training symbols while
XIt(K) is the saved long training sequence.

H"(k) =

2- LMS (Least minimum squares)

The LS technique is very efficient. However, it suffers when the frame gets longer or the
coherence time gets shorter. This technique solves the problems that the LS technique can’t
solve. Not only does it estimate the channel using the same way as LS, it also calculates
the error percentage coming from the difference between the actual channel and the
estimated channel. That way, it updates the channel in every single symbol to be more
accurate than LS technique.

It updates the channel after the ith OFDM symbol using the constellation point Xi that the
received Yi was de-mapped to.

Yi(k)
Xir(k)

Where Hi(k) is the channel model used for the next symbol, Hi-1 is the channel model used
for the current symbol. It’s discovered that the best design is when alpha is 0.5.

The LS and LMS techniques use every subcarrier independently and they don’t use
averaging in frequency domain.

HAK) = (1— )HMN - 1(K) + «a
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3-STA (The Spectral Temporal Averaging)

What makes this technique different is that it doesn’t deal with every subcarrier
independently, it correlates the channel coefficients in the frequency domain as well. First,
the LS estimate is used as an initial estimate then data decision feedback is done by
demodulating the first data symbol compensated by the LS initiate estimate.
After that, a more accurate channel estimation is done by dividing the received data with
the demodulated data as follow
Yi(k)
Xir(k)

Then, the frequency domain correlation is done by using this equation

Hi(k) =

B
Hupdated (k) = Z WiH(k + i)
i=—p
H updated is the channel estimate based on the correlation between the neighboring
subcarriers, f is the window size where the weighted average happens and Wi is the weight
of each in the window subcarrier. After the frequency domain averaging is done, the time
domain averaging is done using the factor a.

1 1
H(t) = (1 — E) H(t—-1)+ EHupdated(t)

4-COMB

This type is totally different than the other three techniques. Comb Type channel estimation
uses the information about the channel at the pilots’ location to be able to update the
channel estimate to track channel variations during the same OFDM symbol. The Comb
equalizer interpolates linearly in frequency domain using the four pilots and the mean of
the pilots as well. The mean value of the pilots are used at the border of the vector used for
interpolation [mp, P1, P2, P3, P4, mp], where P1..4 are the four comb pilots and mp is their
mean. This interpolation is done for every OFDM symbol. Afterwards, a low-pass filter
similar to the previous techniques is done over the channel in time domain.

H(t) = (1 - %) H(t—-1)+ éHupdated(t)

Where H updated is the updated channel model using the linear interpolation of the four
pilots.
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After compensating the frequency offsets and the sampling offsets by adding these offsets
to the phase of the current symbols, there are two important functions to be discussed

1- Signal field implementation
There are three functions used in the signal field decoding:

a. deinterleave(uint8_t *rx_bits, uint8_t * d_deinterleaved):

This function takes the received bits and the deinterleaving sequence as an array and
performs the inverse relation of the interleaving that is also defined by two permutations.
Here, the index of the original received bit before the first permutation shall be denoted by
J; i shall be the index after the first and before the second permutation and k shall be the
index after the second permutation, just prior to delivering the coded bits to the
convolutional (Viterbi) decoder.

The first permutation is defined by the rule:

i = s X Floor(j/s) + (j + Floor(16 X j/Nsgps)) mod s j = 0.1.... Negps— 1

Equation 4 First permutation

Where s is defined before in the interleaving function in the Mapper block.
The second permutation is defined by the rule:

Equation 5 Second permutation

b. bool parse_signal(uint8_t *decoded_bits):
This function takes the output decoded bits from the Viterbi decoder and finds the rate
field and length field by shifting and using bit wise operation, it also computes the parity
bit of the first 17 bits and if the parity bit is correct, then it uses a switch case to return the

type of encoding and subsequently find the number of symbols in the frame.
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Table 11 The rate field content

Rate (Mb/s) Rate (Mb's) Rate (Mb/s)
R1-R4 (20 MHz channel (10 MHz channel (5 MHz channel
spacing) spacing) spacing)

L0l 3 L3

1111 - 45 22

0101

0111
1001

LO11

0ol

0011

c. bool decode_signal_field(uint8_t *rx_bits):

This function calls all the above function in the same order as they were mentioned, it
also allocates memory for the output bits and the OFDM parameters and FRAME
parameters for correct parsing of the signal field.

2- Channel estimation

The two most important functions to discuss are the following:

a. Unsigned char decision_maker(unsigned char(])

This function’s main task is demodulating the estimated symbol from the channel
response coefficient according to its modulation technique.
+ For BPSK

The bits are estimated by observing the signs of the real part of the symbol.

BPSK Q
- bﬂ
0 1
f t

Figure 5-14 BPSK constellation
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+ For QPSK
The bits are estimated by observing the signs of the real and imaginary parts of the symbol
P5SK
Q Q) bgby

01 11
I -

— — -
00 10 1

Figure 5-15 QPSK constellation

* For 16-QAM

This estimation is more complicated as the constellation is divided into more levels. Not
only does it observe the signs of the real and imaginary numbers, it also the level of them.

16-QAM QA bgbyba b3
0010 0110 | 1110 1010
- LI o - .
0011 o111 | 1111 1011
. - - » .
= = T = "'"=I
0001 0101 | 1101 1001
0000 0100 | 1100 1000
L] L] _IT - -

Figure 5-16 16-QAM constellation
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+ FOR 64-OAM

It’s the same as 16-QAM constellations but with more constrictions to the level of the real
and imaginary parts of the symbol.

64-QAM Q, bgb bybs bybs

000100 001100 011100 ©10100 |110100 111100 101100 100100
. . - LI ) . . .

000101 001101 011101 ©10101 |110101 111101 101101 100101
- - - . P - . .

000111 001111 011111 010111 (110111 111111 101111 100111
- - - - T - - - -

000110 001110 011110 010110 |110110 111110 101.110 100.110
- - L - < - -

-

I

s y ’ } 3 ’
—+ = = == = T

0[)0.[)10 001‘010 011-010 01[.‘1-[)10 110010 111010 101010 100010
- - L - __F- - L - -

000011 001011 011011 010011 |110011 111011 101011 100011
- - - - a1 - - - -

000001 001001 011001 010001 |[110001 111001 1[)1.001 100.001
- - - - e - -

-5

000000 001000 011000 010000 |110000 111000 101000 100000
- - - - T - - - -

Figure 5-17 64-QAM constellation

b. Linear interpolation in COMB channel estimation technique

As mentioned before, the COMB channel estimation uses linear interpolation of the

pilots of each symbol along with the mean value of the pilots. The linear interpolation is
done as follow:
For the first 11 symbols the interpolation is done using the average value of pilots along
with the first pilot. For the 12! symbol until the 25" symbol, the interpolation is done using
the first two pilots. For the 26" symbol till the 39" symbol, the interpolation is done using
the second and third pilots. For the 40" symbol up until the 53" symbol, the interpolation
is done using the 3" and 4™ pilots. Finally, the rest of the symbols (54" to 64") use the last
pilot along with the mean value of pilots.

The correct output from each function is read from the Gnu radio by adding a print line
in the code of the block after the function that needs to be tested. Then, this output is copied
as an array to the CCS, subsequently compared to the output of the CCS by subtracting the
two arrays.
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5.2.6 Frame Decoder

The final step in the receiver is the decoding of the actual payload. It is performed in
multiple sub-steps, as follows, deinterleaving, convolutional, decoding and puncturing,
depending on the coding rate we use a Viterbi decoder for decoding.

Viterbi decoder uses the Viterbi algorithm for decoding a bit stream that has been
encoded using Forward error correction based on a convolution encoder shown in Figure
1 where the following notations are used:

¢ = number of output bits.

X = number of input bits entering at a time.
m = number of stages of shift register.

K (constraint length) = (m + 1) digits.

R (bit rate) =x/ c.

—>
QOutput C*
i)%—) dn a2 dn3 dn-s dns dhs |
Output C'
P

Figure 5 /8- Convolution encoder for constraint length (k) = 7, bit rate (r) = 1/2
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Viterbi decoder used to estimate the original sequence from the sequence of data
received from the channel. It consists of the following functional units as shown in
Figure 2:

e Branch Metric Unit (BMU)

e Add Compare and Select Unit (ACS)
e Survivor Memory Unit

e Trace Back Unit (TBU)

rang:h
Branch [Metric Trace
Metric Add Compare Back Optimal
unit —®| and Select Unit | Unit —pb

Path

previous
) State
Survivor Path | |rformation
Metric Metric
Survivor Path
Metric MEtric

Survivor

Memory previous
State

Information

Figure 5-19 Block diagram of viterbi decoder

Basic definitions

e State:

The state of an encoder is defined as its shift register contents. Each new 'x' bit input
results in a new state. Therefore for one bit entering the encoder there are 2 possible
branches for every state. If the Constraint length k=7, then the size of shift register
would be m=6 which results in 2™ states. Therefore 26 = 64 states are named from SO
to S63.

e Branch metric:

The branch metric is a measure of the “distance” between what was transmitted and
what was received, and is defined for each arc in the trellis and the number on the arc
shows the branch metric for that transition as shown in Figure 3.
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Figure 5-20 Trellis diagram for K = 3 and r = 1/2 in this example the received bits by decoder

e Path metric:

The path metric is a value associated with a state in the trellis. it corresponds to the
Hamming distance With respect to the received parity bit sequence over the most likely
path from the initial state to the current state in the trellis. The most likely path means
the path with smallest Hamming distance between the initial state and the current state,
measured over all possible paths between the two states.

The final step in the decoding process is descrambling. In the encoder the initial state
of the scrambler is set to a pseudo random value.
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5.3 Implementation
5.3.1 Deinterleaving

It is implemented in interleave function which exists in utils.c file. This function can
operate as interleaver or deinterleaver depending on the value of the Enum_reverse
parameter. If Enum_reverse = reverse function will work as deinterleaver, else it will work
as interleaver.

5.3.2 Convolutional Decoding and Puncturing

Design

Higher rates are derived from convolutional encoder by employing "puncturing™.
Puncturing is a procedure for omitting some of the encoded bits in the transmitter In
order to reduce the number of transmitted bits and increase encoder bit rate and in the
receiver convolutional decoder side we insert dummy bits in place of the omitted bits.

Implementation

It is implemented in depuncture function which exists in viterbi_decoder.c file.

Many methods can be used to perform puncturing operation, however, one of the
puncture approach used in IEEE 802.11p is specified by a binary puncturing vector which
consistent of two bit sequences 1110,111001 for rate 2/3, 3/4 consequently. So in the
receiver side we use these two bit sequences to insert dummy "2" in place of the omitted
bits as shown in Figure 4.

for (i = @; i < d_frame->n_sym; i++) {
for (k = @; k < n_cbps; k++) {
while (d_depuncture_pattern[count ¥ (2 * d_k)] == @) {
depunctured[count] = 2;
count++;
¥
Insert received bits
depunctured[count] = in[i * n_cbps + k];
count++;

while (d_depuncture_pattern[count ¥ (2 * d_k)] == @) {
depunctured[count] = 2;
count++;

¥

A

B

Figure 527-Implementation of depuncture function in code
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Implementation:

Four parallel binary bits are passed to viterbi_buterfly2_sse2 function which
exists in viterbi_decoder.c file. This function processed over each two parallel bits
at a time. It calculates sixty four set of hamming distance. Each set consists of two
values because each current state can be reached by two possible paths. In order to
calculate the hamming distance it compares the received codes with the expected
codes of the current state by using xor bitwise operator as shown in Figure 5.

Expected
Codes
Xor hamming
distance
Received
Codes

Figure 5-22 Block diagram of Branch Metric Unit

The expected codes are calculated in function called viterbi_chunks_init_sse2
which exists in viterbi_decoder.c file. Also this function used to reset all variables
used by Viterbi decoder before starting to process on the received data bits.

At the decoder, when using a punctured code, missing parity bits don’t participate
in the calculation of branch metrics. Since we have replaced missing parity bits by
2 in the depuncture function which exists in viterbi_decoder.c file. So we will
subtract one from calculated hamming distance if one of the processed bits is equal
2 as shown in figure6.
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if (symbols[@] == 2) {
for (j = ©; j < 16; j++) {
metsvm[j] = d_branchtab27_sse2[1].c[(i * 16) + j] ~ symlv[j];
metsv[j] = 1 - metsvm[j];

} else if (symbols[1] == 2) {
for (j = ©; j < 16; j++) {
metsvm[j] = d_branchtab27_sse2[@].c[(i * 16) + j] ~ sym@v[j];
metsv[j] = 1 - metsvm[j];
1
]
} else {
for (j = 0; j < 16; j++) {
metsvm[j] = (d_branchtab27_sse2[@].c[(i * 16) + j] ~ sym@v[j])
+ (d_branchtab27_sse2[1].c[(1 * 16) + j] ~ symlv[j]);
metsv[j] = 2 - metsvm[j];

-
e

Figure 5-23 Implementation of branch metric unit in code.

Add compare and select unit:

This unit is also implemented in viterbi_buterfly2_sse2 as shown in Figure?. Path
metric of the state is found by adding the path metric from the previous stage and the
present branch metrics. Since there are two possible ways to reach any state two path
metrics are obtained, these two are compared to select the one with the least path metric.
The selected least path metric is sent for storage as well as it is used as benchmark for
calculating the path metric of next stage as shown in figure 8.

for (j = 0; j < 16; j++) {
me[j] = metricO[(i * 16) + j] + metsv[j];
mi[j] = metricO[((i + 2) * 16) + j] + metsvm[j];
m2[j] = metricB[(i * 16) + j] + metsvm[]j];
m3[j] = metricO[((i + 2) * 16) + j] + metsv[j];
¥
for (j = 0; j < 16; j++) {
decision@[j] = ((m@[j] - ml[j]) > @) ? oxff : exe;
decisionl[j] = ((m2[j] - m3[j]) > @) ? exff : exe;
survivor@[j] = (decisione[j] & me[j]) | ((~decision@[j]) & mi[j]);
survivorl[j] = (decisionl[j] & m2[j]) | ((~decisioni[j]) & m3[j]);
}

Figure 5-24 Implementation of add compare and select unit in code
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frZi?]p?;ag Cs P(gjtlfl: ¥ T
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Path metric Possible >
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ALY ey Path
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Branch next stage
Metric 2

Figure 5-25 Block diagram of add compare and select unit
Survivor memory unit:

This unit is also implemented in viterbi_buterfly2_sse2.It is used for storing the
survivor path values of the ACS unit. For each stage there are 64 survivor paths and
number of stages varies depending on the length of encoded bits received.

Trace back unit:

This unit is implemented in viterbi_get_output_sse2. Once the minimum path metrics
of all the states at each stage is calculated, the minimum path metric at the last stage is
found. The state having the minimum path metrics at the last stage is given as input to
Trace Back Unit and then it starts trace backing the survival paths from that node and
outputs the corresponding bit which has caused the transition of that path as shown in
Figure 9.
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Figure 5-26 - Trace back procedure of optimal path

5.3.3 Descrambling:
It is implemented in descramble function which exists in decoder_mac.c file. This
function uses first 7 bit of input data to deduce the initial state of the scrambler as shown

in Figure 10.

void descramble (unsigned char *decoded_bits,unsigned char *out_bytes, frame_param *frame) {

unsigned char state = @;
short int i;
for( i =0; i< 7; i++) {
if(decoded_bits[i]) {
state [= 1 << (6 - i);
¥

out_bytes[@] = state;

unsigned char feedback;
unsigned char bit;

for( 1 = 7; i < frame->psdu_size*8+16; i++) {
feedback = ((!!(state & 64))) ~ (!!(state & 8));
bit = feedback " (decoded_bits[i] & @x1);
out_bytes[i/8] |= bit << (i%8);
state = ((state << 1) & @x7e) | feedback;

==

Figure 5-27 Implementation of descrambling function in code
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Chapter 6

Conclusion

0 conclude, this report firstly discussed the need of V2V communication,
V2X communication and their need in the market nowadays. No doubts that
the new cars’ generation is going through a massive development to self-
driving cars which increases the importance of V2Vcommunication.
Our role in the project was the first step to implement this communication, the PHY layer
which is the start of network creation between devices. Throughout our work, we took into
consideration that the PHY layer is verified with the standard rules of IEEE802.11p. The
implementation of the project after understanding all its technical aspects was coding
transceiver blocks with the help of simulation tools such as GNUradio, octave..etc. Then
by processing the transceiver on a DSP kit we was able to send and receive data through
RF in USRP. We also stated that the PHY layer usage can have another application
perspective which is testing transceiver modules. Finally, take into consideration that the
next phases is very important to complete V2V as an application.
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6.1 Lessons learned throughout the year

In this section, knowledge that we took from college which helped us to understand a
lot of our research in the project throughout the year will be stated. Thanks to all that were
reason for us to complement some of our academic knowledge with this graduation project.
It was a great experience and responsibility.

Back to V2V PHY layer implementation, these were the topics that understanding it helped
us a lot in the project:

a) Concept of OFDM technique

b) C programming

c) Linux usage

d) Some basic understanding of memory mapping and optimization

6.2 Future Work

There are two paths for this project as we stated at the beginning of the report. So the
future work of the project will be divided into two paths which we’ll discuss in this section;
the first is connecting the DSP kit with C700 through FPGA and create the standalone
device which can be used in testing, the second is the mac layer implementation.

All the above mentioned process in this report was only in order to implement the physical
layer of the vehicle to vehicle communication, the next step is to implement the upper
layers in the OSI model stated in the figure below that must be also verified with the
standard of IEEE802.11 so as to implement a full optimized device at the end that could be
inserted into a car to fulfill the project goal in the first place.
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7 Application Layer
v Message format, Human-Machine Interfaces

6 Presentation Layer
v Coding into 1s and 0s; encryption, compression

5 Session Layer
v Authentication, permissions, session restoration

4 Transport Layer
v End-to-end error control

3 Network Layer

v Network addressing; routing or switching

2 Data Link Layer

v Error detection, flow control on physical link

1 Physical Layer

v Bit stream: physical medium, method of representing bits

+«— TRANSPORT SERVICE — | «— UPPER LAYERS —»

Figure 6-1 OSI model

Moreover, there are some optimizations and modifications that could be done to the
hardware, that we are currently working on, this will include downloading the code on the
Mitydsp kit, deriving the output to the UPP (Universal parallel port) and connecting the kit
to C700, an alternative for the USRP that possess the same functionality and could be
connected to the FPGA on the kit which couldn’t be done with the USRP.
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A.1 Installation Guide for Code Composer Studio

The installation steps for CCS v7 and v5 are almost the same.

For Windows

1- Open http://processors.wiki.ti.com/index.php/Download_CCS

2- Choose your operating system (Windows, Linux...etc)

3- Open the executable file that was downloaded

4- Mark “I accept the terms of the license agreement” and click next

5- Select your intsallation folder and then click next

6- Select the following processors (OMAP-L1x DSP + ARM9 processor, C6000
Power optimized DSP, C64x multicore DSP)

7- For the debug probes, select TI XDS Debug Probe Support and Spectrum Digital
Debug Probes and Boards (it’s better to select all if you’re not sure about the debug
probe you’ll use yet)

8- Finally, select finish

For Ubuntu
Before the installation, make sure to install some dependencies. Open the command
window and write this command

- sudo apt-get update

- sudo apt-get install libc6:i386 libx11-6:1386 libasound2:i386 libatk1.0-0:i386
libcairo2:i1386 libcups2:i386 libdbus-glib-1-2:i1386 libgconf-2-4:i1386 libgdk-pixbuf2.0-
0:i1386 libgtk-3-0:i386 libice6:i386 libncurses5:i386 libsm6:i1386 liborbit2:i386
libudev1:i386 libusb-0.1-4:1386 libstdc++6:i1386 libxt6:1386 libxtst6:1386 libgnomeui-
0:1386 libusb-1.0-0-dev:i386 libcanberra-gtk-module:i386 gtk2-engines-murrine:i386
unzip

After installing the dependencies, the same steps are applied. The only difference is
that the executable file’s format is .bin
To open this file, open the command window and go to the location where the
downloaded file exists then write
sudo ./”’file name”.bin
The same steps are then applied.
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A.1.1 Installing the DSP library

1-
2-
3-

Open http://www.ti.com/tool/sprc265

Download C674x-DSPLIB

Click on the link suitable to your operating system (Windows 64- Windows 32-
Ubuntu...etc)

For Windows

4-
5-
6-

Click on the executable file and select your language
Select the installation folder of CCS (c:/ti/DSPlib folder)
Finally, select next and agree on the terms and conditions

For Linux

Same steps as Windows. To open the executable file, open the command window and
run the .bin file

A.1.2 Make a new project on CCS

Open file -> new -> CCS project

Select the family c6000 for DSP based projects and ARM for ARM based
projects

In Variant, select OMAPL138

Write the project name and click on Finish

Right click on the project -> new -> Target configuration file

In case of simulator, choose Texas Instruments Simulator, then choose C674x
CPU Cyclic Accurate Simulator, Little Endian for DSP project or ARM9e CPU
Cyclic Accurate Simulator, Little Endian for ARM based project

In case of emulator, choose your emulator (XDS 100v2 USB) then choose
LCDKOMAPL138

A.1.3 Including the DSP library in the project

1-
2-
3-

4-
5-

Right click on the project and select properties
Open compiler -> include options
In the “Add dir to #include search path” field -> add the path of your
dsplib/packages
Open linker -> File search path
Inthe “Include library file or command file as input” field, add these two lines
“dsplib.lib”
“dsplib_cn.lib”
In the “Add dir to library search path” field, add the folder path of these 2
libraries, you will find it in the DSP library folder /packages/ti/dsplib/lib
Now you can use the DSPIib functions in your code.
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A.2 USRP hardware driver Installation guide

A.2.1 Installation Requirements

e |inux OS (ubuntu)

A.2.2 Installation guide

1) Open terminal window
2) Write these commands:
e sudo apt -get install libuhd —dev libuhd uhd -host
e sudo add-apt-repository ppa:ettusresearch/uhd
e sudo apt-get update
e sudo apt-get install libuhd-dev libuhd003 uhd-host

A.3 GNU Radio Installation guide

A.3.1 Installation Requirements

e |inux OS
e GNU radio program
e |EEE 802.11 standerd blocks

A.3.2 Installation guide

3) Open terminal window
4) Write these commands:
e (sudo apt-get update ) then enter the username and password
e wget http://www.sbrac.org/files/build-gnuradio && chmod a+x build-gnuradio &&
./build-gnuradio
5) To open the gnu radio for the first time we need to open it through the terminal ,so we
write (gnuradio-companion)
6) To get the blocks Write these commands:
e sudo apt-get install liblog4dcpp5-dev
e sudo port install log4cpp
e git clone https://github.com/bastibl/gr-foo.git
e cdgr-foo

e mkdir build
e cd build

e cmake ..

e make
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e sudo make install

e sudo Idconfig

e git clone git://github.com/bastibl/gr-ieee802-11.git
e cdgr-ieee802-11

o mkdir build
e cd build

e cmake ..

e make

e sudo make install
e sudo Idconfig
e sudo sysctl -w kernel.shmmax=2147483648

A.4 Octave Installation guide

Final Report

A.4.1 Installation Requirements

e linux OS

A.4.2 Installation guide

7) Open terminal window
8) Write these commands:
e sudo apt-add repository ppa:octave/stable
e sudo apt -get update
e sudo apt -get install octave
e octave

A.4.3 Usage guide

After opening the program write these commands to open the files:

° PSl(ll>>ll
e addpath("/home/username/gnuradio/gr-utils/octave")
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Appendix B

CCS Code
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B.1 Transmitter

B.1.1 Main function

/*

* main.c

*/

#include "IEEE802_11_Common_Variables.h"
#include "utils.h"

#include "Mapper.h"

#include "signal field impl.h"

#include "constellations_impl.h"

#include "chunks_to_symbols_impl.h"
#include "ifft.h"

#include "CyclicPrefix.h"

#include "ofdm_carr_alloc_func.h"

#tdefine N 64

/* The length of the message received from the Mac layer */
#tdefine psdu_length 100

#idefine signal field size 48

void main(void) {

FILE *fp;

/* This is where the main function will be called */

Encoding e = QAM16_3 4;

/* constructing an instant of the frame and the ofdm parameters */

// This is the message : PSDU generated by the mac-layer

uint8 d_psdu[lee] = { 4, 2, o0, 46, 0, 96, 8, 205, 55, 166, 0, 32, 214, 1,
60, 241, o, 96, 8, 173, 59, 175, o, o, 74, 111, 121, 44, 32,

98,

114, 105, 103, 104, 116, 32, 115, 112, 97, 114, 107, 32,
111, 102,

32, 100, 105, 118, 105, 110, 105, 116, 121, 44, 10, 68, 97,
117,

103, 104, 116, 101, 114, 32, 111, 102, 32, 69, 108, 121,
115, 105,

117, 109, 44, 10, 70, 105, 114, 101, 45, 105, 110, 115, 105,
114,

101, 100, 32, 119, 101, 32, 116, 114, 101, 97, 103, 51, 33,
182 };

float32 window[2 * N]J;

int sizeof_input_sym;

int test;

int data_size;

int i = 9;

int loop = 1408 / (2 * N);
ofdm_param* data_field_ofdm;
frame_param* data_field frame;
ofdm_param* signal field_ofdm;
frame_param* signal field_param;
uint8 *out_processed_signal field;
uint8 * Output_Processed_Data;
float32 *out_modulated_data;
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float32 *out_modulated_signal_field;
float32 *out_tagged_mux;

float32* Output_From_OFDMCarrierAllocator;
float32* Output_From_IFFT;

float32* Output_From_CyclicPrefix;
StructCyclicPrefix_Init *CyclicPtr;

while (1) {

paramters*/

0);

data_field ofdm = (ofdm_param *) malloc(sizeof(ofdm_param));

ofdm_param_intialization(e, data_field ofdm);

data_field_frame = (frame_param *) malloc(sizeof(frame_param));

frame_param_intialization(data_field_ofdm, data_field_frame,
psdu_length);

/* Check the value of the frame_param */

print_frame_param(data_field frame);

Output_Processed_Data = mapper_general_work_function(d_psdu,
psdu_length, data_field_ofdm, data_field frame);
/*generating the signal field and creating frame and ofdm

signal field_ofdm = (ofdm_param *) malloc(sizeof(ofdm_param));
ofdm_param_intialization(BPSK_1_2, signal_field_ofdm);

signal field param = (frame_param *) malloc(sizeof(frame_param));
frame_param_intialization(signal field ofdm, signal field_ param,

out_processed_signal field =

generate_signal_field(signal_field_param,

signal field ofdm, data_field frame,

data_field ofdm);

//Data modulation

data_size = data_field_frame->n_sym * 48;

out_modulated data = malloc(data_size * 2 * sizeof(float32));

chunks_to_symbols_impl(Output_ Processed Data, out_modulated data,
data_size, e);

//Signal field modulation

out_modulated_signal_ field = malloc(
signal field_size * 2 * sizeof(float32));

chunks_to_symbols_impl(out_processed_signal field,
out_modulated_signal_ field, signal field size,

BPSK 1_2);
//Tagged_stream_MUX
out_tagged mux = malloc(
(data_size + signal field_size) * 2 *
sizeof(float32));

memcpy(out_tagged mux, out_modulated signal field,
signal_field_size * 2 * sizeof(float32));
memcpy(out_tagged mux + (signal_field _size * 2),

out_modulated_data,

\n");

data_size * 2 * sizeof(float32));
// part OFDM carrier allocater
sizeof_input_sym = (2 * signal_field_size) + (2 * data_size);
Output_From_OFDMCarrierAllocator = (float32 *) malloc(
1408 * sizeof(float32));
if (Output_From_OFDMCarrierAllocator == NULL) {
printf("Not enough memory for Output_From_OFDMCarrierAllocator
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}

test = ofdm_carr_alloc(occupied carriers, pilot_ carriers,
pilot_symbols,
sync_words, fft_len, output_is_shifted,
out_tagged_mux,
Output_From_OFDMCarrierAllocator, sizeof_input_sym);

Output_From_IFFT = (float32 *) malloc(1408 * sizeof(float32));
for (i = 0; i < loop; i++) {
ifft(Output_From_OFDMCarrierAllocator, Output_From_ IFFT,

N, 52.0,
true, window);
Output_From_OFDMCarrierAllocator += (2 * N);
Output_From IFFT += (2 * N);
}
Output_From_IFFT -= (loop * 2 * N);
A L L EL L Part cyclic prefix----------------------
___**/

Output_From CyclicPrefix = (float32*) malloc(
(1408 / 64) * 80 * 2 * sizeof(float32));
CyclicPtr = (StructCyclicPrefix_Init *) malloc(
sizeof(StructCyclicPrefix_Init));

B

CyclicPrefix_Init(CyclicPtr, 1408 / 64);

CyclicPrefix(CyclicPtr, Output_From_IFFT,
Output_From_CyclicPrefix);

A R L LR test cyclic prefix-----------=----------
__**/

// Writing to a file

if ((fp = fopen("Test2.txt", "a+")) == NULL) {

printf("Cannot open file.\n");

}

fseek(fp, @, SEEK_END);

if (fwrite(Output_From_CyclicPrefix, sizeof(float32), (1408 / 64)
* 80,

fp) != (1408 / 64) * 80)
printf("File read error.");

fflush(fp);

fclose(fp);

free(Output_From_CyclicPrefix);

free(Output_From IFFT);

free(Output_From_OFDMCarrierAllocator);

free(out_tagged mux);

free(out_modulated_signal field);

free(out_modulated_data);

free(out_processed_signal field);

free(signal field param);

free(signal_field ofdm);

free(Output_Processed Data);

free(data_field frame);

free(data_field ofdm);
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B.1.2 Generic files used by more than one block

* utils.h

* Created on: Feb 7, 2017
* Author: Salma Khaled
*/
#ifndef UTILS H_
#define UTILS_H_
#include "IEEE802_11_Common_Variables.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#tdefine MAX_PAYLOAD SIZE 1500
#define MAX_PSDU_SIZE (MAX_PAYLOAD SIZE + 28) // MAC, CRC
#define MAX_SYM (((16 + 8 * MAX_PSDU_SIZE + 6) / 24) + 1)
#define MAX_ENCODED BITS ((16 + 8 * MAX_PSDU_SIZE + 6) * 2 + 288)
YA e ofdm_param_implementation---------------

typedef enum {
BPSK 1.2 = @
BPSK 3 4 = 1,

2

3

QPSK_1_2

QPSK 3 4

QAM16 1 2

QAM16_3 4 =

QAM64_2 3

QAM64_3 4
} Encoding;
typedef struct {

// data rate

Encoding encoding;

// rate field of the SIGNAL header

char rate_field;

// number of coded bits per sub carrier

int n_bpsc;

// number of coded bits per OFDM symbol

int n_cbps;

// number of data bits per OFDM symbol

int n_dbps;

-

NO vl b
-

-

} ofdm_param;

/** This function is used to initialize the parameters of the ofdm */
void ofdm_param_intialization(Encoding, ofdm_param*);

/** This function print the values of the ofdm param */

void print_ofdm_param(const ofdm_param*);
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typedef struct {
// PSDU size in bytes

int p

sdu_size;
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// number of OFDM symbols (17-11)

int n

_sym;

// number of padding bits in the DATA field (17-13)

int n
int n

_pad;
_encoded_bits;

Final Report

// number of data bits, including service and padding (17-12)

int n

_data_bits;

} frame_param;
/** This function is used to initialize the parameters of the ofdm */
void frame_param_intialization(ofdm_param*, frame_param*, int);

/** This function is used to print the value of the frame param */
void print_frame_param(const frame_param*);

YA e il PSDU_Processing------

void scramble(const uint8 *input, char unsigned *out,
frame_param* frame, uint8 initial_state);
void reset_tail_bits(uint8 *scrambled_data, frame_param* frame);
void convolutional_encoding(const uint8 *input, char unsigned *out,

frame_param* frame);

void puncturing(const uint8 *input, uint8 *out,
frame_param* frame, ofdm_param* ofdm);

void interleave(const uint8 *input, uint8 *out,
frame_param* frame, ofdm_param* ofdm);

void split_symbols(const uint8 *input, uint8 *out,
frame_param* frame, ofdm_param* ofdm);

void generate_bits(const uint8 *psdu, uint8 *data_bits,

ttendif /

* utils

frame_param* frame);

* UTILS_H_ */

.C

* Created on: Feb 7, 2017

*/
#tinclude

____**/

Author: Salma Khaled

"utils.h"

void ofdm_param_intialization(Encoding e, ofdm_param* ofdm) {

ofdm->encoding = e;

switch (e) {

case

BPSK 1_2:
ofdm->n_bpsc
ofdm->n_cbps
ofdm->n_dbps

1;
48;
24;

ofdm->rate field = @x@D; // 0booLO1101

break;
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}

/** a function to print the values of the ofdm_param */

case BPSK_3 4:
ofdm->n_bpsc
ofdm->n_cbps
ofdm->n_dbps

V2V PHY layer Implementation

1;
48;
36;

ofdm->rate_field = OxOF;

break;

case QPSK_1 2:
ofdm->n_bpsc
ofdm->n_cbps
ofdm->n_dbps

2;
96;
48;

ofdm->rate_field = 0x05;

break;

case QPSK_3 4:
ofdm->n_bpsc
ofdm->n_cbps
ofdm->n_dbps

2;
96;
72;

ofdm->rate_field = 0x07;

break;
case QAM16 1 2:

ofdm->n_bpsc =

ofdm->n_cbps
ofdm->n_dbps

4;
192;
96;

ofdm->rate_field = 0x09;

break;

case QAM16_3 4:
ofdm->n_bpsc
ofdm->n_cbps

4;
192;

ofdm->n_dbps = 144;
ofdm->rate_field = 0x©B;

break;

case QAM64_2 3:
ofdm->n_bpsc
ofdm->n_cbps
ofdm->n_dbps

6;
288;
192;

ofdm->rate_field = 0x01;

break;

case QAM64_3 4:
ofdm->n_bpsc
ofdm->n_cbps
ofdm->n_dbps

6;
288;
216;

ofdm->rate_field = 0x03;

break;
default:

assert(false);

break;

}

// 0booee1111

// ©boooee101

// ©booee111

// ©boooe1001

// ©0boove1011

// ©bo00LLe1

// ©boooeee11

void print_ofdm_param(const ofdm_param* ofdm) {

printf("OFDM Parameters:

printf("encoding
printf("rate_field
printf("n_bpsc
printf("n_cbps
printf("n_dbps

\n");
: %i\n",
: %i\n",
¢ %i\n",
: %i\n",
: %i\n",

ofdm->encoding);
ofdm->rate_field);
ofdm->n_bpsc);
ofdm->n_cbps);
ofdm->n_dbps);

CCE-E
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___**/

void frame_param_intialization(ofdm_param* ofdm, frame_param* frame,
int psdu_length) {
frame->psdu_size = psdu_length;
// number of symbols (17-11)
frame->n_sym = (int) ceil(
(16 + 8 * (frame->psdu_size) + 6) / (double) ofdm-
>n_dbps);
frame->n_data_bits = (frame->n_sym) * (ofdm->n_dbps);
// number of padding bits (17-13)
frame->n_pad = (frame->n_data _bits) - (16 + 8 * (frame->psdu_size) + 6);
frame->n_encoded_bits = (frame->n_sym) * (ofdm->n_cbps);
}
/** a function to print the values of the frame_param */
void print_frame_param(const frame_param* frame) {
printf("FRAME Parameters :\n");

printf("psdu_size :%i\n", frame->psdu_size);
printf("n_sym :%i\n", frame->n_sym);
printf("n_pad :%i\n", frame->n_pad);
printf("n_encoded bits :%i\n", frame->n_encoded bits);
printf("n_data_bits :%i\n", frame->n_data_bits);

}

A L L e PSDU_Processing--------====----==--------

_____ **/

//1-Generate_bits:
void generate_bits(const uint8 *psdu, uint8 *data_bits,
frame_param* frame) {

//printf(" This is the generate bits" );
// first 16 bits are zero (SERVICE/DATA field)
memset(data_bits, @, 16);
data_bits += 16;
int i;
int b;
for (i = ©; i < frame->psdu_size; i++) {
for (b = 9; b < 8; b++) {
data_bits[i * 8 + b] = !'!(psdu[i] & (1 << b));
}

}
}
//2-Scrambling the data
void scramble(const uint8 *input, uint8 *out,
frame_param* frame, uint8 initial state) {
//printf("This is the scrambler \n");
int state = initial_state;
int feedback;
int i;
for (i = ©; i < frame->n_data bits; i++) {
feedback = (!!(state & 64)) ~ (!!(state & 8));
out[i] = feedback ~ input[i];
//printf("%i",out[i]);
state = ((state << 1) & 0x7e) | feedback;
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}
}
//3-Reseting tail bits
void reset_tail_bits(uint8 *scrambled _data, frame_param* frame) {
memset(scrambled data + frame->n_data_bits - frame->n_pad - 6, O,
6 * sizeof(char));
}
//4-Convolutional encoding
int ones(int n) {
int sum = O;
int i;
for (i =0; i < 8; i++) {
if (n & (1 << 1)) {
sum++;
}
}
return sum;
}
void convolutional_encoding(const uint8 *input, uint8 *out,
frame_param* frame) {
//printf(" This is the Convolutional encoder");
int state = 0;
int i;
for (i = ©; i < frame->n_data_bits; i++) {
assert(input[i] == @ || input[i] == 1);
state = ((state << 1) & @x7e) | input[i];
out[i * 2] = ones(state & ©155) % 2;
out[i * 2 + 1] = ones(state & 0117) % 2;
//printf("%i",out[i]);
}
}
//5- Puncturing the data
void puncturing(const uint8 *input, uint8 *out,
frame_param* frame, ofdm_param* ofdm) {
int mod;
int i;
for (i = ©; i < frame->n_data _bits * 2; i++) {
switch (ofdm->encoding) {
case BPSK 1 2:
case QPSK_1_2:
case QAM16_1 2:
*out = input[i];
out++;
break;
case QAM64_2 3:
if (1% 4 1= 3) {
*out = input[i];
out++;
}
break;
case BPSK_3 4:
case QPSK_3 4:
case QAM16_3 4:
case QAM64_3 4:
mo i

[}
wl

N

Q
1}

% 6;
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if (!(mod == 3 || mod == 4)) {
*out = input[i];
out++;

}

break;

default:
assert(false);
break;

}

}
//6-Interleaving data

void interleave(const uint8 *input, uint8 *out,
frame_param* frame, ofdm_param* ofdm) {
int n_cbps = ofdm->n_cbps;
ptoi first = (ptoi) calloc(n_cbps, sizeof(int));
if (first == NULL) {
printf("Not enough memory for first in the interleaver \n");
}
ptoi second = (ptoi) calloc(n_cbps, sizeof(int));
if (second == NULL) {
printf("Not enough memory for second in the interleaver \n");
}
int s = max(ofdm->n_bpsc / 2, 1);
int j;
for (j = ©; j < n_cbps; j++) {
first[j] = s * (j / s) + ((j + (int) (floor(16.0 * j / n_cbps)))

% s);
}
int i;
for (i = @; i < n_cbps; i++) {
second[i] = 16 * i - (n_cbps - 1) * (int) (floor(l16.0 * i /
n_cbps));
}
int k;
for (i = @; i < frame->n_sym; i++) {
for (k = ©; k < n_cbps; k++) {
out[i * n_cbps + k] = input[i * n_cbps +
second[first[k]]];
//printf("%i", out[i * n_cbps + k]);
}
}
free(second);
free(first);
}

//7-splitting the symbols according to the modulation type: BPSK, QPSK,
QAM16,
void split_symbols(const uint8 *input, uint8 *out,
frame_param* frame, ofdm_param* ofdm) {
//printf(" This is the split symbols ");
int symbols = frame->n_sym * 48;
int i;
int k;
for (i = @; i < symbols; i++) {
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out[i] = ©;
for (k = @; k < ofdm->n_bpsc; k++) {
assert(*input == 1 || *input == 0);
out[i] |= (*input << k);
input++;
//printf("%c",out[i]);
}
}
}
/*

* TEEE802_11_Common_Variables.h

* Created on: Feb 7, 2017
* Author: Salma Khaled
*/
#ifndef IEEE802_11_ COMMON_VARIABLES H_
#define IEEE802_11_ COMMON_VARIABLES H_
typedef unsigned char uint8;
typedef signed char sint8;
typedef unsigned short uintl6;
typedef signed short sintlé6;
typedef unsigned long uint32;
typedef signed long sint32;
typedef unsigned long longuint64;
typedef signed long longsint64;
typedef float float32;
typedef double float64;
typedef int* ptoi;
typedef int bool;
#tdefine true 1
#tdefine false 0
#tdefine max(a,b) \
({ _typeof__ (a) _a = (a); \
__typeof__ (b) _b = (b); \
_a> _b? _a: b;})
#tdefine min(a,b) \
({ _typeof__ (a) _a = (a); \
__typeof__ (b) _b = (b); \
_a< b? _a: b;})

#endif /* IEEE802_11 COMMON_VARIABLES H_ */

B.1.3 Code of the Mapper block

Mapper.h

Created on: Feb 7, 2017
Author: Salma Khaled

* * ¥ *
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*/
#ifndef MAPPER H_
#define MAPPER_H_
#ifndef MAPPER_IMP H_
#define MAPPER_IMP H_
#include "IEEE802_11_Common_Variables.h"
#include "utils.h"
/* The Number of data carriers */
#tdefine Data_Carriers 48
uint8 * mapper_general_work_function(const uint8* psdu,
int psdu_length, ofdm_param* d_ofdm, frame_param * frame);
#endif /* MAPPER IMP H_ */
#endif /* MAPPER_H_ */

* Mapper.c

* Created on: Feb 9, 2017
* Author: Salma Khaled
*/
#include "Mapper.h"
#include <inttypes.h>
// This is the general work function of the Mapper that is used to call the
function that will do all the PSDU processing
uint8* mapper_general_work_function(const uint8* psdu,
int psdu_length, ofdm_param* d_ofdm, frame_param * frame) {
char * d_symbols;
int d_symbols offset = 0;
int d_symbols_len = 0;
// calculate the length of the processed data
d_symbols_len = frame->n_sym * 48;
int i = d_symbols_len - d_symbols_offset;
// Final output array
uint8 * out = (uint8*) calloc(i, sizeof(char));
// This is the final output from the Mapper without offset
d_symbols = (char*) calloc(d_symbols_len, 1);
printf("MAPPER called offset: %i\n", d_symbols offset);
printf("length: %i\n", d_symbols_len);
while (!d_symbols offset) {
printf("MAPPER: received new message \n");
if (frame->n_sym > MAX_SYM) {

printf("packet too large, maximum number of symbols is
%i\n ",
MAX_SYM) ;
return 0;
}
//allocate memory for modulation steps
uint8 *data_bits = (uint8*) calloc(frame->n_data bits,
sizeof(uint8));
if (data_bits == NULL) {
printf("Not enough memory for data_bits \n");
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}

uint8 *scrambled_data = (uint8%*) calloc(
frame->n_data_bits, sizeof(uint8));
if (scrambled _data == NULL) {
printf("Not enough memory for scrambled data\n");
}
uint8 *encoded_data = (uint8%*) calloc(
frame->n_data_bits * 2, sizeof(uint8));
if (encoded_data == NULL) {
printf("Not enough memory for encoded_data \n");
}
uint8 *punctured_data = (uint8*) calloc(
frame->n_encoded bits, sizeof(uint8));
if (punctured_data == NULL) {
printf("Not enough memory for punctured_data \n");
}
uint8 *interleaved_data = (uint8*) calloc(
frame->n_encoded bits, sizeof(uint8));
if (interleaved data == NULL) {
printf("Not enough memory for interleaved data \n");
}
uint8 *symbols = (uint8%*) calloc(
(frame->n_encoded_bits / d_ofdm->n_bpsc),
sizeof(uint8));
if (symbols == NULL) {
printf("Not enough memory for symbols \n");
}
//generate the WIFI data field, adding service field and pad bits
generate_bits(psdu, data_bits, frame);
// scrambling
// Initial state of the scrambler is set to : 93
static uint8 t scrambler = 93;
scramble(data_bits, scrambled data, frame, scrambler);
if (scrambler > 127) {
scrambler = 1;
}
// reset tail bits
reset tail bits(scrambled data, frame);
// encoding
convolutional_encoding(scrambled_data, encoded_data, frame);
// puncturing
puncturing(encoded_data, punctured_data, frame, d_ofdm);
// interleaving
interleave(punctured_data, interleaved_data, frame, d_ofdm);
// one byte per symbol
split_symbols(interleaved data, symbols, frame, d_ofdm);
memcpy(d_symbols, symbols, d_symbols len);
// free the allocated memory
free(symbols);
free(interleaved data);
free(punctured_data);
free(encoded_data);
free(scrambled_data);
free(data_bits);
break;
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}
// if there was an offset copy it to the out data

memcpy(out, d_symbols + d_symbols offset, i);
d_symbols_offset += i;
if (d_symbols _offset == d_symbols_len) {
d_symbols_offset = 0;
free(d_symbols);
d_symbols = 0;
}

return out;

}
/* Function to print the output data from the mapper can be used after the

split symbols */
void print_Output_bits(char* output, frame_param* frame, ofdm_param*
d_ofdm) {
int i;
int k;
int symbols_length = frame->n_sym * 48;
for (i = ©; i < symbols_length; i++) {
for (k = 0; k < d_ofdm->n_bpsc; k++) {
printf("%i", output[i]);
}

B.1.4 Code of the Packet header generater block

* signal field impl.h

* Created on: Feb 21, 2017
* Author: Dina Mohamed
*/
#ifndef SIGNAL _FIELD IMPL H_
#define SIGNAL_FIELD IMPL H_
#include "IEEE802_11_ Common_Variables.h"
#include "utils.h"
uint8 * generate_signal_field(frame_param* signal_param,
ofdm_param* signal_ofdm, frame_param* data_frame,
ofdm_param* data_ofdm);
int get_bit(int b, int i);
#endif /* SIGNAL_FIELD IMPL H_ */

/*signal_ field_impl.c
* Created on: Feb 21, 2017
* Author: Dina Mohamed
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*/
#include "signal field_impl.h"
#include "IEEE802_ 11 Common_Variables.h"
// This function returns the ith bit in the int b variable
int get_bit(int b, int i) {
return (b & (1 << i) ? 1 : 9);
}
/** This is the general work function of the Packet header generator block
that is used to produce the signal field**/
uint8 * generate_signal_field(frame_param* signal_param,
ofdm_param* signal ofdm, frame_param* data_frame, ofdm_param*
data_ofdm) {
//output frame of 48 bits (24*2) 0->47
uint8 * out = (uint8 *) malloc(sizeof(uint8) * 48);
//data bits of the signal header
uint8 *signal_header = (uint8 *) malloc(
sizeof(uint8) * 24);
//convolutional encoding
uint8 *encoded signal header = (uint8 *) malloc(
sizeof(uint8) * 48);
//interleaving
uint8 *interleaved_signal header = (uint8 *) malloc(sizeof(uint8) * 48);
//length of the psdu coming from the mac layer
int length = data_frame->psdu_size;
// first 4 bits represent the modulation and coding scheme
signal_header[@] = get_bit(data_ofdm->rate_field, 3);
signal _header[1] get bit(data_ofdm->rate_field, 2);
signal_header[2] get _bit(data_ofdm->rate field, 1);
signal header[3] = get_bit(data_ofdm->rate_field, 0);
// 5th bit is reserved and must be set to ©
signal_header[4] = ©;
// then 12 bits represent the length
signal header[5] = get bit(length, 0);
signal_header[6] get_bit(length, 1);
signal_header[7] = get_bit(length, 2);
signal_header[8] get_bit(length, 3);
signal header[9] = get bit(length, 4);
signal header[10] = get bit(length, 5);
signal header[11] = get_bit(length, 6);
signal_header[12] = get_bit(length, 7);
signal_header[13] get_bit(length, 8);
signal header[14] = get bit(length, 9);
signal header[15] = get_bit(length, 10);
signal_header[16] = get_bit(length, 11);
//18-th bit is the parity bit for the first 17 bits
int sum = 0;
int i;
for (i = 0; i < 17; i++) {
if (signal_header[i]) {
sum++;

}
}
signal_header[17] = sum % 2;
// last 6 bits must be set to ©
for (i =0; i < 6; i++) {
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signal_header[18 + i] = ©;
}
//allocating an OFDM parameter and a FRAME parameter objects
ofdm_param_intialization(BPSK 1 2, signal ofdm);
frame_param_intialization(signal ofdm, signal param, 0);
//convolutional encoding (scrambling is not needed)
convolutional_encoding(signal_header, encoded_signal_header,

signal_param);

// interleaving
interleave(encoded_signal_header, out, signal_param, signal_ofdm);
free(interleaved_signal header);
free(encoded_signal_header);
free(signal_header);
return out;

B.1.5 Code of the Chuncks to symbols block

* chunks_to_symbols_impl.h

* Created on: Feb 23, 2017
* Author: Shereen Othman
*/
#ifndef CHUNKS_TO SYMBOLS IMPL_H_
#define CHUNKS_TO_SYMBOLS IMPL_H_
#include "utils.h"
void chunks_to_symbols_impl(uint8 *input_items, float32 *output_items,
int data_size, Encoding encoding);
#endif /* CHUNKS_TO_SYMBOLS_IMPL_H_ */

* chunks_to_symbols impl.c

* Created on: Feb 23, 2017
* Author: Shereen Othman
*/

#include "chunks_to_symbols_impl.h"

#include "constellations_impl.h"

// This is the general work function of the Chunks to symbols block that is
used to // modulate the output bits from the Mapper and Packet header
generator according to // the frame parameters

void chunks_to_symbols_impl(uint8 *input_items, float32 *output_items,

int data_size, Encoding encoding) {
float32 *d_mapping;
switch (encoding) {
case BPSK_1_2:
case BPSK_3 4:
d_mapping = constellation_bpsk_impl();
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/>I<
*
*
*

*

*/

*/

break;
case QPSK_1 2:
case QPSK_3 4:
d_mapping
break;
case QAM16_1 2:
case QAM16 3 4:
d_mapping
break;
case QAM64_2 3:
case QAM64 3 4:

constellation_gpsk_impl();

constellation_16qam_impl();

d_mapping = constellation_64qam_impl();
break;

default:
printf("wrong encoding");
assert(false);
break;

}

int i;

int index = 0;
for (i = 0; i < data_size; i++) {
index = (int) input_items[i];
output_items[i * 2] = d_mapping[index * 2];
output_items[(i * 2) + 1] = d_mapping[(index * 2) + 1];
}
free(d_mapping);

constellations_impl.h

Created on: Feb 23, 2017
Author: Shereen Othman

#ifndef CONSTELLATIONS_IMPL_H_
#tdefine CONSTELLATIONS IMPL H_

#in

clude "IEEE802_11_Common_Variables.h"

float *constellation_bpsk_impl();
float *constellation_qpsk_impl();
float *sconstellation_16qam_impl();
float *constellation_64qam_impl();

#en

dif /* CONSTELLATIONS_IMPL_H_ */

constellations_impl.c

Created on: Feb 23, 2017

Author: Shereen Othman

#include <stdlib.h>
#tinclude <stdio.h>
#tinclude <math.h>
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#include "chunks_to_symbols_impl.h"
#include "constellations_impl.h"

____**/

// This function is used to implement the BPSK constellation using gray coding
float32 *constellation_bpsk_impl() {

float32 *d_constellation = calloc(2 * 2, sizeof(float32)); //as each
complex number will take 2 successive bytes

d_constellation[Q] -1; //first real

d_constellation[1] 0; //first imag

d_constellation[2] 1; //second imag

d_constellation[3] 0; //second imag

return d_constellation;

}

// This function is used to implement the QPSK constellation using gray coding
float32 *constellation_qpsk_impl() {

const float32 level = sqrt((float32) (0.5));

float32 *d_constellation = calloc(4 * 2, sizeof(float32));

d_constellation[@] = -level;
d_constellation[1] = -level;
d_constellation[2] = level;
d_constellation[3] = -level;
d_constellation[4] = -level;
d_constellation[5] = level;
d_constellation[6] = level;
d_constellation[7] = level;
return d_constellation;
}
// This function is used to implement the QAM16 constellation using gray
coding
float32 *constellation_16qam_impl() {
const float32 level = sqrt((float32) (0.1));
float32 *d_constellation = calloc(16 * 2, sizeof(float32));
d_constellation[@] = -3 * level;

d_constellation[1] = -3 * level;
d_constellation[2] = 3 * level;

d_constellation[3] = -3 * level;
d_constellation[4] = -1 * level;
d_constellation[5] = -3 * level;
d_constellation[6] = 1 * level;

d_constellation[7] = -3 * level;
d_constellation[8] = -3 * level;
d_constellation[9] = 3 * level;

d_constellation[10] = 3 * level;
d_constellation[11] = 3 * level;
d_constellation[12] = -1 * level;
d_constellation[13] = 3 * level;
d_constellation[14] = 1 * level;
d_constellation[15] = 3 * level;
d_constellation[16] = -3 * level;
d_constellation[17] = -1*level;

d_constellation[18] = 3 * level;
d_constellation[19] = -1 * level;

d_constellation[20] = -1 * level;
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}

d_constellation[21]
d_constellation[22]
d_constellation[23]
d_constellation[24]
d_constellation[25]
d_constellation[26]
d_constellation[27]
d_constellation[28]
d_constellation[29]
d_constellation[30]
d_constellation[31]

V2V PHY layer Implementation

-1 * level;
1 * level;
-1 * level;
-3 * level;
1 * level;
3 * level;
1 * level;
-1 * level;
1 * level;
1 * level;
1 * level;

return d_constellation;

Final Report

// This function is used to implement the QAM64 constellation using gray

coding

float32 *constellation_64qam_impl() {

const float32 level = sqrt((float32) (1 / 42.9));
float32 *d_constellation = calloc(16 * 2, sizeof(float32));

d_constellation[Q]

d_constellation[1]

d_constellation[2]

d_constellation[3]

d_constellation[4]

d_constellation[5]

d_constellation[6]

d_constellation[7]

d_constellation[8]

d_constellation[9]

d_constellation[10]
d_constellation[11]
d_constellation[12]
d_constellation[13]
d_constellation[14]
d_constellation[15]
d_constellation[16]
d_constellation[17]
d_constellation[18]
d_constellation[19]
d_constellation[20]
d_constellation[21]
d_constellation[22]
d_constellation[23]
d_constellation[24]
d_constellation[25]
d_constellation[26]
d_constellation[27]
d_constellation[28]
d_constellation[29]
d_constellation[30]
d_constellation[31]
d_constellation[32]
d_constellation[33]
d_constellation[34]
d_constellation[35]
d_constellation[36]

-7 * level;
-7 * level;
7 * level;
-7 * level;
-1 * level;
-7 * level;
1 * level;
-7 * level;
-5 * level;
-7 * level;
5 * level;
-7 * level;
-3 * level;
-7 * level;
3 * level;
-7 * level;
-7 * level;
7 * level;
7 * level;
7 * level;
-1 * level;
7 * level;
1 * level;
7 * level;
-5 * level;
7 * level;
5 * level;
7 * level;
-3 * level;
7 * level;
3 * level;
7 * level;
-7 * level;
-1 * level;
7 * level;
-1 * level;
-1 * level;
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d_constellation[37] = -1 * level;
d_constellation[38] = 1 * level;
d_constellation[39] = -1 * level;
d_constellation[40] = -5 * level;
d_constellation[41] = -1 * level;
d_constellation[42] = 5 * level;
d_constellation[43] = -1 * level;
d_constellation[44] = -3 * level;
d_constellation[45] = -1 * level;
d_constellation[46] = 3 * level;
d_constellation[47] = -1 * level;
d_constellation[48] = -7 * level;
d_constellation[49] = 1 * level;
d_constellation[50] = 7 * level;
d_constellation[51] = 1 * level;
d_constellation[52] = -1 * level;
d_constellation[53] = 1 * level;
d_constellation[54] = 1 * level;
d_constellation[55] = 1 * level;
d_constellation[56] = -5 * level;
d_constellation[57] = 1 * level;
d_constellation[58] = 5 * level;
d_constellation[59] = 1 * level;
d_constellation[60] = -3 * level;
d_constellation[61] = 1 * level;
d_constellation[62] = 3 * level;
d_constellation[63] = 1 * level;
d_constellation[64] = -7 * level;
d_constellation[65] = -5 * level;
d_constellation[66] = 7 * level;
d_constellation[67] = -5 * level;
d_constellation[68] = -1 * level;
d_constellation[69] = -5 * level;
d_constellation[70] = 1 * level;
d_constellation[71] = -5 * level;
d_constellation[72] = -5 * level;
d_constellation[73] = -5 * level;
d_constellation[74] = 5 * level;
d_constellation[75] = -5 * level;
d_constellation[76] = -3 * level;
d_constellation[77] = -5 * level;
d_constellation[78] = 3 * level;
d_constellation[79] = -5 * level;
d_constellation[80] = -7 * level;
d_constellation[81] = 5 * level;
d_constellation[82] = 7 * level;
d_constellation[83] = 5 * level;
d_constellation[84] = -1 * level;
d_constellation[85] = 5 * level;
d_constellation[86] = 1 * level;
d_constellation[87] = 5 * level;
d_constellation[88] = -5 * level;
d_constellation[89] = 5 * level;
d_constellation[90] = 5 * level;
d_constellation[91] = 5 * level;
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d_constellation[92] = -3 * level;
d_constellation[93] = 5 * level;
d_constellation[94] = 3 * level;
d_constellation[95] = 5 * level;
d_constellation[96] = -7 * level;
d_constellation[97] = -3 * level;
d_constellation[98] = 7 * level;

d_constellation[99] = -3 * level;

d_constellation[100] = -1 * level;
d_constellation[101] = -3 * level;
d_constellation[102] = 1 * level;
d_constellation[103] = -3 * level;
d_constellation[104] = -5 * level;
d_constellation[105] = -3 * level;
d_constellation[106] = 5 * level;
d_constellation[107] = -3 * level;
d_constellation[108] = -3 * level;
d_constellation[109] = -3 * level;
d_constellation[110] = 3 * level;
d_constellation[111] = -3 * level;
d_constellation[112] = -7 * level;
d_constellation[113] = 3 * level;
d_constellation[114] = 7 * level;
d_constellation[115] = 3 * level;
d_constellation[116] = -1*level;

d_constellation[117] = 3 * level;
d_constellation[118] = 1 * level;
d_constellation[119] = 3 * level;
d_constellation[120] = -5 * level;
d_constellation[121] = 3 * level;
d_constellation[122] = 5 * level;
d_constellation[123] = 3 * level;
d_constellation[124] = -3 * level;
d_constellation[125] = 3 * level;
d_constellation[126] = 3 * level;

d_constellation[127] = 3 * level;
return d_constellation;

B.1.6 Code of the OFDM carrier allocator

* ofdm_carr_alloc_func.h

* Created on: Feb 24, 2017
* Author: Mohamed Elnaggar
*/
#ifndef OFDM_CARR_ALLOC_FUNC_H_
#tdefine OFDM_CARR_ALLOC_FUNC_H_
#include "IEEE802_ 11 Common_Variables.h"
Y A e TP All are form the standard definition-----------------
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// Occupied carriers

int occupied_carriers[48] = { -26, -25, -24, -23, -22, -20, -19, -18, -17, -

16,

-1, 1, 2, 3,

-14, -13, -12, -11, -1, -9, -8, -6, -5, -4, -3, -2,
4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24,

-15,

25, 26 };

// positions of the pilot symbols

int pilot_carriers[4] = { -21, -7, 7, 21 };
// values of the pilot symbols
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'1: 0) '11 0, '1: @, 1 };
// synchronization words

float32 sync_words[] = { ©¢.0, 0, 0.0, 0, 0.0, 0, 0.0, @9, 0.0, 0, 0.0, O, 0.0,
0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, O,
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, O,
1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, O,
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0O,
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, O,
1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, O,
0.0, 0, 0.0, 0, 0.0, O, -1.4719601443879746, -1.4719601443879746, 0.0,
0, 0.0, 0, 0.0, 0, -1.4719601443879746, -1.4719601443879746, 0.0, 0O,
0.0, 0, 0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0,
0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, O,
1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,
1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, O,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, O,
0.0, 0, 0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, O,
0.0, 0, -1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0,
0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0O,
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0O,
1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0O,
0.0, 0, 0.0, 0, 0.0, 0, -1.4719601443879746, -1.4719601443879746, 0.0,
0, 0.0, 0, 0.9, 0, -1.4719601443879746, -1.4719601443879746, 0.0, 0O,
0.0, 0, 0.9, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0O,
0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, ©, 0.0, 0, 0.0, O,

, 0.
1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, O,
1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, O,
9.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, @, -1, 0, O, 1,
-1, 9,0, 1, -1, 0,0, 1, -1, 0, 0, -1, 1, 0, 0, 1, 1, 0, 0, -1, -1, 0,

1) 1: 0, 9, 1) 1) 0, e: 11 1: 9, @, 1: -1J 9, '@) -1J 1: @, @) -1J
-1J 9, @, 1) 0: 9, @J -1J 1: @, -GJ '1: 1) @) @J '1) 1) @) 9, 1) '1) 0:
e) '11 1) @, 'e) _1J '1) @, GJ 1: 1) 9: @J 1) 1) 9: 9) 1) 1) GJ @, 1)
'1) 9, e) _1) 1) e) 0) 1) 1) e) 9, '11 _1J 0) 0) 9, 9, 0) 9) 0, 0) 0) 9)
01 e) 0, 0) 0; e: e: 01 @, e: 0) 01 e) 1: 0) 1; e: '1: @, '11 e: 11 @J
1: @) -1J 9, 1: @J '1: @, 1) 9, 1) @J 1: 0, 1) @) 1: 9, 1: @) -1J @, '1)
GJ 1) e: 1: GJ '1) 9, 1) 9: '1) 0) 1: 0) 1) @J 1) e) 1: GJ @, e: 1) ]
'11 @J '1) 0: 1) @, 1) 0: '1) @, 1: 9) '1) e) 1: 9) '1) 0) '1) @, '1: @)
1, ©

'11 0) '11 9, 1) 9) 1) e) _1) 91 '11 0) 1) 9, '1) 0) 1) 0, _1) 0) b) )
i, ¢, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O};

// size of FFT
int fft_len = 64;
// This boolean is used to return the OFDM carrier allocater to the start
int output_is_shifted = 1;
int ofdm_carr_alloc(int *occupied carriers, int *pilot_carriers,
float32 *pilot_sympols, float32 *sync_words, int fft_len,
int output_is_shifted, float32 *input, float32 *output,
int sizeof_input_sym);
#endif /* OFDM_CARR_ALLOC_FUNC_H_ */

/*
* ofdm_carr_alloc.c
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*

* Created on: Feb 24, 2017

*

*/

Author: Mohamed Elnaggar

#ifndef ofdm

#tdefine ofdm

#include "IEEE802_11_Common_Variables.h"

// The general work function used for OFDM carrier allocation
int ofdm_carr_alloc(int *occupied carriers, int *pilot carriers,

int
int
int
int
int

float32 *pilot_symbols, float32 *sync_words, int fft_len,
int output_is_shifted, float32 *input, float32 *output,
int sizeof_input_sym) {

i=0;

j=0;

sizeof_occ_carr = 48;

sizeof_pilot_carr = 4;

sizeof_sync_words = 512;

//this part changes the zero values in the occupied_carriers to positive
to indicate real positions in array

for

2)

}

(i =0; i < sizeof _occ_carr; i++) {
if (occupied_carriers[i] < 0) {
occupied _carriers[i] += fft_len;

}

if (occupied_carriers[i] > fft_len || occupied carriers[i] < @) {
break;

}

if (output_is_shifted) {
occupied carriers[i] = (occupied carriers[i] + fft_len /

% fft_len;
}

//This part changes the zero values in the pilot_carriers to positive to
indicate real positions in array
for (i = 0; i < sizeof pilot_carr; i++) {

fft_len;

}

if (pilot_carriers[i] < @) {
pilot_carriers[i] += fft_len;

¥

if (pilot_carriers[i] > fft_len || pilot_carriers[i] < @) {
break;

}

if (output_is_shifted) {
pilot_carriers[i] = (pilot_carriers[i] + fft_len / 2) %

}

// Copy Sync word
for (i = 9; i < sizeof_sync_words; i++) {

}

output[i] = sync_words[i];

// Copy data symbols

float32 *out_data;

out_data = 512 + output;

long n_ofdm_symbols = @; // Number of output items
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int symbols_to_allocate = 48;
int symbols_allocated = 0;
int k;
for (i = ©; i < sizeof input_sym; i =i + 2) {
if (symbols_allocated == 0) {
n_ofdm_symbols++;
}
k = occupied_carriers[symbols allocated];
k = k * 2;
out_datal[k] = input[i];
out_data[k + 1] = input[i + 1];
symbols_allocated++;
if (symbols _allocated == symbols_to_allocate) {
symbols_to_allocate = 48;
symbols_allocated = 9;
out_data = out_data + ((fft_len) * 2);

}

}
// Copy pilot symbols

float32 *out_pilot;

out_pilot = 512 + output;

for (i = @; i < n_ofdm_symbols; i++) {

for (j =0; J <8 j=3+2){

k = pilot_carriers[j / 2];
k = k * 2;
out_pilot[k] = pilot_symbols[j + (i * 8)];
out_pilot[k + 1] = pilot_symbols[j + 1 + (i * 8)];

}
out_pilot = out_pilot + ((fft_len) * 2);
}
return 0;
}
#endif

B.1.7 Code of the IFFT block

/*
* ifft.h
*
* Created on: Feb 7, 2017
* Author: Habiba Tarek
*/

#ifndef IFFT_H_

#tdefine IFFT_H_

#include "IEEE802_11 Common_Variables.h"

extern void gen_twiddle_fft_sp (float32 *w, int n);

extern void shiftF(float32* before, float32* after, int N);

extern void ifft(float32* input, float32* output, int N, float32
WindowScale, int shift, float32* window);

extern void seperateRealImg(float32* input, float32* real, float32*img, int
N);

#endif /* IFFT_H_ */
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/* ifft.c
* Created on: Feb 7, 2017
Author: Habiba Tarek*/

*

#tinclude
#tinclude <math.h>
#include <ti/dsplib/dsplib.h>

V2V PHY layer Implementation

"ifft.h"

#include <stdlib.h>
extern uint8 brev[64] = {

}s

0x0,
ox4,
ox2,
0x6,
ox1,
ox5,
0x3,
ox7,

0x20, 0x10, 0x30, 0x8, 0x28,
0x24, 0x14, 0x34, Oxc, Ox2c,
0x22, ©x12, 0x32, Oxa, 0Ox2a,
0x26, Ox16, 0Ox36, Oxe, 0Ox2e,
ox21, Ox11, Ox31, ©x9, ©x29,
0x25, ©0x15, ©0x35, oxd, ox2d,
0x23, ©x13, 0x33, Oxb, ox2b,
ox27, ox17, 0x37, oxf, ox2f,

ox38,
0x3c,
Ox3a,
ox3e,
0x39,
ox3d,
ox3b,
ox3f

Final Report

// since complex here is written in the terms of a float32 array, with real
in even // indices and imaginary in odd indices, this function separates real

and imaginary // numbers in different arrays*/

void seperateRealImg(float32* input, float32* real, float32*img, int N) {
int i, j;

}

for (i

0, j =0; j<N; i+=2, j++) {

real[j] = input[i];
img[j] = input[i + 1];

/* this ready function generates the twiddle factors that will be used in

IFFT function*/
void gen_twiddle_fft_sp (float32 *w, int n)

{

int i, g, k;

double x_t, y t, thetal, theta2, theta3;

const double PI = 3.141592654;
1, k=0; jJ<=n> 2; j=7<<2)

for (j

{

for (i =0; i<n > 2;1i+=3)

{

thetal = 2 * PI * 1 / n;
x_t = cos (thetal);

y_t = sin (thetal);

wlk] = (float32) x_t;

wlk + 1] = (float32) y t;

theta2 = 4 * PI * 1 / n;

x_t = cos (theta2);
y_t = sin (theta2);
wlk + 2] = (float32) x_t;
wlk + 3] = (float32) y_t;

theta3 = 6 * PI * i / n;
x_t = cos (theta3);
y_t = sin (theta3);
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wlk + 4] = (float32) x_t;
wlk + 5] = (float32) y t;
k += 6;

}
}
/* this function shifts the input so that it swaps the two halves of the

input (gnuradio uses shift so we did it here as well) */
void shiftF(float32* before, float32* after, int N)

{
int n;
for(n = 9; n < (2*N)/2 ; n++)
{
after[n] = before[(2*N)/2 + n];
}

n = (2*N)/2;
for(n = (2*N)/2; n < (2*N) ; n++)
{

}

void ifft(float32* input, float32* output, int N, float32 WindowScale, int
shift, float32* window)

{

after[n] = before[n - (2*N)/2];

gen_twiddle_fft_sp(window, N);

/* this small part multiples the input by N to reverse the
normalization and divides it by the the value of WindowScale to scale the
input */

int k = 9;
for (k = 0; k<2*N; k++)
{

input[k] = input[k] * ((float32) N /
(sqrt((float32)WindowScale)));

if(shift == true)
{
short int len = (unsigned int)(ceil(2*N/2.0));
float32* temp = calloc(2*N, sizeof(float32));
memcpy(temp, &input[len],sizeof(float32)*(2*N - len));
memcpy (&temp[2*N - len], &input[@],sizeof(float32)*1len);
memcpy (input,temp,2*N*sizeof(float32));

free(temp);
}
if(N%4 == 09)
{
DSPF_sp ifftSPxSP(N, input, window, output, brev, 4, 0, N);
}
else
{
DSPF_sp ifftSPxSP(N, input, window, output, brev, 2, 0, N);
}
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B.1.8 Code of the cyclic prefix block

/*CyclicPrefix.h
*Created on: 1 Feb 2017
*Author: User Zeinab Ahmed*/
#ifndef CYCLICPREFIX_H_
#define CYCLICPREFIX_H_
#include "IEEE802 11 Common_Variables.h"
typedef struct

int d_fft_len; // initialized in gnuradio by 64 (size of IFFT block)
int d_output_size; // output size = d_fft_len + cyclic prefix
size(initialized // in gnuradio by 16)
int d_rolloff_len; // initialized in gnuradio by 2
int symbols_to_read; // number of OFDM symbols input to this block
}StructCyclicPrefix_Init;
void CyclicPrefix(StructCyclicPrefix_Init*,float32*,float32*);
void CyclicPrefix_Init(StructCyclicPrefix_Init*,int);
#endif /* CYCLICPREFIX H_ */

/*CyclicPrefix.c
*Created on: 1 Feb 2017
*Author: User Zeinab Ahmed*/
#include "CyclicPrefix.h"
#include <stdio.h>
#tinclude <stdlib.h>
#tinclude <math.h> // added as I use cosine function
#ifndef M _PI
# define M_PI 3.14159265358979323846
t#tendif
// The initialization of the Cyclic prefix
void CyclicPrefix_Init(StructCyclicPrefix Init *Cyclic,int num_ofdm_sym)
{
Cyclic->d_fft_len= 64;
Cyclic->d_output_size=80;
Cyclic->d_rolloff_len=2;
Cyclic->symbols_to_read=num_ofdm_sym;
}
// The general work function of the cyclic prefix block
void CyclicPrefix(StructCyclicPrefix_Init *PtrToStruct,float32
*data_ptr,float32 *out_ptr)
{
int i;
int d_cp_size = PtrToStruct->d_output_size - PtrToStruct->d_fft_len;
float32 *d_up_flank,*d_down_flank,*d_delay line;
if (PtrToStruct->d_rolloff_len == 1)
{

}

PtrToStruct->d_rolloff_len = 0;
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if (PtrToStruct->d_rolloff_len)

{
d_up_flank=(float32*) malloc((PtrToStruct->d_rolloff len-
1)*sizeof(float32));
d_down_flank=(float32*) malloc((PtrToStruct->d_rolloff len-
1)*sizeof(float32));
d_delay line=(float32*) malloc((PtrToStruct->d_rolloff_len-
1)*sizeof(float32));

[]=======--- construct up flank and down flank ---------- //
for (i = 1; i < PtrToStruct->d_rolloff_len; i++)
{

d_up_flank[i-1] = 0.5 * (1 + cos(M_PI *(float32)

i/ (float32)PtrToStruct->d_rolloff len - M _PI));

d_down_flank[i-1] = ©.5 * (1 + cos(M_PI
*(float32) (PtrToStruct->d_rolloff_len-i)/(float32)PtrToStruct->d_rolloff len -
M_PI));

d_delay line[i-1]=0;

[/-=-==------ cyclic prefix implementation ---------- //

float32 *in=data_ptr;

float32 *out=out_ptr;

int sym_idx;

for (sym_idx = @; sym_idx < PtrToStruct->symbols_to_read;sym_idx++)

{
memcpy((out + (d_cp_size*2)),in, PtrToStruct->d_fft_len *
sizeof(float32)* 2);
memcpy(out, (in + (PtrToStruct->d_fft len*2) - (d_cp_size*2)),
d_cp_size * sizeof(float32)* 2);
if (PtrToStruct->d_rolloff_len)
{
for (i = @; i < PtrToStruct->d_rolloff len-1; i+=2)
{
out[i] = out[i] * d_up_flank[i/2] + d_delay line[i/2]; //real part
out[i+1] = out[i+1] * d_up_flank[i/2] + d_delay line[i/2];
d delay line[i/2] = in[i] * d_down_flank[i/2]; //real part
d_delay line[i/2] = in[i+1] * d_down_flank[i/2]; //imaginary part
}

in += (PtrToStruct->d_fft_len*2);
out += (PtrToStruct->d output_size*2);

[/-=------=--- adding delay line for the last OFDM symbol ---------- //
if (PtrToStruct->d_rolloff_len)
{
for (i = @; i < PtrToStruct->d_rolloff len-1; i++)
{
*out++ = d_delay _line[i/2]; // real part
*out++ = d_delay line[i/2]; // imaginary part
}
free(d_delay line);
free(d_down_flank);
free(d_up_flank);
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