
Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page |

Graduation Project-2

“V2V Communication”

PHY Layer Implementation

Final Report

Submitted by:

Habiba Tarek Al-Toudy

Dina Mohamed Magdy Zakaria Eissa

Salma Khaled Ismail Kamel

Samer Ahmed

Mohamed Hussein El-Naggar

Sherine Othman Salem

Zeinab Ahmed

Supervised by:

Dr. Hassan Moustafa

Dr. Yasmine Fahmy

CUFE
CCE-E

Credit Hours System

Spring / 2017

Senior-2 Level
Graduation Project-2

CCEN481

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | i

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | ii

Acknowledgement

Listed below are the names of the people who provided us with significant help in

developing our graduation project in addition to our sponsor iGP-ASU and Consultix

corporate. To all we extend our sincere thanks.

Dr. Hassan Mostafa Hassan

Dr. Yasmeen Fahmy

Dr. Maged Ghoneima

Eng. Ayman Hendawy

Eng. Ahmed el Menshawy

And a special thanks to Dr. Hassan Mostafa, it has been a great pleasure and honor being

our supervisor. You were continuously encouraging us, even before we decided to work

on this project.

Finally, though only our names appear on the cover of this thesis, but many have -

knowingly or unknowingly – contributed to its production, and for that we are extremely

thankful,

Dina, Habiba, Salma, Sherine, Zeinab, Samer, Mohamed

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | iii

Abstract

Most accidents occur because the driver can only see, with the sensors and the current

electronic driver aids, as far as the vehicles directly in front of him/her, behind him/her, or

on either side. A competent driver might notice more than one car ahead or behind, notice

the signal lights and act preemptively to prevent any sudden actions or accidents. However,

sometimes this isn’t enough. If any sudden action was taken faster than the driver’s reaction

such as a vehicle coming in a very high speed next to him/her or realizing there’s a huge

obstacle when the car is too near to take the needed precautions, this will lead to dangerous

consequences. As a result, there has to be another solution that will car itself notice the

sudden changes to take precautions if the driver couldn’t. Also there has to be a solution to

make the able to see more than 2 vehicles ahead or behind to alert the driver of the changes

that happen a little further than his/her sight so that the driver can act smoothly and

preemptively. Car accidents have risen to 14500 accident in 2015. A total of 63.3 percent

of car accidents were caused by humans. A total of 6203 were killed and 19325 were

injured due to such accidents in 2015.

One of the technological advances that could solve this problem is vehicle to vehicle

communication. This report will include more information about V2V communication, its

benefits and its market nowadays. Next, an overview of the IEEE standard that is used to

implement the PHY layer of the V2V communication system is explained. After that, the

project design is discussed along with the tools used as well as the importance of each tool

in our project. Then, the actual implementation of our project along with the testing

methods and results are furtherly explained. Finally, the lessons learned while working on

our project as well as the next phases are discussed.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | iv

Table of Contents

CHAPTER 1 INTRODUCTION .. 1

1.1 ABOUT V2X ... 1

1.2 V2X MARKET .. 2

1.3 V2X COMPETITION LANDSCAPE .. 3

1.4 STANDARDIZED V2X PROTOCOLS .. 3

1.5 PROJECT DESCRIPTION .. 3

CHAPTER 2 OFDM PHY LAYER SPECIFICATION .. 4

2.1 STANDARD IEEE-802.11P OVERVIEW ... 5

2.1.1 Introduction ... 5

2.1.2 Reasons of using OFDM .. 6

2.1.3 PHY layer structure in the standard .. 7
2.1.3.1 PLCP sub-layer (Physical Layer Convergence Protocol) .. 7

Overview of the PPDU encoding process ... 8
Declarations ... 10

2.1.3.2 OFDM PMD sublayer .. 11
2.1.3.3 PLME sub layer .. 12

TXVECTOR parameters ... 12
RXVECTOR parameters... 13
TXSTATUS parameters ... 15

2.2 RECEIVER OVERVIEW .. 16

2.2.1 Frame detection .. 17

2.2.2 Frequency offset correction ... 19

2.2.3 Symbol Alignment ... 20

2.2.4 Phase offset correction .. 21

2.2.5 Channel estimation ... 21

2.2.6 Signal field decoding ... 21

2.2.7 Frame decoding ... 22

CHAPTER 3 PROJECT DESIGN ... 23

3.1 IMPLEMENTATION OVERVIEW .. 24

3.1.1 Standalone device model .. 24

3.1.2 Step by step model .. 24

3.2 PROJECT TESTING .. 25

3.2.1 Functional Testing ... 25

3.2.2 Integration Testing .. 25

3.3 PROJECT PHASES .. 26

3.3.1 Phase 1 .. 26

3.3.2 Phase 2 .. 26

3.4 PROJECT COST .. 26

CHAPTER 4 TOOLS USED ... 27

4.1 SOFTWARE TOOLS ... 28

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | v

4.1.1 Gnu radio ... 28
4.1.1.1 Overview: .. 28
4.1.1.2 Block diagrams of GNU radio .. 29

Wi-Fi Physical hierarchy ... 29
Wi-Fi transmitter .. 30
Wi-Fi Receiver .. 31
Wi-Fi transceiver .. 32
Wi-Fi loopback ... 33

4.1.2 CCS (Code Composer Studio) ... 34

4.1.3 GNU Octave ... 35
4.1.3.1 Overview: .. 35
4.1.3.2 The Octave language .. 35
4.1.3.3 Usage in the project: ... 36

4.2 HARDWARE TOOLS .. 37

4.2.1 USRP .. 37
4.2.1.1 Hardware overview... 37
4.2.1.2 USRP usage in our project ... 38
4.2.1.3 Challenges ... 39

4.2.2 MitydspL138F .. 42
4.2.2.1 Introduction to DSP .. 42
4.2.2.2 Overview on the MitydspL138-F: .. 43
4.2.2.3 Applications: ... 43
4.2.2.4 Specifications: ... 43
4.2.2.5 Block diagram ... 45
4.2.2.6 Interfaces .. 45
4.2.2.7 Mechanical.. 46
4.2.2.8 Development tools and software ... 47
4.2.2.9 UPP ... 47
4.2.2.10 Usage of the DSP kit in the project ... 48

CHAPTER 5 CODE DESCRIPTION .. 49

5.1 TRANSMITTER ... 50

5.1.1 Mapper .. 50
5.1.1.1 Design: .. 50
5.1.1.2 Implementation: ... 52
5.1.1.3 Testing technique of the block: .. 56

5.1.2 Packet header generator ... 57
5.1.2.1 Design: .. 57
5.1.2.2 Implementation: ... 58
5.1.2.3 Testing technique of the block: .. 58

5.1.3 Chunks to symbols ... 59
5.1.3.1 Function: ... 59
5.1.3.2 Implementation: ... 59

5.1.4 Tagged stream MUX ... 60

5.1.5 OFDM carrier allocator .. 61
5.1.5.1 Standard requirements ... 61
5.1.5.2 Function Input .. 61
5.1.5.3 Implementation .. 61

5.1.6 IFFT .. 62

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | vi

5.1.6.1 Design ... 62
5.1.6.2 Implementation .. 62
5.1.6.3 Testing .. 62

5.1.7 Cyclic prefix ... 63
5.1.7.1 Design ... 63
5.1.7.2 Implementation .. 63
5.1.7.3 Testing technique of the block ... 64

5.2 RECEIVER ... 65

5.2.1 The blocks before Synch short ... 65
5.2.1.1 Description .. 65
5.2.1.2 Implementation .. 65

5.2.2 Synch Short .. 66
5.2.2.1 Description .. 66

Case Search: ... 66
Case Copy: .. 66

5.2.3 Sync Long... 67
5.2.3.1 Design ... 67
5.2.3.2 Implementation .. 67
5.2.3.3 Testing technique of the block ... 68

5.2.4 FFT ... 69
5.2.4.1 Design ... 69
5.2.4.2 Implementation .. 69
5.2.4.3 Testing .. 69

5.2.5 Frame Equalizer ... 70
5.2.5.1 Design ... 70
5.2.5.2 Implementation .. 73
5.2.5.3 Testing .. 76

5.2.6 Frame Decoder .. 77
5.2.6.1 Design: .. 77

Basic definitions ... 78
5.3 IMPLEMENTATION .. 80

5.3.1 Deinterleaving ... 80

5.3.2 Convolutional Decoding and Puncturing ... 80
5.3.2.1 Depuncture ... 80

Design .. 80
Implementation ... 80

5.3.2.2 .Viterbi decoder: ... 81
Implementation: .. 81

Branch metric unit: ... 81
Add compare and select unit: ... 82
Survivor memory unit: .. 83
Trace back unit: .. 83

5.3.3 Descrambling: ... 84

CHAPTER 6 CONCLUSION ... 85

6.1 LESSONS LEARNED THROUGHOUT THE YEAR ... 86

6.2 FUTURE WORK .. 86

REFERENCES ... 88

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | vii

APPENDIX A INSTALLATION GUIDE ... 91

A.1 INSTALLATION GUIDE FOR CODE COMPOSER STUDIO .. 92

A.1.1 Installing the DSP library... 93

A.1.2 Make a new project on CCS .. 93

A.1.3 Including the DSP library in the project .. 93

A.2 USRP HARDWARE DRIVER INSTALLATION GUIDE .. 94

A.2.1 Installation Requirements ... 94

A.2.2 Installation guide .. 94

A.3 GNU RADIO INSTALLATION GUIDE .. 94

A.3.1 Installation Requirements ... 94

A.3.2 Installation guide .. 94

A.4 OCTAVE INSTALLATION GUIDE .. 95

A.4.1 Installation Requirements ... 95

A.4.2 Installation guide .. 95

A.4.3 Usage guide .. 95

APPENDIX B CCS CODE ... 96

B.1 Transmitter .. 97

B.1.1 Main function.. 97

B.1.2 Generic files used by more than one block ... 100
B.1.2.1 utils.h file ... 100
B.1.2.2 utils.c file: .. 101
B.1.2.3 IEEE802_11_Common_Variables.h ... 106

B.1.3 Code of the Mapper block .. 106
B.1.3.1 Mapper.h file ... 106
B.1.3.2 Mapper.c file ... 107

B.1.4 Code of the Packet header generater block .. 109
B.1.4.1 signal_field_impl.h .. 109
B.1.4.2 signal_field_impl.c .. 109

B.1.5 Code of the Chuncks to symbols block .. 111
B.1.5.1 chuncks_to_symbols.h .. 111
B.1.5.2 chuncks_to_symbols.c .. 111
B.1.5.3 constellation_impl.h.. 112
B.1.5.4 constellation_impl.c .. 112

B.1.6 Code of the OFDM carrier allocator .. 116
B.1.6.1 ofdm_carr_alloc_func.h file .. 116
B.1.6.2 Ofdm_carr_alloc.c file ... 118

B.1.7 Code of the IFFT block ... 120
B.1.7.1 Ifft.h ... 120
B.1.7.2 Ifft.c ... 121

B.1.8 Code of the cyclic prefix block ... 123
B.1.8.1 CyclicPrefix.h ... 123
B.1.8.2 CyclicPrefix.c ... 123

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | viii

List of Figures

FIGURE 1-1 THE RANGE OF SIGNALS SENT BY THE CAR ... 2

FIGURE 1-2 THE FUTURE OF V2X SYSTEMS ... 2

FIGURE 2-1 MPC EFFECT .. 6

FIGURE 2-2 ILLUSTRATION OF FREQUENCY SELECTIVITY IN FDM AND OFDM TECHNIQUES .. 7

FIGURE 2-3 SUB-LAYERS IN PHY LAYER.. 7

FIGURE 2-4 PPDU FRAME FORMAT .. 8

FIGURE 2-5 PLCP HEADER FIELD .. 8

FIGURE 2-6 DETAILED OFDM FRAME STRUCTURE ... 17

FIGURE 2-7 AUTOCORRELATION CALCULATION ALGORITHM ... 17

FIGURE 2-8 NORMALIZED AUTO CORRELATION VALUES WITH THE AVERAGE POWER .. 18

FIGURE 2-9 AUTOCORRELATION FUNCTION BEHAVIOR IN THE FRAME DETECTION ... 18

FIGURE 2-10 FREQUENCY OFFSET CALCULATION EQUATION AND UPDATING FRAME WITH THE NEW PHASE 19

FIGURE 2-11 SAMPLE INDEX ... 20

FIGURE 2-12 SIGNAL FIELD ASSIGNMENT ... 22

FIGURE 3-1 USRP AND DSP KIT CONNECTION .. 24

FIGURE 4-1 PHYSICAL HIERARCHY BLOCK DIAGRAM .. 29

FIGURE 4-2 TRANSMITTER BLOCK DIAGRAM.. 30

FIGURE 4-3 RECEIVER BLOCK DIAGRAM .. 31

FIGURE 4-4 TRANSCEIVER BLOCK DIAGRAM .. 32

FIGURE 4-5 LOOPBACK BLOCK DIAGRAM .. 33

FIGURE 4-6 CCS LOGO ... 34

FIGURE 4-7 OCTAVE LOGO .. 35

FIGURE 4-8 FILE SINK BLOCK ... 36

FIGURE 4-9 USRP B200 .. 37

FIGURE 4-10 USRP 2920 SYSTEM LEVEL DIAGRAM ... 38

FIGURE 4-11 SIMULATED CHANNEL MODEL USING GNU RADIO ... 39

FIGURE 4-12 USRP CHANNEL USING GNU RADIO ... 39

FIGURE 4-13 THE LAST BLOCK IN GNU RADIO TRANSMITTER ... 40

FIGURE 4-14 COMMENTING CODE THAT IS NOT NEEDED .. 40

FIGURE 4-15 ADDING OUR OWN DATA .. 40

FIGURE 4-16 USRP BLOCKS AND FILE SINK BLOCK ... 41

file:///D:/CCE/_Eigth%20Semester%20Senior2/GP2/mona2shaaaa/Report%20chapters/Final%20report/Final-Report.docx%23_Toc484818908

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | ix

FIGURE 4-17 MITYDSP-L138F .. 42

FIGURE 4-18 BLOCK DIAGRAM ... 45

FIGURE 4-19 DIMENSIONS .. 46

FIGURE 4-20 XDS100V2 LOW COST JTAG DEBUG PROBE .. 48

FIGURE 5-1 PPDU FRAME FORMAT .. 51

FIGURE 5-2 DATA SCRAMBLER ... 53

FIGURE 5-3 CONVOLUTIONAL ENCODING (K=7) .. 54

FIGURE 5-4 PPDU FRAME FORMAT ... 57

FIGURE 5-5 SIGNAL FIELD ASSIGNMENT ... 58

FIGURE 5-6 QPSK CONSTELLATION IMPLEMENTATION FUNCTION ... 59

FIGURE 5-7 MAPPING OF THE CHUNKS INTO THE COMPLEX NUMBERS .. 60

FIGURE 5-8 IMPLEMENTATION OF CYCLIC PREFIX FUNCTION IN CODE ... 63

FIGURE 5-9 IMPLEMENTATION OF CYCLIC SUFFIX AND WINDOWING FUNCTION IN CODE ... 63

FIGURE 5-10 CYCLIC PREFIX IMPLEMENTATION.. 64

FIGURE 5-11 BLOCKS BEFORE SYNC SHORT ... 65

FIGURE 5-12 THE LOGICAL STRUCTURE OF THE FIR FILTER ... 68

FIGURE 5-13 SIGNAL FIELD ASSIGNMENT... 71

FIGURE 5-14 BPSK CONSTELLATION ... 74

FIGURE 5-15 QPSK CONSTELLATION .. 75

FIGURE 5-16 16-QAM CONSTELLATION ... 75

FIGURE 5-17 64-QAM CONSTELLATION ... 76

FIGURE 5 -18 CONVOLUTION ENCODER FOR CONSTRAINT LENGTH (K) = 7, BIT RATE (R) = 1/2 ... 77

FIGURE 5-19 BLOCK DIAGRAM OF VITERBI DECODER .. 78

FIGURE 5-20 TRELLIS DIAGRAM FOR K = 3 AND R = 1/2 IN THIS EXAMPLE THE RECEIVED BITS BY DECODER 79

FIGURE 5 -21 IMPLEMENTATION OF DEPUNCTURE FUNCTION IN CODE ... 80

FIGURE 5-22 BLOCK DIAGRAM OF BRANCH METRIC UNIT ... 81

FIGURE 5-23 IMPLEMENTATION OF BRANCH METRIC UNIT IN CODE. .. 82

FIGURE 5-24 IMPLEMENTATION OF ADD COMPARE AND SELECT UNIT IN CODE ... 82

FIGURE 5-25 BLOCK DIAGRAM OF ADD COMPARE AND SELECT UNIT .. 83

FIGURE 5-26 - TRACE BACK PROCEDURE OF OPTIMAL PATH.. 84

FIGURE 5-27 IMPLEMENTATION OF DESCRAMBLING FUNCTION IN CODE ... 84

FIGURE 6-1 OSI MODEL ... 87

file:///D:/CCE/_Eigth%20Semester%20Senior2/GP2/mona2shaaaa/Report%20chapters/Final%20report/Final-Report.docx%23_Toc484818919
file:///D:/CCE/_Eigth%20Semester%20Senior2/GP2/mona2shaaaa/Report%20chapters/Final%20report/Final-Report.docx%23_Toc484818920
file:///D:/CCE/_Eigth%20Semester%20Senior2/GP2/mona2shaaaa/Report%20chapters/Final%20report/Final-Report.docx%23_Toc484818921
file:///D:/CCE/_Eigth%20Semester%20Senior2/GP2/mona2shaaaa/Report%20chapters/Final%20report/Final-Report.docx%23_Toc484818922
file:///D:/CCE/_Eigth%20Semester%20Senior2/GP2/mona2shaaaa/Report%20chapters/Final%20report/Final-Report.docx%23_Toc484818934

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | x

List of Tables

TABLE 1 TRANSMITTER VECTOR PARAMETERS IN PLME SUBLAYER .. 12

TABLE 2 RECEIVER VECTOR PARAMETERS IN PLME SUBLAYER .. 13

TABLE 3 TRANSMITTER STATUS PARAMETERS IN PLME SUBLAYER ... 15

TABLE 4 PROJECT BUDGET .. 26

TABLE 4-1 C674X FIXED / FLOATING POINT DSP .. 43

TABLE 4-2 ARM PROCESSOR ... 44

TABLE 4-3 MEMORY .. 44

TABLE 4-4 FPGA .. 44

TABLE 4-5 INTERFACES ... 45

TABLE 4-6 MECHANICAL ... 46

TABLE 11 SOFTWARE SUPPORT .. 47

TABLE 4-8 DEVELOPMENT TOOLS ... 47

TABLE 13 MODULATION DEPENDENT PARAMETERS .. 51

TABLE 14 BITS PER SYMBOL FOR COMMON MODULATION FORMATS ... 56

TABLE 15 THE RATE FIELD CONTENT .. 74

List of Equations

EQUATION 1 SCRAMBLER .. 53

EQUATION 2 INTERLEAVER FIRST PERMUTATION .. 55

EQUATION 3 INTERLEAVER SECOND PERMUTATION .. 55

EQUATION 4 FIRST PERMUTATION .. 73

EQUATION 5 SECOND PERMUTATION .. 73

file:///D:/CCE/_Eigth%20Semester%20Senior2/GP2/mona2shaaaa/Report%20chapters/Final%20report/Final-Report.docx%23_Toc484818954
file:///D:/CCE/_Eigth%20Semester%20Senior2/GP2/mona2shaaaa/Report%20chapters/Final%20report/Final-Report.docx%23_Toc484818955
file:///D:/CCE/_Eigth%20Semester%20Senior2/GP2/mona2shaaaa/Report%20chapters/Final%20report/Final-Report.docx%23_Toc484818956
file:///D:/CCE/_Eigth%20Semester%20Senior2/GP2/mona2shaaaa/Report%20chapters/Final%20report/Final-Report.docx%23_Toc484818957
file:///D:/CCE/_Eigth%20Semester%20Senior2/GP2/mona2shaaaa/Report%20chapters/Final%20report/Final-Report.docx%23_Toc484818960
file:///D:/CCE/_Eigth%20Semester%20Senior2/GP2/mona2shaaaa/Report%20chapters/Final%20report/Final-Report.docx%23_Toc484818962
file:///D:/CCE/_Eigth%20Semester%20Senior2/GP2/mona2shaaaa/Report%20chapters/Final%20report/Final-Report.docx%23_Toc484818969

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | xi

List of Abbreviations

ADC Analog to digital converter

AGC Automatic gain control

BPSK Binary phase-shift keying

CCS Code composer studio

DAC Digital to analog converter

DDC Digital down converter

DSP kit Digital signal processing kit

DUC Digital up converter

FDM Frequency-division multiplexing

FFT Fast Fourier transform

FIR filter Finite impulse response

FPGA Field-programmable gate array

GI Guard interval

ICI Inter carrier interference

IEEE 802.11p IEEE standard for wirless

 communications

IEEE Institute of Electrical and Electronics

 Engineers

IFFT Inverse furrier transform

ISI Inter symbol interference

MIB Management Information Base

NBPSC Number of bits in each OFDM

 subcarrier

NCBPS Number of coded bits per OFDM

 symbol

NDBPS Number of data bits per OFDM

 symbol

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | xii

OFDM Orthogonal frequency-division

 multiplexing

PLCP sub-layer Physical Layer Convergence

 Protocol

PLME Physical layer management entity

PMD Physical medium dependent

PPDU PLCP protocol data unit

PSDU PLCP Service Data Unit

QAM Quadrature amplitude modulation

QPSK Quadrature phase shift keying

SoM System on module

STA Spectral Temporal Averaging

UPP Universal parallel port

USRP Universal Software Radio Peripheral

V2I Vehicles to infrastructure

V2V Vehicle to vehicle communication.

V2X V2I and V2V

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 1

Chapter 1

Introduction

1.1 About V2X

ehicle to vehicle communication is, as its name describes, a way for

vehicles to send and receive signals to each other to explain their location,

speed and direction. If there was a car that decided to change lanes and the

driver didn’t pay attention to the other cars who want to do the same, the

car that fall behind in line with 3-4 cars between will send signals to this vehicle to inform

it to wait until it passes to prevent future possible accidents. That way, the car can know

what other out-of-sight cars, are doing or about to do.

In addition to that, the communication will not be between vehicles only, but between

vehicles and infrastructure as well (V2I), reducing any human errors that lead to accidents.

V2V and V2I have become one name, V2X.

V2X communications are being standardized in various countries and are anticipated to be

an important technology for achieving autonomous driving. Development of this

technology by automotive manufacturers, chip manufacturers, and technology and solution

providers is accelerating.

V

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 2

1.2 V2X market

V2X communication’s market is growing every year due to the enhancement of

technology use in vehicles. A lot of investment is done in this field nowadays. Middle

Eastern countries are considered a great potential for this technology due to the increase in

population as well as the focus of many automobile companies on regions such as the

Middle East and Africa. The development of this technology by automotive manufacturers,

chip manufacturers as well as technology and solution providers is accelerating.

Figure 1-1 the range of signals sent by the car

Figure 1-2 the future of V2X systems

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 3

1.3 V2X competition landscape

There are many companies interested in this technology such as BMW, Audi, Daimler,

Volvo, and Ford- Applink. Among the solution providers Etrans Systems, Qualcomm

Technologies Inc., Cisco Systems Inc., Delphi Automotive PLC, Autotalks Ltd., Denso,

Arada Systems, Kapsch Group and Savari Inc., are included in the vehicle to vehicle

communication market.

1.4 Standardized V2X protocols

Since, V2X requires devices and vehicles of different manufacturers communicate with

each other, there has to be a standard that all companies and manufacturers will follow.

That’s why IEEE developed the 802.11p standard which explains the physical and mac

layers of vehicular transceivers. That way, any other European or American standards

developed, will have to be based on the lower-level IEEE 802.11p standard, to ensure the

compatibility of different devices communicating with each other.

1.5 Project description

Our project is to build a prototype of the V2V transceiver on the PHY layer to be used

as a testbed of the actual V2V transceivers. That way we can test any other device by

sending data to it or receiving data from it to make sure it’s working properly and to

measure how far the data can travel.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 4

Chapter 2

OFDM PHY Layer Specification

 his chapter includes the basic information that is needed to be known to

implement OFDM PHY layer. The first part is the standard part which will

go through OFDM PHY layer structure, its sublayers and the frame structure

that is sent by the transmitter. The standard mainly helps in transmitter implementation,

that’s why it is needed to study some receiving concepts to implement the receiver which

is discussed in the second part of this chapter.

T

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 5

2.1 Standard IEEE-802.11p overview

2.1.1 Introduction

This standard is developed by IEEE (Institute of electrical and electronics engineers)

organization to describe telecommunications and information exchange between systems

Local and metropolitan area networks— Specific requirements and it’s mainly determines

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

The standard has more than one amendment:

 IEEE Std 802.11k™-2008: Radio Resource Measurement of Wireless LANs

 IEEE Std 802.11r™-2008: Fast Basic Service Set (BSS) Transition (Amendment 2)

 IEEE Std 802.11y™-2008: 3650–3700 MHz Operation in USA (Amendment 3)

 IEEE Std 802.11w™-2009: Protected Management Frames (Amendment 4)

 IEEE Std 802.11n™-2009: Enhancements for Higher Throughput (Amendment 5)

 IEEE Std 802.11p™-2010: Wireless Access in Vehicular Environments

 IEEE Std 802.11z™-2010: Extensions to Direct-Link Setup (DLS) (Amendment 7)

 IEEE Std 802.11v™-2011: IEEE 802.11 Wireless Network Management

 IEEE Std 802.11u™-2011: Interworking with External Networks (Amendment 9)

 IEEE Std 802.11s™-2011: Mesh Networking (Amendment 10)

Our project is following mainly amendment IEEE Std 802.11p™-2010: Wireless

Access in Vehicular Environments (Amendment 6). Specifically it is an implementation

for orthogonal frequency division multiplexing (OFDM) PHY specification part in the

standard.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 6

2.1.2 Reasons of using OFDM

OFDM transceiver has a lot of advantages that enhance the communication systems

and also solves main problems. There are two main problems that are solved using (OFDM)

First one: Multi-path problem in the channel, There is a lot of interacting objects in the

channel that cause the problem of multi-path fading as shown in (Fig.2-1), But (OFDM) or

mainly the family of (FDM) solves this problem as it divides the band to sub-bands or sub

carriers which mean that the signal will be extended in time domain what leads to

minimization of effect of the delay on the incoming signal as its time is much greater than

the delay.

Figure 2-1 MPC effect

Second problem: Is the frequency selective nature of the channel and this was solved in

(FDM) as the signal is carried over more than one channel, in only one channel carrier

whole signal will be corrupted but in multi-carrier some of the channel will be corrupted

not whole the signal and more over using the concepts of coding and frequency diversity

will prevent these corrupted subcarriers from corrupting the original signal. Moreover

(OFDM) is better than (FDM) as it is more efficient usage of the bandwidth as shown in

(Fig.2-2)

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 7

Figure 2-2 Illustration of Frequency selectivity in FDM and OFDM techniques

2.1.3 PHY layer structure in the standard

The physical layer consists of three main sub-layers as shown in the next figure

 PLCP sub-layer

 PMD sub-layer

 PLME sub-layer

Figure 2-3 Sub-layers in PHY layer

2.1.3.1 PLCP sub-layer (Physical Layer Convergence Protocol)

Provides a convergence procedure in which PSDUs (PLCP Service Data Unit) are

converted to and from PPDUs (PLCP protocol data unit).During transmission, the PSDU

shall be provided with a PLCP preamble and header to create the PPDU. At the receiver,

the PLCP preamble and header are processed to aid in demodulation and delivery of the

PSDU.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 8

Figure 2-4 PPDU frame format

 Overview of the PPDU encoding process

 Produce the PLCP Preamble field, composed of 10 repetitions of a “short training

sequence” (used for AGC convergence, diversity selection, timing acquisition,

and coarse frequency acquisition in the receiver) and two repetitions of a “long

training sequence” (used for channel estimation and fine frequency acquisition in

the receiver), preceded by a guard interval (GI)

 Produce the PLCP header field from the RATE, LENGTH, and SERVICE fields

of the TXVECTOR by filling the appropriate bit fields. The RATE and LENGTH

fields of the PLCP header are encoded by a convolutional code at a rate of R =

1/2, and are subsequently mapped onto a single BPSK encoded OFDM symbol,

denoted as the SIGNAL symbol. In order to facilitate a reliable and timely

detection of the RATE and LENGTH fields, 6 zero tail bits are inserted into the

PLCP header. The encoding of the SIGNAL field into an OFDM symbol follows

the same steps for convolutional encoding, interleaving, BPSK modulation, pilot

insertion, Fourier transform, and prepending a GI as described subsequently for

data transmission with BPSK-OFDM modulated at coding rate 1/2. The contents

of the SIGNAL field are not scrambled as shown in the next figure.

Figure 2-5 PLCP header field

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 9

 Calculate from RATE field of the TXVECTOR the number of data bits per OFDM

symbol (NDBPS), the coding rate (R), the number of bits in each OFDM subcarrier

(NBPSC), and the number of coded bits per OFDM symbol (NCBPS).

 Append the PSDU to the SERVICE field of the TXVECTOR. Extend the resulting

bit string with zero bits (at least 6 bits) so that the resulting length is a multiple of

NDBPS. The resulting bit string constitutes the DATA part of the packet.

 Initiate the scrambler with a pseudorandom nonzero seed, generate a scrambling

sequence, and XOR it with the extended string of data bits.

 Replace the six scrambled zero bits following the data with six non-scrambled zero

bits. (Those bits return the convolutional encoder to the zero state and are denoted

as tail bits).

 Divide the encoded bit string into groups of NCBPS bits. Within each group,

perform an “interleaving” (reordering) of the bits according to a rule corresponding

to the desired RATE.

 Divide the encoded bit string into groups of NCBPS bits. Within each group,

perform an “interleaving” (reordering) of the bits according to a rule corresponding

to the desired RATE.

 Divide the complex number string into groups of 48 complex numbers. Each such

group is associated with one OFDM symbol. In each group, the complex numbers

are numbered 0 to 47 and mapped hereafter into OFDM subcarriers numbered –26

to –22, –20 to –8, –6 to –1, 1 to 6, 8 to 20, and 22 to 26. The subcarriers –21, –7, 7,

and 21 are skipped and, subsequently, used for inserting pilot subcarriers. The 0

subcarrier, associated with center frequency, is omitted and filled with the value 0.

 For each group of subcarriers –26 to 26, convert the subcarriers to time domain

using inverse Fourier transform. Prepend to the Fourier-transformed waveform a

circular extension of itself thus forming a GI, and truncate the resulting periodic

waveform to a single OFDM symbol length by applying time domain windowing.

 Up-convert the resulting “complex baseband” waveform to an RF according to

the center frequency of the desired channel and transmit.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 10

Declarations

Coding (rate): Every bit in the data stream is coded (repeated) to allow error

correction.

 E.g. 1 111 (“1/3” coding)

 0 00 (“1/2” coding)

Interleaving: This is done to achieve frequency diversity to resist the frequecy

selectivity nature of the channel.

Preamble: Samples known by the receiver to support in the process of retreiving the

original data at it has three functionalities :

 Time sync

 Frequency offset determining

 Channel estimation

Pilot insertion: The preamble is not sufficient for retreiving the original data process

as the channel is suffering from variations all the time, to make perfect estimation of the

channel some known bits are sent inside the data over some subchannels called pilots.

Service field: Used to send the type of the modulation , number of symbols and the

required information to correctly de-modulate the signal

Cyclic extension: It is added to overcome the problems of ISI and ICI, It must be

removed from the received frame in order to have the information only.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 11

2.1.3.2 OFDM PMD sublayer

The PMD sublayer accepts the PLCP sub layer primitives and provides the actual

means by which data are transmitted or received from the medium.

The PMD sublayer primitives and services for the transmission and reception functions

include data stream, timing information, and associated signal parameters being delivered

to and from the PLCP sublayer.

THE OFDM sublayer primitives are divided into two different categories:

1- Service primitives that support PLCP peer-to-peer interactions

PMD_DATA.request: This primitive defines the transfer of data from the PLCP

sublayer to the PMD entity. When generated, this primitive shall be generated by the

PLCP sublayer to request transmission of one OFDM symbol. The data clock for this

primitive shall be supplied by the PMD layer based on the OFDM symbol clock.

PMD_DATA.indication: This primitive defines the transfer of data from the PMD

entity to the PLCP sublayer. When generated by the PMD, it forwards received data

to the PLCP sublayer. The data clock for this primitive shall be supplied by the PMD

layer based on the OFDM symbol clock.

2- Service primitives that have local significance and support sublayer-to-

sublayer interactions

PMD_TXSTART.request: This primitive is generated by the PHY PLCP sublayer. It

initiates PPDU transmission by the PMD layer.

PMD_TXEND.request: This primitive is generated by the PHY PLCP sublayer. It

ends PPDU transmission by the PMD layer.

PMD_TXPWRLVL.request: This primitive is generated by the PHY PLCP sublayer

to select the power level used by the PHY for transmission.

PMD_RATE.request: This primitive is generated by the PHY PLCP sublayer to select

the modulation rate that shall be used by the OFDM PHY for transmission.

PMD_RSSI.indication: This primitive, generated by the PMD sublayer, provides the

receive signal strength to the PLCP and MAC entity.

PMD_RCPI.indication: This primitive, generated by the PMD sublayer, provides the

RCPI to the PLCP and MAC entity.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 12

2.1.3.3 PLME sub layer

The PLME performs management of the local PHY functions in conjunction with the

MLME. It also has the MIB (Management Information Base) attributes which are used in

the communication process.

Its parameters are divided into 3 categories:

TXVECTOR parameters

Table 1 Transmitter vector parameters in PLME sublayer

Parameter Description Associated primitive Value

LENGTH

This value is used by the PHY

to determine the number of octet

transfers that will occur between

the MAC and the PHY after

receiving a request to start the

transmission.

PHY-

TXSTART.request

(TXVECTOR)

1–4095

DATATRATE

It describes the bit rate at

which the PLCP shall transmit the

PSDU.

PHY-

TXSTART.request

(TXVECTOR)

6, 9, 12, 18, 24, 36, 48,

and 54 Mb/s for 20 MHz

channel spacing (Support of

6, 12, and 24 Mb/s data

rates is mandatory.)

3, 4.5, 6, 9, 12, 18, 24,

and 27 Mb/s for 10 MHz

channel spacing (Support of

3, 6, and 12 Mb/s data rates

is mandatory.)

1.5, 2.25, 3, 4.5, 6, 9,

12, and 13.5 Mb/s for 5

MHz channel spacing

(Support of 1.5, 3, and 6

Mb/s data rates is

mandatory.)

SERVICE

The SERVICE parameter

consists of 7 null bits used for the

scrambler initialization and 9 null

bits reserved for future use.

PHY-

TXSTART.request

(TXVECTOR)

Scrambler

initialization; 7 null bits + 9

reserved null bits

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 13

TXPWR_LEVEL

This parameter is used to

indicate which of the available

TxPowerLevel attributes defined in

the MIB shall be used for the

current transmission.

PHY-

TXSTART.request

(TXVECTOR)

1-8

TIME_OF_

DEPARTURE_

REQUESTED

A parameter value of true

indicates that the MAC sublayer is

requesting that the PLCP entity

provides measurement of when the

first frame energy is sent by the

transmitting port and reporting

within the PHY-

TXSTART.confirm(TXSTATUS)

primitive

PHY-

TXSTART.request

(TXVECTOR)

False, true. When true,

the MAC entity requests

that the PHY PLCP entity

measures and reports time

of departure parameters

corresponding to the time

when the first frame energy

is sent by the transmitting

port; when false, the MAC

entity requests that the PHY

PLCP entity neither

measures nor reports time

of departure parameters.

RXVECTOR parameters

Table 2 Receiver vector parameters in PLME sublayer

Parameter Description Associated Primitive Value

LENGTH

The MAC and PLCP use this

value to determine the number of

octet transfers that will occur

between the two sublayers during

the transfer of the received PSDU.

PHY-

RXSTART.indication
1-4095

RSSI

RSSI shall be measured during

the reception of the PLCP

preamble.

PHY-

RXSTART.indication

(RXVECTOR)

0–RSSI maximum

DATARATE

DATARATE shall represent

the data rate at which the current

PPDU was received.

PHY-

RXSTART.indication

(RXVECTOR)

6, 9, 12, 18, 24, 36, 48,

and 54 Mb/s for 20 MHz

channel spacing (Support of

6, 12, and 24 Mb/s data

rates is mandatory.)

3, 4.5, 6, 9, 12, 18, 24,

and 27 Mb/s for 10 MHz

channel spacing (Support of

3, 6, and 12 Mb/s data rates

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 14

is mandatory.)

1.5, 2.25, 3, 4.5, 6, 9,

12, and 13.5 Mb/s for 5

MHz channel spacing

(Support of 1.5, 3, and 6

Mb/s data rates is

mandatory.)

SERVICE

PHY-

RXSTART.indication

(RXVECTOR)

Null

RCPI

This parameter is a measure

by the PHY of the received channel

power.

PHY-

RXSTART.indication

(RXVECTOR)

0-255

RX_START_OF_

FRAME_OFFSET

An estimate of the offset from

the point in time at which the start

of the preamble corresponding to

the incoming frame arrived at the

receive antenna port to the point in

time at which this primitive is

issued to the MAC

PHY-

RXSTART.indication

(RXVECTOR)

0 to 2^32 – 1.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 15

TXSTATUS parameters

Table 3 Transmitter status parameters in PLME sublayer

Parameter Description
Associated

Primitive
Value

TIME_OF_DEP

ARTURE

The locally measured time

when the first frame energy is sent

by the transmitting port, in units

equal to

1/TIME_OF_DEPARTURE_Clock

Rate. This parameter is present

only if

TIME_OF_DEPARTURE_REQU

ESTED is true in the corresponding

request.

PHY-

TXSTART.confirm

(TXSTATUS)

0 to 2^32 – 1.

TIME_OF_DEP

ARTURE_ClockRa

te

The clock rate, in units of

MHz, is used to generate the

TIME_OF_DEPARTUREvalue.

This parameter is present only if

TIME_OF_DEPARTURE_RE

QUESTED is true in the

corresponding request.

PHY-

TXSTART.confirm

(TXSTATUS)

0 to 2^16 – 1

TX_START_O

F_FRAME_OFFSE

T

An estimate of the offset (in

10 ns units) from the point in time

at which the start of the preamble

corresponding to the frame was

transmitted at the transmit antenna

port to the point in time at which

this primitive is issued to the MAC.

PHY-

TXSTART.confirm

(TXSTATUS)

0 to 2^32 - 1

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 16

2.2 Receiver Overview

This part will go through some concepts in the PHY layer receiver. As noticed, what

the standard mostly state about the receiver functionality that it is the opposite of

transmitting functions, which is correct. However, it is needed to discover some receiving

concepts to be able to implement those opposite operations such as synchronization,

decoding …etc. This part will go through these concepts one by one and mention important

notes related to the OFDM receiver.

To receive a frame, the following steps take place:

1. Start of frame is detected

2. Transition from short sequence to channel estimation sequence is detected and fine

timing is established

3. Coarse and fine frequency offsets are estimated

4. The packet is then compensated with the estimated frequency offset

5. The complex channel response coefficients are estimated for each subcarrier

6. For each symbol inside the OFDM symbol, the symbol is transformed into

subcarrier received values, then the phase is estimated using the four pilots and the

subcarriers are compensated with this phase. After that, every subcarrier is divided

with the complex estimated channel response coefficient.

7. The signal field is then further analyzed to find out the modulating technique, the

parsing rate and the number of data octets

8. Finally, the output data is de-interleaved, de-scrambled and de-punctured and

decoded to produce the message.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 17

2.2.1 Frame detection

The first step in the receiver is to detect the start of the frame received. Each OFDM

frame starts with a short preamble sequence followed by long training sequence then

followed by the data as shown in the following figure. To detect the data, operations on

each part in the frame should be made. Firstly, with the short preamble sequence which

consists of a pattern of 16 samples and repeated 10 times.

Figure 2-6 Detailed OFDM frame structure

The frame detection algorithm is based on autocorrelation of the short training sequence.

Then in order the values to be independent of the absolute values, autocorrelation value

will be divided by the average power. Firstly, the autocorrelation absolute value is

calculated by the following equation, the value of a[n] results of the incoming sample

stream s [n+k] multiplied with the complex conjugate of s lagged by 16. By summing up

over an adjustable window we can get the auto correlated values. Secondly, to have

independent correlated values of the absolute level of incoming samples, a[n] will be

normalized with the average power p[n] and calculate the auto correlation coefficients c[n].

Figure 2-7 Autocorrelation calculation algorithm

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 18

Figure 2-8 Normalized auto correlation values with the average power

Due to cyclic property of the short training sequence, the autocorrelation values will be

high at the start of OFDM frame which will detect the start of the frame by comparing

values with a threshold. Final thing to do to be sure that the frame start is detected is to

leave the first three values (called plateau) more than the threshold value. And if the values

after that still greater than the threshold, then the frame start is detected. If they are still

less than threshold then the frame is not detected yet. Note that the size of plateau and the

value of threshold can vary from a receiver to another. The following figure is an example

of autocorrelation distribution in frame detection.

Figure 2-9 Autocorrelation function behavior in the frame detection

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 19

2.2.2 Frequency offset correction

Frequency offset correction is required due to the fact of receiving slightly different

frequencies. To compensate these differences, there are many algorithms to recover this

frequency offset. One of these algorithms is applicable on OFDM receiver which depends

on the frame cyclic property. In another words, it’s expected in the normal case that a

sample s[n] should correspond to the sample s [n+16]. But, due noise and frequency offset

occurrence this is no longer the case and s[n]*conj(s [n+16]) is not a real number as in the

ideal case.

In order to neglect the noise, the argument of the product that corresponds to 16 times the

rotation that is introduced by the frequency offset between samples. Then to estimate the

final frequency offset value, averaging is applied (dividing by 16) as shown in df equation

in the next figure. Where Nshort is the length of the short training sequence.

Using the argument of sum of the products is more robust against noise, as samples with

small magnitudes which are more affected by noise are weighted less.

Finally, the frequency offset is applied to each sample as shown in the next figure.

Figure 2-10 Frequency offset calculation equation and updating frame with the new phase

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 20

2.2.3 Symbol Alignment

After the frequency offset estimation. Symbol alignment is then performed. The main

mission of the symbol alignment is to calculate where the symbol starts, extract the data

symbols and send them to FFT algorithm to be transformed from time domain to frequency

domain. This task is done with the help of the long training sequence which is composed

of 64 samples that repeat 2.5 times. As the alignment have to be very precise, matched

filtering is applied first for this operation.

In the next figure, a graph is showing the correlation of the input stream with the known

sequence.

Figure 2-11 Sample Index

The indices of the highest three peaks are calculated using this equation

𝑁𝑝 = arg(𝑚𝑎𝑥3)∑𝑠[𝑛 + 𝑘]𝐿𝑇[𝑘]𝑤ℎ𝑒𝑟𝑒𝑛 ∈ {0,1, … . , 𝑁𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒}

63

𝑘=0

Where N preamble represents the added length of the short and long preambles, LT is the

long preamble pattern that spans 64 samples and arg (max3) return the top three indices

maximizing this expression.

The first data symbol starts at the following sample index as the latest peak of the matched

filter output is 64 samples before the end of the long training sequence.

𝑛𝑝 = max(𝑁𝑝) + 64

After the relative frame start is detected, the data symbols are then extracted and passed to

the FFT algorithm as samples multiples of 64 to perform the FFT with size 64.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 21

In addition to that, knowing the start of the data symbols, the cyclic prefix can be removed

by sub setting the data stream and grouping samples that correspond to individual data

symbols

(𝑠[𝑛𝑝 + 16], … . . , 𝑠[𝑛𝑝 + 79], 𝑠[𝑛𝑝 + 80 + 16], , , , , ,)

Where s [np+16] up to s [np+79] are considered the first symbol and the rest is the second

symbol and so on.

2.2.4 Phase offset correction

After the symbol alignment, the output symbols are turned from time domain to

frequency domain using the FFT algorithm of size 64. Then, the phase offset correction is

done. This phase offset is calculated using the pilot symbols that are inserted inside each

OFDM symbol. The phase correction is not only done using the pilots of each symbol

independently, but the residual offset is also calculated through the phase offset between

the pilot symbols of subsequent symbols. That way, the phase offset can be calculated,

compensated and updated frequently to compensate with the fast channel changes.

2.2.5 Channel estimation

After the phase and frequency correction, the data is transformed from complex

numbers to octets to be further decoded. This is done using channel coefficients that are

extracted using different channel estimation techniques. They perform the same task but

with different techniques that give them different efficiencies. These techniques are further

discussed in the code description and code design.

2.2.6 Signal field decoding

The first step at the receiver after correct channel equalization and synchronization is

to decode the signal field. In each frame, the short and long training sequences are followed

by the signal field, which is a BPSK modulated OFDM symbol encoded with a rate of 1/2

that carries information about the length and encoding of the following symbols. In order

to do so, we use the deinterleaver function to deinterleave the received signal field bits and

a Viterbi decoder to decode the output of the deinterleaver.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 22

If the signal field is decoded successfully, i.e., if the rate field contains a valid value

and if the parity bit is correct, the Decode Signal Field return the type of encoding of the

data and the number of symbols in each frame and pass it to the next block Frame Decode

block.

Figure 2-12 Signal field assignment

2.2.7 Frame decoding

The final step in the receiver after correct decoding of signal field is the decoding of

the actual payload. It is performed in multiple sub-steps, as follows.

 Demodulation: The OFDM Decode block receives vectors of 48 constellation

points in the complex plane, corresponding to the 48 data subcarriers per OFDM

symbol. According to the used modulation scheme, these constellations are mapped

to floating point values, representing the soft-bits of the employed modulation.

 DE interleaving: At which the bits of a symbol are permuted. The permutation is

the same for all symbols of a frame.

 Convolutional Decoding and Puncturing: Depending on the coding rate we use

Viterbi decoder for decoding a bit stream that has been encoded using Forward

error correction.

 Descrambling: The final step in the decoding process is descrambling. In the

encoder the initial state of the scrambler is set to a pseudo random value. As the

scrambler is implemented with a seven bit feedback shift register, 27= 128 initial

states are possible. The first 7 bit of the payload are part of the service field and

always set to zero, in order to allow the receiver to deduce the initial state of the

scrambler.

The mapping from these first bits to the initial state is implemented via a lookup

table.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 23

Chapter 3

Project Design

n this chapter, we’ll focus on how we designed the project to achieve its

functionality and what were the needed components. We will state a quick

overview on everything we used to create the picture of the project for the

reader to understand the following chapters. Also we’ll discuss our testing

plan, project phases and cost.

I

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 24

3.1 Implementation Overview

Our implementation started by the need of a development kit to process the TX/RX

code and a RF antenna to send and receive data stream. It was found that the model of the

PHY layer can be represented by two ways:

3.1.1 Standalone device model

 Steps of model creation:

1- Develop codes of transmitter and receiver

2- Burn the code of transmitter or receiver to the DSP kit for processing data

3- Connect DSP kit with an RF tool to start sending

4- On the other side of reception, there will be the same components receiving data

 Notes:

- The standalone model didn’t work with USRP since its driver didn’t work on DSP

kit when we tried to make it. That’s why we needed another RF tool that will be made

by Consultix corporate (our sponsor).

3.1.2 Step by step model

Figure 3-1 USRP and DSP kit connection

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 25

 Steps of model creation:

1- Develop codes of transmitter and receiver

2- Connect DSP kit with its emulator (debugger) to the laptop

3- Set the configuration file to deal with DSP emulator xdvs100

4- Start running transmitter code on CCS

5- Save Transmitter output to file

6- In GNUradio transceiver blocks (USRP channel), add the transmitter processed

 data

7- Connect USRP and save the data received on GNUradio

8- In CCS receiver, insert the data received and debug the code

9- Data received successfully

3.2 Project Testing

3.2.1 Functional Testing

We tested each function in the code by comparing its results by GNUradio block

results using Octave tool.

3.2.2 Integration Testing

To test TX, we used GNUradio blocks and implemented the following:

1- Disabled the transmitter blocks from GNUradio

2- Add our transmitter results to be sent instead of disabled blocks

3- Receiver blocks is unchanged to check our transmitter functionality

 To test the RX, we used CCS and GNUradio and implemented the following:

1- From GNUradio, take the input to the receiver by the help of octave

2- Read the file in CCS to the receiver code and run

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 26

3.3 Project phases

The project is divided into two main phases. Phase 1 which was done in the first half

of the year and phase two in the second half.

3.3.1 Phase 1

- Standard IEEE802.11p understanding

- Adapting with GNU radio and studying IEEE blocks

- Standard verification with GNU radio blocks

- Studying USRP and try sending and receiving through two antennas and GNU radio

- DSP SDK understanding

3.3.2 Phase 2

- Setting up the environment either software or hardware tools

- Start implementing TX and RX C functions on DSP kit

- Testing

- Project Documentation

3.4 Project Cost
Table 4 Project Budget

Item Specification Price

USRP Model: B200 686 $ (already available-

Board only)

2 Antennas Model: VERT900 36 $ each (already

available)

DSP kit Model:mityDSP OMAP-

L138f

708 $

Emulator (Debugger) Model: XDS100 79 $

Total Cost: 1545 $

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 27

Chapter 4

Tools Used

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 28

4.1 Software Tools

4.1.1 Gnu radio

In this section, we'll describe GNU radio a very important software that was used in

the V2V PHY layer implementation, we’ll first make an overview on it and describe its

general usage, and then we’ll go through how it was in the project.

4.1.1.1 Overview:

GNU Radio is a free software development toolkit that provides signal processing

blocks to implement software-defined radios and signal-processing systems. It can be used

with external RF hardware to create software-defined radios, or without hardware in a

simulation-like environment. It is widely used in hobbyist, academic, and commercial

environments to support both wireless communications research and real-world radio

systems.

The GNU Radio software provides the framework and tools to build and run software radio

or just general signal-processing applications. The GNU Radio applications themselves are

generally known as 'flow graphs', which are a series of signal processing blocks connected

together, thus describing a data flow. As with all software-defined radio systems, re-

configurability is a key feature. Instead of using different radios designed for specific but

disparate purposes, a single, general-purpose, radio can be used as the radio front-end, and

the signal-processing software (here, GNU Radio), handles the processing specific to the

radio application.

These flow graphs can be written in either C++or the Python programming language. The

GNU Radio infrastructure is written entirely in C++, and many of the user tools are written

in Python.

We used the GNU Radio Companion as a graphical UI used to develop GNU Radio

applications. This is the front-end to the GNU Radio libraries for signal processing.

The main advantage of the gnu radio is that the standard 802.11is already implemented

using C++and is an open source, so we used it as a test bed to verify that it’s working with

the 802.11p standard. Thus, we can use it for validation method when implementing the

standard on the DSP kit.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 29

4.1.1.2 Block diagrams of GNU radio

Wi-Fi Physical hierarchy

Figure 4-1 Physical hierarchy block diagram

The previous block diagram shows the blocks of the physical hierarchy in details and as

explained in the standard. The Wi-Fi Mapper does the functions of the PLCP; scrambling,

interleaving and splitting the data into symbols. The OFDM carrier allocator puts the

symbols into the destined subcarriers, adds the pilots and prepares the OFDM symbol for

the IFFT block to perform inverse fast Fourier transform. At the end, before transmitting,

the cyclic prefix is added through the OFDM Cyclic pre-fixer block.

On the other half of the block diagram is the physical hierarchy of the receiver. This half

reverses all the operations done on the transmitter after removing the cyclic prefix and

recovering the signal from the traffic.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 30

Wi-Fi transmitter

Figure 4-2 Transmitter block diagram

The physical hierarchy is all inserted into a single block called Wi-Fi PHY hierarchy. This

block diagram shows the insertion of data into the MAC layer, then into the physical layer

up to the USRP block which puts the data on the channel to be sent.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 31

Wi-Fi Receiver

Figure 4-3 Receiver block diagram

This block diagram takes the receiver part of the physical hierarchy to receive the data from

the channel first using the USRP block, then recover the data from the channel and start

de-modulating, de-interleaving and de-scrambling the data.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 32

Wi-Fi transceiver

Figure 4-4 Transceiver block diagram

To show both sides in one block diagram, this block diagram shows the transmitter, the

channel and the receiver. The channel here is created using USRP.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 33

Wi-Fi loopback

Figure 4-5 Loopback block diagram

Loopback also shows both sides in one block diagram, which are the transmitter, the

channel and the receiver. The difference from transceiver is that the channel here is virtual

channel model.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 34

4.1.2 CCS (Code Composer Studio)

Code composer studio is an integrated development environment that supports TI’s

microcontrollers. It has tools to develop and debug embedded applications. These tools are

an optimizing C/C++ compiler, source code editor, project build environment, debugger,

profiler, and many other features. Code composer studio combines the advantages of

Eclipse with advanced embedded debug capabilities of TI microcontrollers.

Code composer studio V7 is the latest version. It’s efficient with the debugger used with

the mitydsp kit (XDS 100v2). However, sometimes only a simulator is needed to make

testing and trying easier. This is not available in v7 but it’s available in CCS v5. CCS v5

has simulators that work for several DSP kits and processors. Since our project is DSP

based, it was easy to find a simulator for (C674x processor) in CCS v5

In addition to that, there is a DSP library available for C674x processor. It has various

useful functions that are rather used in our code such as FFT, IFFT and FIR filter. What’s

impressive about this library is that it’s done using Assembly which increases its efficiency.

Also, there are functions that are especially made for complex numbers which makes it a

lot easier and more efficient for us to use this library.

Figure 4-6 CCS logo

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 35

4.1.3 GNU Octave

In this section, we'll describe GNU Octave a very important software that was used in

the V2V PHY layer implementation, we’ll first make an overview on it and describe its

general usage, and then we’ll go through how it was in the project.

4.1.3.1 Overview:

GNU Octave is software featuring a high-level programming language, primarily

intended for numerical computations. Octave helps in solving linear and nonlinear

problems numerically, and for performing other numerical experiments using a language

that is mostly compatible with MATLAB. It also provides extensive graphics capabilities

for data visualization and manipulation. It is free software under the terms of the GNU

General Public License.

4.1.3.2 The Octave language

The Octave language is an interpreted programming language. It is a structured

programming language (similar to C) and supports many common C standard

library functions, and also certain UNIX system calls and functions. However, it does not

support passing arguments by reference.

Its syntax is very similar to MATLAB, and careful programming of a script will allow it to

run on both Octave and MATLAB.

Because Octave is made available under the GNU General Public License, it may be freely

changed, copied and used. The program runs on Microsoft Windows and

most Unix and Unix-like operating systems, including macOS.

Figure 4-7 Octave logo

https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/MacOS

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 36

4.1.3.3 Usage in the project:

Since Octave can read the output file from any block in the gnu radio using a file sink,

Octave has been used in this project to test the output from each block by comparing it to

the output of the gnu radio block. It can read any type of data stored in a file with any size,

with any format and convert to any type of data for displaying, here is a sample code for

reading from a file.

1. PS1(">>")

2. addpath("/home/UserName/gnuradio/gr-utils/octave")

3. c=read_char_binary("File_Sink_Output.txt")

The second line of code is used to direct the path to the octave folder, the third line will

read the file sink output that contains data in the form of characters and convert it to binary

data and display it on the screen.

Figure 4-8 File Sink block

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 37

4.2 Hardware Tools

4.2.1 USRP

It stands for Universal Software Radio peripheral, the device is used as transceiver for

radio frequency signals in wireless communication systems through the development of

Software-defined radios.

Figure 4-9 USRP B200

4.2.1.1 Hardware overview

"Following a common software-defined radio architecture, NI USRP hardware

implements a direct conversion analog front end with high-speed analog-to-digital

converters (ADCs) and digital-to-analog converters (DACs) featuring a fixed-personality

FPGA for the digital down conversion (DDC) and digital up conversion (DUC) steps. The

receiver chain begins with a highly sensitive analog front end capable of receiving very

small signals and digitizing them using direct down conversion to in-phase (I) and

quadrature (Q) baseband signals. Down conversion is followed by high-speed analog-to-

digital conversion and a DDC that reduces the sampling rate and packetizes I and Q for

transmission to a host computer using Gigabit Ethernet for further processing. The

transmitter chain starts with the host computer where I and Q are generated and transferred

over the Ethernet cable to the NI USRP hardware. A DUC prepares the signals for the DAC

after which I-Q mixing occurs to directly up convert the signals to produce an RF frequency

signal, which is then amplified and transmitted." ("What Is NI USRP Hardware? - National

Instruments", 2017)

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 38

Figure 4-10 USRP 2920 system level diagram

4.2.1.2 USRP usage in our project

In this project the USRP B200 used to transfer the data from one end to the other end

after setting the required antenna parameters and bandwidth occupied by the transferred

data this happened through two principle blocks in GNU radio

USRP sink is that responsible for adjusting the parameters at the transmitter side

USRP source is that responsible for adjusting the parameters at the receiver side

In the following figure, the channel is represented by block called "channel model" in the

loopback code for the IEEE standard 802.11, which is substituted by the USRP blocks for

real transceiver connected through the USRP device.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 39

Figure 4-11 Simulated channel model using GNU radio

Figure 4-12 USRP channel using GNU radio

4.2.1.3 Challenges

One of our goals was to connect the USRP with the mitydsp kit directly. However, the DSP

kit was considered a third party device with an operating system that is different than most

operating systems that can install the USRP driver easily. A lot of challenges were faced

while trying to install the libraries needed for the USRP driver. As a result, using the PC

with Gnuradio as a communication host between the USRP and the DSP kit was a suitable

satisfactory solution.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 40

How we used the USRP and Gnuradio with our transmitter:

Gnu radio uses C++ language to make its blocks and Python to connect the blocks and

make them communicate with each other. Using the C++ code of the last block of the

transmitter, we managed to replace its code and make it write our own data that was made

by our transmitter. That way, we can send our own data but by using Gnu radio’s method

of communication to send the data with no errors.

Figure 4-13 the last block in GNU Radio transmitter

Figure 4-14 commenting code that is not needed

Figure 4-15 adding our own data

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 41

How we used the USRP and Gnuradio with our receiver:

Since Gnu radio has a block that communicates with the USRP, there wasn’t any problems

communicating with the USRP. However, the main concern was how to read the data after

it’s received and transfer it to our own receiver. So, we decided to add a file sink block

after the USRP block. This block reads the received data and saves it into a file. After that,

our receiver reads the data from this file and starts to analyze it and operate normally. That

way, we facilitated the communication between Gnu radio, USRP and our own receiver

using normal .txt files.

Figure 4-16 USRP blocks and File sink block

In this figure, the USRP sink is the block that takes the data to USRP to be sent. The USRP

source is the block that receives the data from the receiving antenna and puts it to Gnu

Radio. This received data is then written in the file that’s path is written inside the block.

FInally, our receiver reads the data from that same file and starts analyzing it.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 42

4.2.2 MitydspL138F

In this section, we'll describe the kit that we used to create an environment applicable

to test the V2V PHY layer implementation, we’ll first make an introduction to DSP and its

general usage, and then we will go through an overview on its Hardware and Software

usage.

4.2.2.1 Introduction to DSP

It is an electronic board with Digital Signal Processor used for experiments, evaluation

and development. A digital signal processor is a specialized microprocessor used to

measure continuous real-world analog signals. Applications are developed in DSP Kits

using a software usually referred as an Integrated Development Environment. Texas

Instruments and Spectrum Digital are some of the companies who produce these kits.

Figure 4-17 MityDsp-L138F

https://en.wikipedia.org/wiki/Digital_Signal_Processor
https://en.wikipedia.org/wiki/Integrated_Development_Environment
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/Texas_Instruments

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 43

In our project, we are going to use a MitydspL138-F shown in the following figure,

developed by Critical link an electronics product development company.

4.2.2.2 Overview on the MitydspL138-F:

The MityDSP-L138F System on Module (SoM) is the highest performance module in

the OMAP-L138 family (a family of development kits) of MityDSPs. It features the dual-

core OMAP-L138 CPU from Texas Instruments which provides both an ARM9

applications processor and a C674x Fixed / Floating Point DSP.

4.2.2.3 Applications:

1. Embedded Instrumentation

2. Industrial Automation

3. Industrial Instrumentation

4. Medical Instrumentation

5. Embedded Control Processing

6. Network Enabled Data Acquisition

7. Test and Measurement

8. Software Defined Radio

9. Bar Code Scanners

10. Power Protection Systems

11. Portable Data Terminals

4.2.2.4 Specifications:

 C674x Fixed / Floating point DSP

Table 4-1 C674x Fixed / Floating point DSP

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 44

 ARM processor

 Memory

 FPGA

Table 4-2 ARM processor

Table 4-3 Memory

Table 4-4 FPGA

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 45

4.2.2.5 Block diagram

4.2.2.6 Interfaces

Table 4-5 Interfaces

Figure 4-18 Block diagram

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 46

4.2.2.7 Mechanical

Table 4-6 Mechanical

\

Figure 4-19 Dimensions

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 47

4.2.2.8 Development tools and software

Table 4-8 Development tools

4.2.2.9 UPP

The uPP (Universal Parallel Port) interface is one of the most important interfaces

found in the mitydspL138F, It is particularly well suited to data acquisition through the on-

board Xilinx FPGA.

 It offers a very high-speed parallel data bus with several important features:

 Two independent channels with separate data buses

 Channels can operate in same or opposing directions simultaneously

 I/O speeds up to 75 MHz with 8-16 bit data width per channel

 Internal DMA – leaves CPU EDMA free

 Simple protocol with few control pins (configurable: 2-4 per channel)

 Single and double data rates (use one or both edges of clock signal)

 Double data rate imposes a maximum clock speed of 37.5 MHz

 Multiple data packing formats for 9-15 bit data widths

 Data interleave mode (single channel only)

Table 11 Software support

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 48

4.2.2.10 Usage of the DSP kit in the project

The choice of this particular kit comes back to the fact that it’s C674x Fixed / Floating

Point DSP features an optimized general-purpose DSP function library as well as a MATH

library for C Programmers typically used in computationally intensive applications. These

libraries were very useful in the course of this project because many complex functions

were needed through the implementation of the signal processing for both the transmitter

and the receiver.

Another motive for choosing this particular kit, because of the UPP interface that was

supposed to be used to transmit data with very high rates from the transmitter to the USRP.

An XDS100v2 low cost JTAG debug probes (emulators) is used for the connection with

the mitydsp kit in the software development using code composer studio. It provides the

feature of debugging the code line by line without the need to download the code on the

kit.

Figure 4-20 XDS100v2 low cost JTAG debug probe

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 49

Chapter 5

Code Description

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 50

5.1 Transmitter

5.1.1 Mapper

In this section, we will explain the Mapper block, the first block in the transmitter chain

that performs all the signal processing on the data PSDU and append service bits,tail bits

and pad bits to it to create multiple OFDM symbols depending on the length of the PSDU

then pass it to the chunks to symbols for modulation.

5.1.1.1 Design:

The signal processing in the Mapper is composed of many detailed steps, which are

described fully later in the implementation, the following overview intends to facilitate

understanding the details of the design procedure sequence:

1. Calculate from the type of encoding the number of data bits per OFDM symbol

(NDBPS), the coding rate (R), he number of bits in each OFDM subcarrier

(NBPSC), and the number of coded bits per OFDM symbol (NCBPS). Refer to

Table 1-1 for details.

2. Append the PSDU to the SERVICE field of the TXVECTOR. Extend the

resulting bit string with zero bits (at least 6 bits) so that the resulting length is a

multiple of NDBPS. The resulting bit string constitutes the DATA part of the

packet. Refer to Figure 1-1for details.

3. Initiate the scrambler with a pseudorandom nonzero seed, generate a

scrambling sequence, and XOR it with the extended string of data bits.

4. Replace the six scrambled zero bits following the data with six unscrambled

zero bits (Those bits return the convolutional encoder to the zero state and are

denoted as tail bits).

5. Encode the extended, scrambled data string with a convolutional encoder (R =

1/2). Omit (puncture) some of the encoder output string (chosen according to

“puncturing pattern”) to reach the desired “coding rate”.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 51

Figure 5-1 PPDU Frame format

Table 13 Modulation dependent parameters

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 52

5.1.1.2 Implementation:

The Mapper is divided into ten major functions, these functions contributes in the

signal processing of the data and in the implementation of other blocks rather than the

Mapper, and these functions are:

1. Void ofdm_param_intialization(Encoding e, ofdm_param* ofdm):

This function is used to initialize the OFDM parameters depending on the type of

encoding as mentioned in Table 1-1, the OFDM parameters variable is implemented as a

struct and consists of the following:

a. Encoding encoding; // Encoding type

b. char rate_field; // rate field of the SIGNAL header

c. int n_bpsc; // number of coded bits per sub carrier

d. int n_cbps; // number of coded bits per OFDM symbol

e. int n_dbps; // number of data bits per OFDM symbol

2. Void frame_param_intialization(ofdm_param* ofdm, frame_param*

frame,int psdu_length):

This function is used to initialize the frame parameters depending on the parameter of the

OFDM calculated in ofdm_param_intialization function and the PSDU size, the FRAME

parameters variable is implemented as a struct and consists of the following:

a. int psdu_size; // PSDU size in bytes

b. int n_sym; // number of OFDM symbols (17-11)

c. int n_pad; // number of padding bits in the DATA field (17-13)

d. int n_encoded_bits;

e. int n_data_bits; // number of data bits, including service and padding (17-12)

3. Void generate_bits(const unsigned char *psdu, char *data_bits,

frame_param* frame):

This function is used to append the 16 zero service bits before data, 6 tail bits and

padding bits to the end of the PSDU, It also take a copy of every bit of the data into a

separate byte to facilitate the signal processing later on.

The PSDU consists of an array of characters contain the data field, while the output of

this function is an array of characters, the first 16 bits are the services bits ,then each

character represent one bit of the data then 6 tail bits then pad bits.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 53

4. Void scramble(const char *input, char *out, frame_param* frame,char

initial_state):

This function implements the scrambler, the DATA field, composed of SERVICE,

PSDU, tail, and pad parts that shall be scrambled with a length-127 frame-synchronous

scrambler. The octets of the PSDU are placed in the transmit serial bit stream, bit 0 first

and bit 7 last. The frame synchronous scrambler uses the generator polynomial S(x) as

follows:

Equation 1 Scrambler

The 127-bit sequence generated repeatedly by the scrambler shall be (leftmost used first),

0000111011110010 11001001 00000010 00100110 00101110 10110110 00001100

11010100 11100111 1011010000101010 11111010 01010001 10111000 1111111, when

the all ones initial state is used. The same scrambler is used to scramble transmit data and

to descramble receive data. When transmitting, the initial state of the scrambler shall be set

to a pseudorandom nonzero state. The seven LSBs of the SERVICE field shall be set to all

zeros prior to scrambling to enable estimation of the initial state of the scrambler in the

receiver.

Figure 5-2 Data Scrambler

5. void reset_tail_bits(char *scrambled_data, frame_param* frame):

The 6 tails bits should be unscrambled as mentioned in the design process that follows

the instructions of the standard of IEEE 802.11, since those bits return the convolutional

encoder to the zero state. This function is used to reset these 6 tail bits to the zero state.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 54

6. void convolutional_encoding(const char *input, char *out, frame_param*

frame):

The DATA field, composed of SERVICE, PSDU, tail, and pad parts, shall be coded

with a convolutional encoder of coding rate R = 1/2, 2/3, or 3/4, corresponding to the

desired data rate. The convolutional encoder shall use the industry-standard generator

polynomials, g0 = 1338 and g1 = 1718, of rate R = 1/2, as shown in Figure 1-3. The bit

denoted as “A” shall be output from the encoder before the bit denoted as “B.”

Figure 5-3 Convolutional encoding (k=7)

7. Void puncturing(const char *input, char *out, frame_param* frame,

ofdm_param* ofdm):

Higher rates (2/3,3/4) are derived from convolutional encoding by employing

“puncturing.” Puncturing is a procedure for omitting some of the encoded bits in the

transmitter (thus reducing the number of transmitted bits and increasing the coding rate)

and inserting a dummy “zero” metric into the convolutional decoder on the receive side in

place of the omitted bits.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 55

8. Void interleave(const char *input, char *out, frame_param* frame,,

ofdm_param* ofdm):

All encoded data bits shall be interleaved by a block interleaver with a block size

corresponding to the number of bits in a single OFDM symbol, NCBPS. The interleaver is

defined by a two-step permutation. The first permutation ensures that adjacent coded bits

are mapped onto nonadjacent subcarriers. The second ensures that adjacent coded bits are

mapped alternately onto less and more significant bits of the constellation and, thereby,

long runs of low reliability (LSB) bits are avoided.

The index of the coded bit before the first permutation shall be denoted by k; i shall be the

index after the first and before the second permutation; and j shall be the index after the

second permutation, just prior to modulation mapping.

 The first permutation is defined by the rule:

Equation 2 Interleaver first permutation

The function Floor (.) denotes the largest integer not exceeding the parameter.

 The second permutation is defined by the rule:

Equation 3 Interleaver second permutation

The value of s is determined by the number of coded bits per subcarrier, NBPSC, according

to s = max (NBPSC/2, 1)

9. Void split_symbols(const char *input, char *out, frame_param*

frame,ofdm_param* ofdm):

This function is used to split the data symbols according to the modulation type,e.g case of

BPSK each symbol contains only one bit, so each element in the output array will contain

only one bit,case QPSK each symbol contains 2 bits ,so each element in the output array

will contain 2 bits,other Bits Per Symbol For Common Modulation Formats can be found

in Table 1-2 ,this function is implemented using bit wise operations and shifting of the

data bits according to the modulation type.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 56

Table 10 Bits Per Symbol For Common Modulation Formats

10. unsigned char* mapper_general_work_function(const unsigned char*

psdu,int psdu_length, ofdm_param* d_ofdm, frame_param * frame):

This function is the main function of the Mapper block, it calls all the functions stated

above in the same order as they were mentioned to preform the signal processing

mentioned in the design process.

5.1.1.3 Testing technique of the block:

In order to test this block, the correct output from each function is read from the Gnu

radio by adding a print line in the code of the block after the function that needs to be

tested, then the output is copied as an array to the CSS, subsequently compared to the

output of the CSS by subtracting the two arrays.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 57

5.1.2 Packet header generator

In this section, we will explain the packet header generator block, a parallel block to

the Mapper in the transmitter chain, it produces the PLCP header excluding the service

bits, it contains the LENGTH, RATE, reserved bit, and parity bit (with 6 zero tail bits

appended) that constitute a separate single OFDM symbol, denoted SIGNAL, that is

necessary for the demodulation, synchronization process at the receiver side.

Figure 5-4 PPDU Frame Format

5.1.2.1 Design:

The OFDM training symbols shall be followed by the SIGNAL field, which contains

the RATE and the LENGTH fields of the TXVECTOR. The RATE field conveys

information about the type of modulation and the coding rate as used in the rest of the

packet. The encoding of the SIGNAL single OFDM symbol shall be performed with BPSK

modulation of the subcarriers and using convolutional coding at R = 1/2.

The encoding procedure of the signal field includes convolutional encoding, interleaving

as used for transmission of data in the Mapper with BPSK-OFDM modulated at coding

rate 1/2. The contents of the SIGNAL field are not scrambled.

The SIGNAL field shall be composed of 24 bits, as illustrated in Figure 1-2. The four bits

0 to 3 shall encode the RATE. Bit 4 shall be reserved for future use. Bits 5–16 shall encode

the LENGTH field of the TXVECTOR, with the LSB being transmitted first.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 58

Figure 5-5 Signal field assignment

5.1.2.2 Implementation:

There is only Two new functions implemented for the signal field block:

1. int get_bit(int b, int i) :

This function returns the ith bit in the int b variable,it is used to set the Rate field and the

Length field consequently from the rate field in the OFDM parameters, and the psdu size

in the FRAME parameters mentioned above in the explanation of the Mapper block.

int get_bit(int b, int i) {

return (b & (1 << i) ? 1 : 0);

}

2. unsigned char * generate_signal_field(frame_param* signal_param,

ofdm_param* signal_ofdm,frame_param* data_frame, ofdm_param*

data_ofdm):

This function calls the get_bit function to set the RATE field. Bit 4 is reserved. It shall be

set to 0 on transmit and ignored on receive. Then the LENGTH field is set using the get_bit

function, Bit 17 shall be a positive parity (even parity) bit for bits 0–16, finally 6 zero tail

bits are inserted in order to facilitate a reliable and timely detection of the RATE and

LENGTH fields.

It then preforms convolutional encoding with rate ½ then interleaving using the same

functions implemented in the Mapper block in order to transmit the Signal field with the

most robust combination of BPSK modulation and a coding rate of R = 1/2.

5.1.2.3 Testing technique of the block:

In order to test this block, the correct output from each function is read from the Gnu radio

by adding a print line in the code of the block after the function that needs to be tested, then

the output is copied as an array to the CSS, subsequently compared to the output of the

CSS by subtracting the two arrays.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 59

5.1.3 Chunks to symbols

5.1.3.1 Function:

The output divided Chunks of the encoded and interleaved binary serial input data bits

as groups of (1, 2, 4, or 6) bits from the previous block are modulated by using BPSK,

QPSK, 16-QAM, or 64-QAM, depending on the Encoding type and converted into

complex numbers representing BPSK, QPSK, 16-QAM, or 64-QAM constellation points.

The conversion is performed according to Gray-coded constellation mappings, illustrated

in the standard.

Finally, it appends the modulated data field and to the modulated signal field in one array

as an input for the next block.

5.1.3.2 Implementation:

To implement the modulation we use two functions:

1. The Constellation_implemenation function:

This function is responsible for generating the constellation by creating an array containing

the complex numbers of this constellation and the size of this array is determined according

to the coding type.

For example : if the encoding type is QPSK , then the array size will be four complex

elements and as in this block we don’t use the complex library for simplicity , we will have

eight elements as shown in Figure 1 .

Figure 5-6 QPSK constellation implementation function

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 60

Then this function returns a pointer to the created array to be used by the other function

which is the Chunks to symbols implementation function.

2. The Chunks to symbols implementation function:

This function uses the constellation implementation function to create the array according

to the encoding type and uses the created array to map each chunk of bits into the suitable

complex number.

The idea of mapping is based on using the decimal value of the chunk bits as an index to

the constellation array to get the suitable complex number corresponding to these bits.

For example: if we have this chunk of four binary bits [1000] , the chunks to symbols

function maps these bits to the complex number at index =8 which is the equivalent decimal

value of the chunk [1000] as shown in figure 2.

Figure 5-7 Mapping of the chunks into the complex numbers

5.1.4 Tagged stream MUX

This block simply creates a frame that contains signal field followed by the rest of the

frame.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 61

5.1.5 OFDM carrier allocator

5.1.5.1 Standard requirements

According to the standard it is required to rearrange the 64 subcarriers entering the FFT

with a certain sequence specified in the standard

The 64 subcarriers will be:

 Data carriers 48 subcarrier

 Pilot carriers 4 subcarriers

 Zero padding 12 subcarriers

Data carriers will be in {-26,-25,-24,-23,-22,-20,-19,-18,-17,-16,-15,-14,-13,-12,-11,-10,-

9,-8,-6,-5,-4,-3,-2,-1, 26,25,24,23,22,20,19,18,17,16,15,14,13,12,11,10,9,8,6,5,4,3,2,1}

Pilot carriers will be in {-21,-7, 7, 21} subcarriers

5.1.5.2 Function Input

1. Data to be put on the OFDM frame

2. FFT-length which is 64 in the transceiver

3. Occupied_carriers 48 subcarrier positions specified in the standard

4. Pilot_carriers 4 subcarrier positions specified in the standard

5. Pilot_symbols the values of the pilot symbols

6. Sync word to be put in the beginning of the frame

5.1.5.3 Implementation

The sync words will be placed in the beginning of the frame directly. Then the input will

be divided such that each part consists of 64 subcarriers to be delivered to the FFT.

The block consists of three objects for this, typically called occupied_carriers (for

the data symbols), pilot_carriers and pilot_symbols (for the pilot symbols).

 occupied_carriers and pilot_carriers identify the position within a frame

where data and pilot symbols are stored, respectively.

 Clarification example:

occupied_carriers = (-2, -1, 1, 3)

pilot_carriers = (-3, 2)

Every OFDM symbol carries 4 data symbols. They are on carriers -2, -1, 1 and 3. Carriers

-3 and 2 are not used, so they are where the pilot symbols can be placed.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 62

5.1.6 IFFT

5.1.6.1 Design

This block only performs the IFFT (Inverse Fast Fourier Transform) of the data to turn

it from frequency domain to time domain to be sent to the channel after adding the cyclic

prefix to it. The FFT size is 64. The only addition is that before it performs the IFFT to

every 64 elements, it scales the data to the actual number of sub carriers (52) and performs

a shift on the data before transforming it into time domain. Every 64 elements are divided

into two arrays, the first array is shifted to be in the place of the second array and vice

versa. Then the two arrays are combined again and an IFFT is performed on the data.

5.1.6.2 Implementation

One of the advantages of digital signal processing is the availability of a lot of DSP

libraries in C language. Our DSP library has a ready–made function for the IFFT. However,

this function doesn’t perform the scaling or the shifting. So, we had to do both manually.

First, every 64 elements are multiplied by 64 (to reverse the original normalization) and

then divided by the square root of 52. Then the shifting is done using (memcpy()) function.

Finally, the IFFT function is called to perform the Fourier transform. One of the great

advantages of the IFFT function in the DSP library is that it’s implemented in assembly to

maximize the performance. Also, the function takes the complex numbers in the form of

an array; the real numbers have an even index while the imaginary numbers have an odd

index.

5.1.6.3 Testing

Since the window scale is not part of the normative specifications of the standard, there

was no need to compare it to the standard. However, comparing it to Gnu Radio. It was

easy to take the output of the IFFT block and store it into a file using File sink, then read

the contents of this file using Octave. Comparing the ouput of IFFT to our own IFFT, the

results were identical.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 63

5.1.7 Cyclic prefix

5.1.7.1 Design

It consists of two parts:

 First part cyclic prefix:

 Cyclic prefix usage:

 It increases the immunity to multipath fading.

 Second part cyclic suffix and windowing:

 Cyclic suffix usage:

It creates a smooth transition between the last sample of one symbol and the first

sample of the next symbol.

5.1.7.2 Implementation

1. Cyclic prefix implementation:

It is implemented in CyclicPrefix function which exists in CyclicPrefix.c file as shown in

figure1. It appends the last 16 samples of the 64 point IFFT to the front of the symbol,

creating a composite symbol that is 80 samples long.

Figure 5-8 Implementation of cyclic prefix function in code

2. Cyclic suffix and windowing implementation:

It is implemented in CyclicPrefix function which exists in CyclicPrefix.c file as

shown in figure2.

Figure 5-9 Implementation of cyclic suffix and windowing function in code

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 64

The window and the cyclic suffix length depend on the value of roll length of the raised

cosine used.

Two windows are applied, one being the mathematical inverse of the other. The first raised

cosine window is applied to the cyclic suffix of the previous symbol, and rolls off from 1

to 0 over its duration (down flank window). The second raised cosine window is applied

to the cyclic prefix of the current symbol, and rolls on from 0 to1 over its duration (up flank

window).

The cyclic suffix of the previous symbol multiplied by down flank window (delay line) is

summed with the cyclic prefix of the next symbol multiplied by the up flank window as

shown in figure3.

Figure 5-10 Cyclic prefix implementation

5.1.7.3 Testing technique of the block

First read input of cyclic prefix block in GNURADIO using OCTAVE and store it in

an array called gnuradio_input in CCS then use it as input array of cyclic prefix function

in CCS. After that read output of cyclic prefix block in GNURADIO using OCTAVE and

store it in an array called gnuradio_output in CCS. Finally subtract gnuradio_output array

from output of cyclic prefix function in CCS if we get an array of zeros then we succeed

to implement the cyclic prefix function.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 65

5.2 Receiver

5.2.1 The blocks before Synch short

Figure 5-11 Blocks before sync short

5.2.1.1 Description

These blocks take the Input to the receiver which comes from the channel (either the

channel model in GNuradio or USRP channel). As we discussed before, this part is

responsible for frame detection and to detect the frame start we must make some

calculations to reach to the auto correlated values

There are mainly three inputs to the sync short which are:

1. Delayed input

2. Window summation result

3. Auto-correlated values

5.2.1.2 Implementation

1. void delayy(const float complex *input, float complex *output, short int

delay , short int input_size, float complex delay_before_sync_short[])

- The function delay is used to pad zeros at the beginning of the frame by size

delay

- The output array size is input size + delay

- Therefore, when the input is multiplied by delayed input, it will result to

neglecting the 16 short sequence

2. void movingAverage(float* arr,float* out ,short int size ,short int

length,float*sum,float x[])

- Used to calculate the summation of each window frame

- In the delayed path, we assume the window size to be (64-16 = 48)

- In the non-delayed path, the window size is normally 64

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 66

5.2.2 Synch Short

5.2.2.1 Description

Completing the frame detection operation, sync short calculates the frame start, the

frequency offset and calculates the indices that has some special conditions that will be

discussed in the following part. Sync short mainly consists of two main cases which are:

Case Search:

It is used to search an index. This index describes the start of data that is more than

0.56 threshold. Known that there is a check which says that to return the index there must

be three successive input more than threshold value (min plateau).

Consider the following example:

Assume that the following is the frame that is received from autocorrelation function

0.123 0.22 0.45 0.6 0.57 0.4 0.2 0.58 0.57 0.62 0.7

The start index that will come out in case of the previous table is 10 (value = 0.62)

Case Copy:

Once the index of the start of data is found. Case copy is used to copy all the rest of

frame taking into consideration two things:

1- Minimum Gap case

Reaching min gap condition indicates that the case copy copied number of samples more

than threshold which exceed the min gap value. In other words, if another frame arrives

shortly after the first one, it won’t be detected without minimum gap condition. Therefore

when it reaches that condition it indicates that there is a start of a new frame (either it is a

correct or wrong frame but it completed the size of min gap). The response to min gap case

is normal, it will complete copying as it is and will break in two cases:

 If we reached input size (break and complete rest of the operations on the

frames detected from min gap condition)

 If the counter copying (d_copied) reached max_samples

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 67

2- Maximum samples case

This case solves a limitation that may happen while copying. Which is the size of the frame

that can be decoded is limited to a configurable number of OFDM symbols which doesn’t

contain a frame yet (all noise less than threshold after accessing case copy), Therefore, if

we set a maximum number of samples which is a multiples of the OFDM frame size, we

could set size limitation to solve the problem of not finding a frame (minimum gap case

doesn’t happen) which will let us return to Search case again and it will be stuck in sync

short between search and copy if the minimum gap case doesn’t happen.

5.2.3 Sync Long

5.2.3.1 Design

This block is responsible for frequency offset correction and the symbol alignment.

As mentioned above, the symbol alignment as well as the frequency offset is calculated

by getting the correlation of the received data with the long training sequence, getting the

maximum peaks of this correlation and then detecting the frame start.

In our design, the correlation is extracted by using an FIR (Finite Impulse Response)

filter.

5.2.3.2 Implementation

1. Case SYNC:

In this case we are preparing the incoming data samples to detect the exact

frame start of the frame and frequency offset of the samples by executing

some functions that are described as follows

1.1.FIR_Filter(…):

It is used to calculate the correlation between the received samples with

the well-known long training samples to calculate the exact frame start.

this operation of the FIR filter is described as in Fig 5.12 such that:

𝑦[𝑛] = ℎ0. 𝑥[𝑛] + ℎ1. 𝑥[𝑛 − 1] + ⋯+ ℎ𝑁 − 1. 𝑥[𝑛 − 𝑁 + 1]

Xn:nth element of the input data samples

hn: nth element of the long training sequence array

N: Number of complex long training sequence which is 64 in out case

Yn: nth element of the FIR filter response

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 68

Figure 5-12 the logical structure of the FIR filter

1.2.Search_frame_start(…):

It is used to calculate the frequency offset and the index of the first

training sample in the received frame to be fed to the FFT.

So first we reorder the resulted correlation from the FIR filter to get the

maximal two correlated samples so that we can get the start of the frame

and the frequency offset to be corrected.

2. Case COPY:

In this case the output of sync long is being constructed taking into account the

beginning of long training sequence followed by the OFDM data symbols, removing

the cyclic prefix and correcting the frequency by multiplying by frequency offset that

was calculated previously.

5.2.3.3 Testing technique of the block

The testing process here is achieved through testing three parts:

1. FIR_Filter testing: The input and the output of the FIR filter is read through

OCTAVE from the GNU Radio simulation results then the results is compared

through showing the difference from that in GNU Radio and what is

implemented.

2. Frequency offset and frame start testing: It is achieved by enforcing the same

input array of samples obtained from the GNU Radio to the implemented

Search_frame_start() and observing the frequency offset and the frame start

achieved.

3. Output array: By observing the difference between the output array of sync

long and that obtained from the GNU radio

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 69

5.2.4 FFT

5.2.4.1 Design

The FFT block is very similar to the IFFT. The only difference is that it doesn’t need

scaling. Also, the shifting is done after the FFT not before it; unlike the IFFT block.

5.2.4.2 Implementation

Using the FFT function from the DSP library, which is also written in Assembly to

maximize the performance, the data was transformed to frequency domain. After that, the

data was shifted using (memcpy()) function to return it to its original positions.

5.2.4.3 Testing

By reading the output of GNU radio’s FFT block though Octave and comparing the data

with our FFT output, the results were identical.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 70

5.2.5 Frame Equalizer

5.2.5.1 Design

This block has four main important roles

1. Compensating the frequency and phase offsets through the Sync long and Sync

short offsets and through the pilots

2. Calculating the model channel through various techniques (LS, LMS, STA or

COMB)

3. Identifying the Data length, modulation technique and parsing technique used

through analyzing the signal field

4. Compensating the data and transforming them from complex numbers to octets

to be further analyzed by the next block

This block deals with each OFDM symbol before it goes to the other. After reading 64

complex numbers (1 OFDM symbol), it compensates every sample in the data with the

frequency offsets calculated from the previous blocks (Sync short and Sync long) as well

as the sampling offsets. Next, residual frequency offset is calculated by adding the phase

of the four pilots of every symbol and compensating the OFDM symbol with this offset.

To update this offset and correct the next symbol with it as well, the phase difference

between the pilots of adjacent OFDM symbols is calculated as well to correct the next

symbol. Then, the channel model is calculated using the long preamble sequence which are

the first two OFDM symbols entering the equalizer. After that, the signal field is estimated

using the channel model and de-modulated then further analyzed to know the data length,

the modulating technique and the parsing rate. Finally, every data symbol is compensated

like the others, estimated using the pre-calculated channel model, de-modulated and

becomes the output of the block.

Signal field decoding

In each frame, the short and long training sequences are followed by the signal _field,

which is a BPSK modulated OFDM symbol encoded with a rate of 1/2 that carries

information about the length and encoding of the following symbols. The first step done in

this function is to de-interleave the signal field and then decode the output bits using a

Viterbi decoder.

If the signal _field is decoded successfully, i.e., if the rate_field contains a valid value and

the parity bit is correct, the Decode Signal Field returns the type of encoding of the data

and the number of symbols in each frame and passes it to the next block Frame Decode

block.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 71

Channel estimation techniques

1- LS

This technique is called the least squares. It uses the received long preamble symbols and

the saved version of the symbols to estimate the channel. Then, it uses the channel to

estimate all 48 symbols inside the OFDM symbol.

𝐻^(𝑘) =
𝑌1(𝑘) + 𝑌2(𝑘)

2𝑋𝑙𝑡(𝑘)

H(k) is the channel model. Y1(k) and Y2(k) are the received long training symbols while

Xlt(k) is the saved long training sequence.

2- LMS (Least minimum squares)

The LS technique is very efficient. However, it suffers when the frame gets longer or the

coherence time gets shorter. This technique solves the problems that the LS technique can’t

solve. Not only does it estimate the channel using the same way as LS, it also calculates

the error percentage coming from the difference between the actual channel and the

estimated channel. That way, it updates the channel in every single symbol to be more

accurate than LS technique.

It updates the channel after the ith OFDM symbol using the constellation point Xi that the

received Yi was de-mapped to.

H^i(k) = (1 − α)H^i − 1(k) + α
𝑌𝑖(𝑘)

𝑋𝑖^(𝑘)

Where Hi(k) is the channel model used for the next symbol, Hi-1 is the channel model used

for the current symbol. It’s discovered that the best design is when alpha is 0.5.

The LS and LMS techniques use every subcarrier independently and they don’t use

averaging in frequency domain.

 Figure 5-13 Signal Field Assignment

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 72

3-STA (The Spectral Temporal Averaging)

What makes this technique different is that it doesn’t deal with every subcarrier

independently, it correlates the channel coefficients in the frequency domain as well. First,

the LS estimate is used as an initial estimate then data decision feedback is done by

demodulating the first data symbol compensated by the LS initiate estimate.

After that, a more accurate channel estimation is done by dividing the received data with

the demodulated data as follow

𝐻𝑖(𝑘) =
𝑌𝑖(𝑘)

𝑋𝑖^(𝑘)

Then, the frequency domain correlation is done by using this equation

𝐻𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑘) = ∑ 𝑊𝑖𝐻(𝑘 + 𝑖)

𝛽

𝑖=−𝛽

H updated is the channel estimate based on the correlation between the neighboring

subcarriers, β is the window size where the weighted average happens and Wi is the weight

of each in the window subcarrier. After the frequency domain averaging is done, the time

domain averaging is done using the factor α.

𝐻(𝑡) = (1 −
1

𝛼
)𝐻(𝑡 − 1) +

1

𝛼
𝐻𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑡)

4-COMB

This type is totally different than the other three techniques. Comb Type channel estimation

uses the information about the channel at the pilots’ location to be able to update the

channel estimate to track channel variations during the same OFDM symbol. The Comb

equalizer interpolates linearly in frequency domain using the four pilots and the mean of

the pilots as well. The mean value of the pilots are used at the border of the vector used for

interpolation [mp, P1, P2, P3, P4, mp], where P1..4 are the four comb pilots and mp is their

mean. This interpolation is done for every OFDM symbol. Afterwards, a low-pass filter

similar to the previous techniques is done over the channel in time domain.

𝐻(𝑡) = (1 −
1

𝛼
)𝐻(𝑡 − 1) +

1

𝛼
𝐻𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑡)

Where H updated is the updated channel model using the linear interpolation of the four

pilots.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 73

5.2.5.2 Implementation

After compensating the frequency offsets and the sampling offsets by adding these offsets

to the phase of the current symbols, there are two important functions to be discussed

1- Signal field implementation

There are three functions used in the signal field decoding:

a. deinterleave(uint8_t *rx_bits , uint8_t * d_deinterleaved):

This function takes the received bits and the deinterleaving sequence as an array and

performs the inverse relation of the interleaving that is also defined by two permutations.

Here, the index of the original received bit before the first permutation shall be denoted by

j; i shall be the index after the first and before the second permutation and k shall be the

index after the second permutation, just prior to delivering the coded bits to the

convolutional (Viterbi) decoder.

The first permutation is defined by the rule:

Equation 4 First permutation

Where s is defined before in the interleaving function in the Mapper block.

The second permutation is defined by the rule:

b. bool parse_signal(uint8_t *decoded_bits):

This function takes the output decoded bits from the Viterbi decoder and finds the rate

field and length field by shifting and using bit wise operation, it also computes the parity

bit of the first 17 bits and if the parity bit is correct, then it uses a switch case to return the

type of encoding and subsequently find the number of symbols in the frame.

Equation 5 Second permutation

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 74

Table 11 The rate field content

c. bool decode_signal_field(uint8_t *rx_bits):

This function calls all the above function in the same order as they were mentioned, it

also allocates memory for the output bits and the OFDM parameters and FRAME

parameters for correct parsing of the signal field.

2- Channel estimation

The two most important functions to discuss are the following:

a. Unsigned char decision_maker(unsigned char[])

This function’s main task is demodulating the estimated symbol from the channel

response coefficient according to its modulation technique.

• For BPSK

 The bits are estimated by observing the signs of the real part of the symbol.

Figure 5-14 BPSK constellation

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 75

• For QPSK

 The bits are estimated by observing the signs of the real and imaginary parts of the symbol

Figure 5-15 QPSK constellation

• For 16-QAM

This estimation is more complicated as the constellation is divided into more levels. Not

only does it observe the signs of the real and imaginary numbers, it also the level of them.

Figure 5-16 16-QAM constellation

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 76

• FOR 64-QAM

It’s the same as 16-QAM constellations but with more constrictions to the level of the real

and imaginary parts of the symbol.

Figure 5-17 64-QAM constellation

b. Linear interpolation in COMB channel estimation technique

As mentioned before, the COMB channel estimation uses linear interpolation of the

pilots of each symbol along with the mean value of the pilots. The linear interpolation is

done as follow:

For the first 11 symbols the interpolation is done using the average value of pilots along

with the first pilot. For the 12th symbol until the 25th symbol, the interpolation is done using

the first two pilots. For the 26th symbol till the 39th symbol, the interpolation is done using

the second and third pilots. For the 40th symbol up until the 53rd symbol, the interpolation

is done using the 3rd and 4th pilots. Finally, the rest of the symbols (54th to 64th) use the last

pilot along with the mean value of pilots.

5.2.5.3 Testing

The correct output from each function is read from the Gnu radio by adding a print line

in the code of the block after the function that needs to be tested. Then, this output is copied

as an array to the CCS, subsequently compared to the output of the CCS by subtracting the

two arrays.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 77

5.2.6 Frame Decoder

5.2.6.1 Design:

The final step in the receiver is the decoding of the actual payload. It is performed in

multiple sub-steps, as follows, deinterleaving, convolutional, decoding and puncturing,

depending on the coding rate we use a Viterbi decoder for decoding.

Viterbi decoder uses the Viterbi algorithm for decoding a bit stream that has been

encoded using Forward error correction based on a convolution encoder shown in Figure

1 where the following notations are used:

 c = number of output bits.

x = number of input bits entering at a time.

m = number of stages of shift register.

 K (constraint length) = (m + 1) digits.

 R (bit rate) = x / c.

Figure 5 -18 Convolution encoder for constraint length (k) = 7, bit rate (r) = 1/2

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 78

Viterbi decoder used to estimate the original sequence from the sequence of data

received from the channel. It consists of the following functional units as shown in

Figure 2:

 Branch Metric Unit (BMU)

 Add Compare and Select Unit (ACS)

 Survivor Memory Unit

 Trace Back Unit (TBU)

Figure 5-19 Block diagram of viterbi decoder

Basic definitions

 State:

The state of an encoder is defined as its shift register contents. Each new 'x' bit input

results in a new state. Therefore for one bit entering the encoder there are 2 possible

branches for every state. If the Constraint length k=7, then the size of shift register

would be m=6 which results in 2𝑚 states. Therefore 26 = 64 states are named from S0

to S63.

 Branch metric:

The branch metric is a measure of the “distance” between what was transmitted and

what was received, and is defined for each arc in the trellis and the number on the arc

shows the branch metric for that transition as shown in Figure 3.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 79

Figure 5-20 Trellis diagram for K = 3 and r = 1/2 in this example the received bits by decoder

 Path metric:

The path metric is a value associated with a state in the trellis. it corresponds to the

Hamming distance with respect to the received parity bit sequence over the most likely

path from the initial state to the current state in the trellis. The most likely path means

the path with smallest Hamming distance between the initial state and the current state,

measured over all possible paths between the two states.

The final step in the decoding process is descrambling. In the encoder the initial state

of the scrambler is set to a pseudo random value.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 80

5.3 Implementation

5.3.1 Deinterleaving

It is implemented in interleave function which exists in utils.c file. This function can

operate as interleaver or deinterleaver depending on the value of the Enum_reverse

parameter. If Enum_reverse = reverse function will work as deinterleaver, else it will work

as interleaver.

5.3.2 Convolutional Decoding and Puncturing

5.3.2.1 Depuncture

Design

Higher rates are derived from convolutional encoder by employing "puncturing".

Puncturing is a procedure for omitting some of the encoded bits in the transmitter In

order to reduce the number of transmitted bits and increase encoder bit rate and in the

receiver convolutional decoder side we insert dummy bits in place of the omitted bits.

 Implementation

It is implemented in depuncture function which exists in viterbi_decoder.c file.

Many methods can be used to perform puncturing operation, however, one of the

puncture approach used in IEEE 802.11p is specified by a binary puncturing vector which

consistent of two bit sequences 1110,111001 for rate 2/3, 3/4 consequently. So in the

receiver side we use these two bit sequences to insert dummy "2" in place of the omitted

bits as shown in Figure 4.

Figure 5 -21 Implementation of depuncture function in code

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 81

5.3.2.2 .Viterbi decoder:

Implementation:

 Branch metric unit:

Four parallel binary bits are passed to viterbi_buterfly2_sse2 function which

exists in viterbi_decoder.c file. This function processed over each two parallel bits

at a time. It calculates sixty four set of hamming distance. Each set consists of two

values because each current state can be reached by two possible paths. In order to

calculate the hamming distance it compares the received codes with the expected

codes of the current state by using xor bitwise operator as shown in Figure 5.

Figure 5-22 Block diagram of Branch Metric Unit

The expected codes are calculated in function called viterbi_chunks_init_sse2

which exists in viterbi_decoder.c file. Also this function used to reset all variables

used by Viterbi decoder before starting to process on the received data bits.

At the decoder, when using a punctured code, missing parity bits don’t participate

in the calculation of branch metrics. Since we have replaced missing parity bits by

2 in the depuncture function which exists in viterbi_decoder.c file. So we will

subtract one from calculated hamming distance if one of the processed bits is equal

2 as shown in figure6.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 82

Figure 5-23 Implementation of branch metric unit in code.

 Add compare and select unit:

This unit is also implemented in viterbi_buterfly2_sse2 as shown in Figure7. Path

metric of the state is found by adding the path metric from the previous stage and the

present branch metrics. Since there are two possible ways to reach any state two path

metrics are obtained, these two are compared to select the one with the least path metric.

The selected least path metric is sent for storage as well as it is used as benchmark for

calculating the path metric of next stage as shown in figure 8.

Figure 5-24 Implementation of add compare and select unit in code

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 83

Figure 5-25 Block diagram of add compare and select unit

 Survivor memory unit:

This unit is also implemented in viterbi_buterfly2_sse2.It is used for storing the

survivor path values of the ACS unit. For each stage there are 64 survivor paths and

number of stages varies depending on the length of encoded bits received.

 Trace back unit:

This unit is implemented in viterbi_get_output_sse2. Once the minimum path metrics

of all the states at each stage is calculated, the minimum path metric at the last stage is

found. The state having the minimum path metrics at the last stage is given as input to

Trace Back Unit and then it starts trace backing the survival paths from that node and

outputs the corresponding bit which has caused the transition of that path as shown in

Figure 9.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 84

Figure 5-26 - Trace back procedure of optimal path

5.3.3 Descrambling:

It is implemented in descramble function which exists in decoder_mac.c file. This

function uses first 7 bit of input data to deduce the initial state of the scrambler as shown

in Figure 10.

Figure 5-27 Implementation of descrambling function in code

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 85

Chapter 6

Conclusion

o conclude, this report firstly discussed the need of V2V communication,

V2X communication and their need in the market nowadays. No doubts that

the new cars’ generation is going through a massive development to self-

driving cars which increases the importance of V2Vcommunication.

Our role in the project was the first step to implement this communication, the PHY layer

which is the start of network creation between devices. Throughout our work, we took into

consideration that the PHY layer is verified with the standard rules of IEEE802.11p. The

implementation of the project after understanding all its technical aspects was coding

transceiver blocks with the help of simulation tools such as GNUradio, octave..etc. Then

by processing the transceiver on a DSP kit we was able to send and receive data through

RF in USRP. We also stated that the PHY layer usage can have another application

perspective which is testing transceiver modules. Finally, take into consideration that the

next phases is very important to complete V2V as an application.

T

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 86

6.1 Lessons learned throughout the year

In this section, knowledge that we took from college which helped us to understand a

lot of our research in the project throughout the year will be stated. Thanks to all that were

reason for us to complement some of our academic knowledge with this graduation project.

It was a great experience and responsibility.

Back to V2V PHY layer implementation, these were the topics that understanding it helped

us a lot in the project:

a) Concept of OFDM technique

b) C programming

c) Linux usage

d) Some basic understanding of memory mapping and optimization

6.2 Future Work

There are two paths for this project as we stated at the beginning of the report. So the

future work of the project will be divided into two paths which we’ll discuss in this section;

the first is connecting the DSP kit with C700 through FPGA and create the standalone

device which can be used in testing, the second is the mac layer implementation.

All the above mentioned process in this report was only in order to implement the physical

layer of the vehicle to vehicle communication, the next step is to implement the upper

layers in the OSI model stated in the figure below that must be also verified with the

standard of IEEE802.11 so as to implement a full optimized device at the end that could be

inserted into a car to fulfill the project goal in the first place.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 87

Figure 6-1 OSI model

Moreover, there are some optimizations and modifications that could be done to the

hardware, that we are currently working on, this will include downloading the code on the

Mitydsp kit, deriving the output to the UPP (Universal parallel port) and connecting the kit

to C700, an alternative for the USRP that possess the same functionality and could be

connected to the FPGA on the kit which couldn’t be done with the USRP.

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 88

References

1- 14,500 road accidents in 2015, 63.3% attributed to human error: CAPMAS - Daily

News Egypt. (2016). Daily News Egypt. Retrieved 2 January 2017, from

http://www.dailynewsegypt.com/2016/05/08/14500-road-accidents-2015-63-3-

attributed-human-error-capmas/ Connectivity. (2017). Renesas Electronics America.

Retrieved 9 Jan 2017, from https://www.renesas.com/en-

us/solutions/automotive/adas/v2x.html

2- Vehicle To Vehicle Communication Market Intelligence Report Offers Growth

Prospects. (2016). www.linkedin.com. Retrieved 9 June 2017, from

https://www.linkedin.com/pulse/vehicle-communication-market-intelligence-report-

offers-musare

 Capmas.gov.eg. Retrieved 9 June 2017, from .(2017) .الجهاز المركزي للتعبئة العامة والإحصاء -3

http://www.capmas.gov.eg/Pages/IndicatorsPage.aspx?page_id=6140&ind_id=2305

4- IEEE Standards Assosiation, IEEE Standard 802.11, IEEE Standard for

Information technology-Telecommunications and information exchange between

systems-Local and metropolitan area networks—Specific requirements, 2012

5- Bloessel, B., Segata, M., Sommer, C., & Dressler, F. (2013). An IEEE 802.11a/g/p

OFDM Receiver for GNU Radio (1st ed.). Retrieved from

http://conferences.sigcomm.org/sigcomm/2013/papers/srif/p9.pdf

6- GNU Radio. (2017). Wiki.gnuradio.org. Retrieved 9 June 2017, from

https://wiki.gnuradio.org/index.php/Main_Page#Which-license-does-GNU-Radio-use

https://www.renesas.com/en-us/solutions/automotive/adas/v2x.html
https://www.renesas.com/en-us/solutions/automotive/adas/v2x.html
https://www.linkedin.com/pulse/vehicle-communication-market-intelligence-report-offers-musare
https://www.linkedin.com/pulse/vehicle-communication-market-intelligence-report-offers-musare
http://www.capmas.gov.eg/Pages/IndicatorsPage.aspx?page_id=6140&ind_id=2305
http://conferences.sigcomm.org/sigcomm/2013/papers/srif/p9.pdf
https://wiki.gnuradio.org/index.php/Main_Page#Which-license-does-GNU-Radio-use

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 89

7- Home page - GNU Radio. (2017). GNU Radio. Retrieved 9 June 2017, from

https://www.gnuradio.org/

8- bastibl/gr-ieee802-11. (2017). GitHub. Retrieved 9 June 2017, from

https://github.com/bastibl/gr-ieee802-11

9- CCSTUDIO Code Composer Studio (CCS) Integrated Development Environment

(IDE) | TI.com. (2017). Ti.com. Retrieved 9 June 2017, from

http://www.ti.com/tool/ccstudio

10- GNU Octave Wiki - Octave. (2017). Wiki.octave.org. Retrieved 9 June 2017, from

http://wiki.octave.org/GNU_Octave_Wiki

11- What Is NI USRP Hardware? - National Instruments. (2017). Ni.com. Retrieved 9

June 2017, from http://www.ni.com/white-paper/12985/en/

12- TMDSEMU100V2U-ARM XDS100v2 JTAG Debug Probe (ARM version) |

TI.com. (2017). Ti.com. Retrieved 9 June 2017, from

http://www.ti.com/tool/tmdsemu100v2u-arm

13- MityDSP-L138F - Critical Link. (2017). Critical Link. Retrieved 9 June 2017, from

http://www.criticallink.com/product/mitydsp-l138f/

14- MityDSP-L138(F) Family Development Kit - Critical Link. (2017). Critical Link.

Retrieved 9 June 2017, from http://www.criticallink.com/product/mitydsp-l138f-dev-

kit/

15- Agilent N4010A WLAN Help. (2017). Rfmw.em.keysight.com. Retrieved 9 June

2017, from

http://rfmw.em.keysight.com/rfcomms/n4010a/n4010aWLAN/onlineguide/default.ht

m#ofdm_raised_cosine_w

https://www.gnuradio.org/
https://github.com/bastibl/gr-ieee802-11
http://www.ti.com/tool/ccstudio
http://wiki.octave.org/GNU_Octave_Wiki
http://www.ni.com/white-paper/12985/en/
http://www.ti.com/tool/tmdsemu100v2u-arm
http://www.criticallink.com/product/mitydsp-l138f/
http://www.criticallink.com/product/mitydsp-l138f-dev-kit/
http://www.criticallink.com/product/mitydsp-l138f-dev-kit/
http://rfmw.em.keysight.com/rfcomms/n4010a/n4010aWLAN/onlineguide/default.htm#ofdm_raised_cosine_w
http://rfmw.em.keysight.com/rfcomms/n4010a/n4010aWLAN/onlineguide/default.htm#ofdm_raised_cosine_w

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 90

16- Blossel, B., Gerla, M., & Dressler, F. (2016). IEEE 802.11p in Fast Fading

Scenarios: From Traces to Comparative Studies of Receive Algorithms (1st ed.).

Retrieved from http://www.ccs-labs.org/bib/bloessl2016ieee/bloessl2016ieee.pdf

17- Sandesh, & Rambabu, K. (2013). Implementation of Convolution Encoder and

Viterbi Decoder for Constraint Length 7 and Bit Rate 1/2 (1st ed.). ijera.com. Retrieved

from

https://pdfs.semanticscholar.org/bd87/b8d2b616c726c7987b682e166e57b68c707c.pd

f

18- Viterbi Decoding of Convolutional Codes. (2012) (1st ed.). Retrieved from

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-02-

introduction-to-eecs-ii-digital-communication-systems-fall-

2012/readings/MIT6_02F12_chap08.pdf

http://www.ccs-labs.org/bib/bloessl2016ieee/bloessl2016ieee.pdf
https://pdfs.semanticscholar.org/bd87/b8d2b616c726c7987b682e166e57b68c707c.pdf
https://pdfs.semanticscholar.org/bd87/b8d2b616c726c7987b682e166e57b68c707c.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-02-introduction-to-eecs-ii-digital-communication-systems-fall-2012/readings/MIT6_02F12_chap08.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-02-introduction-to-eecs-ii-digital-communication-systems-fall-2012/readings/MIT6_02F12_chap08.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-02-introduction-to-eecs-ii-digital-communication-systems-fall-2012/readings/MIT6_02F12_chap08.pdf

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 91

Appendix A

Installation Guide

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 92

A.1 Installation Guide for Code Composer Studio

The installation steps for CCS v7 and v5 are almost the same.

For Windows

1- Open http://processors.wiki.ti.com/index.php/Download_CCS

2- Choose your operating system (Windows, Linux…etc)

3- Open the executable file that was downloaded

4- Mark “I accept the terms of the license agreement” and click next

5- Select your intsallation folder and then click next

6- Select the following processors (OMAP-L1x DSP + ARM9 processor, C6000

Power optimized DSP, C64x multicore DSP)

7- For the debug probes, select TI XDS Debug Probe Support and Spectrum Digital

Debug Probes and Boards (it’s better to select all if you’re not sure about the debug

probe you’ll use yet)

8- Finally, select finish

For Ubuntu

Before the installation, make sure to install some dependencies. Open the command

window and write this command

- sudo apt-get update

- sudo apt-get install libc6:i386 libx11-6:i386 libasound2:i386 libatk1.0-0:i386

libcairo2:i386 libcups2:i386 libdbus-glib-1-2:i386 libgconf-2-4:i386 libgdk-pixbuf2.0-

0:i386 libgtk-3-0:i386 libice6:i386 libncurses5:i386 libsm6:i386 liborbit2:i386

libudev1:i386 libusb-0.1-4:i386 libstdc++6:i386 libxt6:i386 libxtst6:i386 libgnomeui-

0:i386 libusb-1.0-0-dev:i386 libcanberra-gtk-module:i386 gtk2-engines-murrine:i386

unzip

After installing the dependencies, the same steps are applied. The only difference is

that the executable file’s format is .bin

To open this file, open the command window and go to the location where the

downloaded file exists then write

sudo ./”file name”.bin

The same steps are then applied.

http://processors.wiki.ti.com/index.php/Download_CCS

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 93

A.1.1 Installing the DSP library

1- Open http://www.ti.com/tool/sprc265

2- Download C674x-DSPLIB

3- Click on the link suitable to your operating system (Windows 64- Windows 32-

Ubuntu…etc)

For Windows

4- Click on the executable file and select your language

5- Select the installation folder of CCS (c:/ti/DSPlib folder)

6- Finally, select next and agree on the terms and conditions

For Linux

Same steps as Windows. To open the executable file, open the command window and

run the .bin file

A.1.2 Make a new project on CCS

1- Open file -> new -> CCS project

2- Select the family c6000 for DSP based projects and ARM for ARM based

projects

3- In Variant, select OMAPL138

4- Write the project name and click on Finish

5- Right click on the project -> new -> Target configuration file

6- In case of simulator, choose Texas Instruments Simulator, then choose C674x

CPU Cyclic Accurate Simulator, Little Endian for DSP project or ARM9e CPU

Cyclic Accurate Simulator, Little Endian for ARM based project

7- In case of emulator, choose your emulator (XDS 100v2 USB) then choose

LCDKOMAPL138

A.1.3 Including the DSP library in the project

1- Right click on the project and select properties

2- Open compiler -> include options

3- In the “Add dir to #include search path” field -> add the path of your

dsplib/packages

4- Open linker -> File search path

5- In the “Include library file or command file as input” field, add these two lines

“dsplib.lib”

“dsplib_cn.lib”

6- In the “Add dir to library search path” field, add the folder path of these 2

libraries, you will find it in the DSP library folder /packages/ti/dsplib/lib

7- Now you can use the DSPlib functions in your code.

http://www.ti.com/tool/sprc265

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 94

A.2 USRP hardware driver Installation guide

A.2.1 Installation Requirements

 linux OS (ubuntu)

A.2.2 Installation guide

1) Open terminal window

2) Write these commands:

 sudo apt -get install libuhd –dev libuhd uhd -host

 sudo add-apt-repository ppa:ettusresearch/uhd

 sudo apt-get update

 sudo apt-get install libuhd-dev libuhd003 uhd-host

A.3 GNU Radio Installation guide

A.3.1 Installation Requirements

 linux OS

 GNU radio program

 IEEE 802.11 standerd blocks

A.3.2 Installation guide

3) Open terminal window

4) Write these commands:

 (sudo apt-get update) then enter the username and password

 wget http://www.sbrac.org/files/build-gnuradio && chmod a+x build-gnuradio &&

./build-gnuradio

5) To open the gnu radio for the first time we need to open it through the terminal ,so we

write (gnuradio-companion)

6) To get the blocks Write these commands:

 sudo apt-get install liblog4cpp5-dev

 sudo port install log4cpp

 git clone https://github.com/bastibl/gr-foo.git

 cd gr-foo

 mkdir build

 cd build

 cmake ..

 make

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 95

 sudo make install

 sudo ldconfig

 git clone git://github.com/bastibl/gr-ieee802-11.git

 cd gr-ieee802-11

 mkdir build

 cd build

 cmake ..

 make

 sudo make install

 sudo ldconfig

 sudo sysctl -w kernel.shmmax=2147483648

A.4 Octave Installation guide

A.4.1 Installation Requirements

 linux OS

A.4.2 Installation guide

7) Open terminal window

8) Write these commands:

 sudo apt-add repository ppa:octave/stable

 sudo apt -get update

 sudo apt -get install octave

 octave

A.4.3 Usage guide

After opening the program write these commands to open the files:

 PS1(">>")

 addpath("/home/username/gnuradio/gr-utils/octave")

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 96

Appendix B

CCS Code

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 97

B.1 Transmitter

B.1.1 Main function

/*
 * main.c
 */
#include "IEEE802_11_Common_Variables.h"
#include "utils.h"
#include "Mapper.h"
#include "signal_field_impl.h"
#include "constellations_impl.h"
#include "chunks_to_symbols_impl.h"
#include "ifft.h"
#include "CyclicPrefix.h"
#include "ofdm_carr_alloc_func.h"

#define N 64
/* The length of the message received from the Mac layer */
#define psdu_length 100
#define signal_field_size 48
void main(void) {
 FILE *fp;
 /* This is where the main function will be called */
 Encoding e = QAM16_3_4;
 /* constructing an instant of the frame and the ofdm parameters */
 // This is the message : PSDU generated by the mac-layer
 uint8 d_psdu[100] = { 4, 2, 0, 46, 0, 96, 8, 205, 55, 166, 0, 32, 214, 1,
 60, 241, 0, 96, 8, 173, 59, 175, 0, 0, 74, 111, 121, 44, 32,

98,
 114, 105, 103, 104, 116, 32, 115, 112, 97, 114, 107, 32,

111, 102,
 32, 100, 105, 118, 105, 110, 105, 116, 121, 44, 10, 68, 97,

117,
 103, 104, 116, 101, 114, 32, 111, 102, 32, 69, 108, 121,

115, 105,
 117, 109, 44, 10, 70, 105, 114, 101, 45, 105, 110, 115, 105,

114,
 101, 100, 32, 119, 101, 32, 116, 114, 101, 97, 103, 51, 33,

182 };
 float32 window[2 * N];
 int sizeof_input_sym;
 int test;
 int data_size;
 int i = 0;
 int loop = 1408 / (2 * N);
 ofdm_param* data_field_ofdm;
 frame_param* data_field_frame;
 ofdm_param* signal_field_ofdm;
 frame_param* signal_field_param;
 uint8 *out_processed_signal_field;
 uint8 * Output_Processed_Data;
 float32 *out_modulated_data;

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 98

 float32 *out_modulated_signal_field;
 float32 *out_tagged_mux;
 float32* Output_From_OFDMCarrierAllocator;
 float32* Output_From_IFFT;
 float32* Output_From_CyclicPrefix;
 StructCyclicPrefix_Init *CyclicPtr;
 while (1) {
 data_field_ofdm = (ofdm_param *) malloc(sizeof(ofdm_param));
 ofdm_param_intialization(e, data_field_ofdm);
 data_field_frame = (frame_param *) malloc(sizeof(frame_param));
 frame_param_intialization(data_field_ofdm, data_field_frame,
 psdu_length);
 /* Check the value of the frame_param */
 print_frame_param(data_field_frame);

 Output_Processed_Data = mapper_general_work_function(d_psdu,
 psdu_length, data_field_ofdm, data_field_frame);
 /*generating the signal field and creating frame and ofdm

paramters*/
 signal_field_ofdm = (ofdm_param *) malloc(sizeof(ofdm_param));
 ofdm_param_intialization(BPSK_1_2, signal_field_ofdm);
 signal_field_param = (frame_param *) malloc(sizeof(frame_param));
 frame_param_intialization(signal_field_ofdm, signal_field_param,

0);
 out_processed_signal_field =

generate_signal_field(signal_field_param,
 signal_field_ofdm, data_field_frame,

data_field_ofdm);
 //Data modulation
 data_size = data_field_frame->n_sym * 48;
 out_modulated_data = malloc(data_size * 2 * sizeof(float32));
 chunks_to_symbols_impl(Output_Processed_Data, out_modulated_data,
 data_size, e);
 //Signal field modulation
 out_modulated_signal_field = malloc(
 signal_field_size * 2 * sizeof(float32));
 chunks_to_symbols_impl(out_processed_signal_field,
 out_modulated_signal_field, signal_field_size,

BPSK_1_2);
 //Tagged_stream_MUX
 out_tagged_mux = malloc(
 (data_size + signal_field_size) * 2 *

sizeof(float32));
 memcpy(out_tagged_mux, out_modulated_signal_field,
 signal_field_size * 2 * sizeof(float32));
 memcpy(out_tagged_mux + (signal_field_size * 2),

out_modulated_data,
 data_size * 2 * sizeof(float32));
 // part OFDM carrier allocater
 sizeof_input_sym = (2 * signal_field_size) + (2 * data_size);
 Output_From_OFDMCarrierAllocator = (float32 *) malloc(
 1408 * sizeof(float32));
 if (Output_From_OFDMCarrierAllocator == NULL) {
 printf("Not enough memory for Output_From_OFDMCarrierAllocator

\n");

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 99

 }
 test = ofdm_carr_alloc(occupied_carriers, pilot_carriers,

pilot_symbols,
 sync_words, fft_len, output_is_shifted,

out_tagged_mux,
 Output_From_OFDMCarrierAllocator, sizeof_input_sym);
 /*-----------------IFFT---------------------*/
 Output_From_IFFT = (float32 *) malloc(1408 * sizeof(float32));
 for (i = 0; i < loop; i++) {
 ifft(Output_From_OFDMCarrierAllocator, Output_From_IFFT,

N, 52.0,
 true, window);
 Output_From_OFDMCarrierAllocator += (2 * N);
 Output_From_IFFT += (2 * N);
 }
 Output_From_IFFT -= (loop * 2 * N);
 /*---------------------- Part cyclic prefix----------------------

---**/
 Output_From_CyclicPrefix = (float32*) malloc(
 (1408 / 64) * 80 * 2 * sizeof(float32));
 CyclicPtr = (StructCyclicPrefix_Init *) malloc(
 sizeof(StructCyclicPrefix_Init));
 ;
 CyclicPrefix_Init(CyclicPtr, 1408 / 64);
 CyclicPrefix(CyclicPtr, Output_From_IFFT,

Output_From_CyclicPrefix);
 /*----------------------- test cyclic prefix---------------------

--**/
 // Writing to a file
 if ((fp = fopen("Test2.txt", "a+")) == NULL) {
 printf("Cannot open file.\n");
 }
 fseek(fp, 0, SEEK_END);
 if (fwrite(Output_From_CyclicPrefix, sizeof(float32), (1408 / 64)

* 80,
 fp) != (1408 / 64) * 80)
 printf("File read error.");
 fflush(fp);
 fclose(fp);
 free(Output_From_CyclicPrefix);
 free(Output_From_IFFT);
 free(Output_From_OFDMCarrierAllocator);
 free(out_tagged_mux);
 free(out_modulated_signal_field);
 free(out_modulated_data);
 free(out_processed_signal_field);
 free(signal_field_param);
 free(signal_field_ofdm);
 free(Output_Processed_Data);
 free(data_field_frame);
 free(data_field_ofdm);
 }
}

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 100

B.1.2 Generic files used by more than one block

B.1.2.1 utils.h file

/*
 * utils.h
 *
 * Created on: Feb 7, 2017
 * Author: Salma Khaled
 */
#ifndef UTILS_H_
#define UTILS_H_
#include "IEEE802_11_Common_Variables.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#define MAX_PAYLOAD_SIZE 1500
#define MAX_PSDU_SIZE (MAX_PAYLOAD_SIZE + 28) // MAC, CRC
#define MAX_SYM (((16 + 8 * MAX_PSDU_SIZE + 6) / 24) + 1)
#define MAX_ENCODED_BITS ((16 + 8 * MAX_PSDU_SIZE + 6) * 2 + 288)
/**--------------------------------ofdm_param_implementation---------------

------**/
typedef enum {
 BPSK_1_2 = 0,
 BPSK_3_4 = 1,
 QPSK_1_2 = 2,
 QPSK_3_4 = 3,
 QAM16_1_2 = 4,
 QAM16_3_4 = 5,
 QAM64_2_3 = 6,
 QAM64_3_4 = 7,
} Encoding;
typedef struct {
 // data rate
 Encoding encoding;
 // rate field of the SIGNAL header
 char rate_field;
 // number of coded bits per sub carrier
 int n_bpsc;
 // number of coded bits per OFDM symbol
 int n_cbps;
 // number of data bits per OFDM symbol
 int n_dbps;

} ofdm_param;
/** This function is used to initialize the parameters of the ofdm */
void ofdm_param_intialization(Encoding, ofdm_param*);
/** This function print the values of the ofdm param */
void print_ofdm_param(const ofdm_param*);

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 101

/**---------------------------frame_param_implementation-------------------
-------**/

typedef struct {
 // PSDU size in bytes
 int psdu_size;
 // number of OFDM symbols (17-11)
 int n_sym;
 // number of padding bits in the DATA field (17-13)
 int n_pad;
 int n_encoded_bits;
 // number of data bits, including service and padding (17-12)
 int n_data_bits;
} frame_param;
/** This function is used to initialize the parameters of the ofdm */
void frame_param_intialization(ofdm_param*, frame_param*, int);
/** This function is used to print the value of the frame param */
void print_frame_param(const frame_param*);
/*---------------------------------PSDU_Processing-------------------------

-------**/
void scramble(const uint8 *input, char unsigned *out,
 frame_param* frame, uint8 initial_state);
void reset_tail_bits(uint8 *scrambled_data, frame_param* frame);
void convolutional_encoding(const uint8 *input, char unsigned *out,
 frame_param* frame);
void puncturing(const uint8 *input, uint8 *out,
 frame_param* frame, ofdm_param* ofdm);
void interleave(const uint8 *input, uint8 *out,
 frame_param* frame, ofdm_param* ofdm);
void split_symbols(const uint8 *input, uint8 *out,
 frame_param* frame, ofdm_param* ofdm);
void generate_bits(const uint8 *psdu, uint8 *data_bits,
 frame_param* frame);
#endif /* UTILS_H_ */

B.1.2.2 utils.c file:

/*
 * utils.c
 *
 * Created on: Feb 7, 2017
 * Author: Salma Khaled
 */
#include "utils.h"
/**-----------------------------ofdm_param_implementation------------------

----**/
void ofdm_param_intialization(Encoding e, ofdm_param* ofdm) {
 ofdm->encoding = e;
 switch (e) {
 case BPSK_1_2:
 ofdm->n_bpsc = 1;
 ofdm->n_cbps = 48;
 ofdm->n_dbps = 24;
 ofdm->rate_field = 0x0D; // 0b00001101
 break;

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 102

 case BPSK_3_4:
 ofdm->n_bpsc = 1;
 ofdm->n_cbps = 48;
 ofdm->n_dbps = 36;
 ofdm->rate_field = 0x0F; // 0b00001111
 break;
 case QPSK_1_2:
 ofdm->n_bpsc = 2;
 ofdm->n_cbps = 96;
 ofdm->n_dbps = 48;
 ofdm->rate_field = 0x05; // 0b00000101
 break;
 case QPSK_3_4:
 ofdm->n_bpsc = 2;
 ofdm->n_cbps = 96;
 ofdm->n_dbps = 72;
 ofdm->rate_field = 0x07; // 0b00000111
 break;
 case QAM16_1_2:
 ofdm->n_bpsc = 4;
 ofdm->n_cbps = 192;
 ofdm->n_dbps = 96;
 ofdm->rate_field = 0x09; // 0b00001001
 break;
 case QAM16_3_4:
 ofdm->n_bpsc = 4;
 ofdm->n_cbps = 192;
 ofdm->n_dbps = 144;
 ofdm->rate_field = 0x0B; // 0b00001011
 break;
 case QAM64_2_3:
 ofdm->n_bpsc = 6;
 ofdm->n_cbps = 288;
 ofdm->n_dbps = 192;
 ofdm->rate_field = 0x01; // 0b00000001
 break;
 case QAM64_3_4:
 ofdm->n_bpsc = 6;
 ofdm->n_cbps = 288;
 ofdm->n_dbps = 216;
 ofdm->rate_field = 0x03; // 0b00000011
 break;
 default:
 assert(false);
 break;
 }
}
/** a function to print the values of the ofdm_param */
void print_ofdm_param(const ofdm_param* ofdm) {
 printf("OFDM Parameters: \n");
 printf("encoding : %i\n", ofdm->encoding);
 printf("rate_field : %i\n", ofdm->rate_field);
 printf("n_bpsc : %i\n", ofdm->n_bpsc);
 printf("n_cbps : %i\n", ofdm->n_cbps);
 printf("n_dbps : %i\n", ofdm->n_dbps);

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 103

}

/**----------------------------frame_param_implementation------------------

---**/
void frame_param_intialization(ofdm_param* ofdm, frame_param* frame,
 int psdu_length) {
 frame->psdu_size = psdu_length;
 // number of symbols (17-11)
 frame->n_sym = (int) ceil(
 (16 + 8 * (frame->psdu_size) + 6) / (double) ofdm-

>n_dbps);
 frame->n_data_bits = (frame->n_sym) * (ofdm->n_dbps);
 // number of padding bits (17-13)
 frame->n_pad = (frame->n_data_bits) - (16 + 8 * (frame->psdu_size) + 6);
 frame->n_encoded_bits = (frame->n_sym) * (ofdm->n_cbps);
}
/** a function to print the values of the frame_param */
void print_frame_param(const frame_param* frame) {
 printf("FRAME Parameters : \n");
 printf("psdu_size :%i\n", frame->psdu_size);
 printf("n_sym :%i\n", frame->n_sym);
 printf("n_pad :%i\n", frame->n_pad);
 printf("n_encoded_bits :%i\n", frame->n_encoded_bits);
 printf("n_data_bits :%i\n", frame->n_data_bits);
}
/**-------------------------------PSDU_Processing--------------------------

-----**/
//1-Generate_bits:
void generate_bits(const uint8 *psdu, uint8 *data_bits,
 frame_param* frame) {

 //printf(" This is the generate bits");
 // first 16 bits are zero (SERVICE/DATA field)
 memset(data_bits, 0, 16);
 data_bits += 16;
 int i;
 int b;
 for (i = 0; i < frame->psdu_size; i++) {
 for (b = 0; b < 8; b++) {
 data_bits[i * 8 + b] = !!(psdu[i] & (1 << b));
 }
 }
}
//2-Scrambling the data
void scramble(const uint8 *input, uint8 *out,
 frame_param* frame, uint8 initial_state) {
 //printf("This is the scrambler \n");
 int state = initial_state;
 int feedback;
 int i;
 for (i = 0; i < frame->n_data_bits; i++) {
 feedback = (!!(state & 64)) ^ (!!(state & 8));
 out[i] = feedback ^ input[i];
 //printf("%i",out[i]);
 state = ((state << 1) & 0x7e) | feedback;

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 104

 }
}
//3-Reseting tail bits
void reset_tail_bits(uint8 *scrambled_data, frame_param* frame) {
 memset(scrambled_data + frame->n_data_bits - frame->n_pad - 6, 0,
 6 * sizeof(char));
}
//4-Convolutional encoding
int ones(int n) {
 int sum = 0;
 int i;
 for (i = 0; i < 8; i++) {
 if (n & (1 << i)) {
 sum++;
 }
 }
 return sum;
}
void convolutional_encoding(const uint8 *input, uint8 *out,
 frame_param* frame) {
 //printf(" This is the Convolutional encoder");
 int state = 0;
 int i;
 for (i = 0; i < frame->n_data_bits; i++) {
 assert(input[i] == 0 || input[i] == 1);
 state = ((state << 1) & 0x7e) | input[i];
 out[i * 2] = ones(state & 0155) % 2;
 out[i * 2 + 1] = ones(state & 0117) % 2;
 //printf("%i",out[i]);
 }
}
//5- Puncturing the data
void puncturing(const uint8 *input, uint8 *out,
 frame_param* frame, ofdm_param* ofdm) {
 int mod;
 int i;
 for (i = 0; i < frame->n_data_bits * 2; i++) {
 switch (ofdm->encoding) {
 case BPSK_1_2:
 case QPSK_1_2:
 case QAM16_1_2:
 *out = input[i];
 out++;
 break;
 case QAM64_2_3:
 if (i % 4 != 3) {
 *out = input[i];
 out++;
 }
 break;
 case BPSK_3_4:
 case QPSK_3_4:
 case QAM16_3_4:
 case QAM64_3_4:
 mod = i % 6;

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 105

 if (!(mod == 3 || mod == 4)) {
 *out = input[i];
 out++;
 }
 break;
 default:
 assert(false);
 break;
 }
 }
}
//6-Interleaving data
void interleave(const uint8 *input, uint8 *out,
 frame_param* frame, ofdm_param* ofdm) {
 int n_cbps = ofdm->n_cbps;
 ptoi first = (ptoi) calloc(n_cbps, sizeof(int));
 if (first == NULL) {
 printf("Not enough memory for first in the interleaver \n");
 }
 ptoi second = (ptoi) calloc(n_cbps, sizeof(int));
 if (second == NULL) {
 printf("Not enough memory for second in the interleaver \n");
 }
 int s = max(ofdm->n_bpsc / 2, 1);
 int j;
 for (j = 0; j < n_cbps; j++) {
 first[j] = s * (j / s) + ((j + (int) (floor(16.0 * j / n_cbps)))

% s);
 }
 int i;
 for (i = 0; i < n_cbps; i++) {
 second[i] = 16 * i - (n_cbps - 1) * (int) (floor(16.0 * i /

n_cbps));
 }
 int k;
 for (i = 0; i < frame->n_sym; i++) {
 for (k = 0; k < n_cbps; k++) {

 out[i * n_cbps + k] = input[i * n_cbps +

second[first[k]]];
 //printf("%i", out[i * n_cbps + k]);
 }
 }
 free(second);
 free(first);
}
//7-splitting the symbols according to the modulation type: BPSK, QPSK,

QAM16, ...
void split_symbols(const uint8 *input, uint8 *out,
 frame_param* frame, ofdm_param* ofdm) {
 //printf(" This is the split symbols ");
 int symbols = frame->n_sym * 48;
 int i;
 int k;
 for (i = 0; i < symbols; i++) {

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 106

 out[i] = 0;
 for (k = 0; k < ofdm->n_bpsc; k++) {
 assert(*input == 1 || *input == 0);
 out[i] |= (*input << k);
 input++;
 //printf("%c",out[i]);
 }
 }
}

B.1.2.3 IEEE802_11_Common_Variables.h

/*
 * IEEE802_11_Common_Variables.h
 *
 * Created on: Feb 7, 2017
 * Author: Salma Khaled
 */
#ifndef IEEE802_11_COMMON_VARIABLES_H_
#define IEEE802_11_COMMON_VARIABLES_H_
typedef unsigned char uint8;
typedef signed char sint8;
typedef unsigned short uint16;
typedef signed short sint16;
typedef unsigned long uint32;
typedef signed long sint32;
typedef unsigned long longuint64;
typedef signed long longsint64;
typedef float float32;
typedef double float64;
typedef int* ptoi;
typedef int bool;
#define true 1
#define false 0
#define max(a,b) \
 ({ __typeof__ (a) _a = (a); \
 __typeof__ (b) _b = (b); \
 _a > _b ? _a : _b; })
#define min(a,b) \
 ({ __typeof__ (a) _a = (a); \
 __typeof__ (b) _b = (b); \
 _a < _b ? _a : _b; })
#endif /* IEEE802_11_COMMON_VARIABLES_H_ */

B.1.3 Code of the Mapper block

B.1.3.1 Mapper.h file

/*
 * Mapper.h
 *
 * Created on: Feb 7, 2017
 * Author: Salma Khaled

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 107

 */
#ifndef MAPPER_H_
#define MAPPER_H_
#ifndef MAPPER_IMP_H_
#define MAPPER_IMP_H_
#include "IEEE802_11_Common_Variables.h"
#include "utils.h"
/* The Number of data carriers */
#define Data_Carriers 48
uint8 * mapper_general_work_function(const uint8* psdu,
 int psdu_length, ofdm_param* d_ofdm, frame_param * frame);
#endif /* MAPPER_IMP_H_ */
#endif /* MAPPER_H_ */

B.1.3.2 Mapper.c file

/*
 * Mapper.c
 *
 * Created on: Feb 9, 2017
 * Author: Salma Khaled
 */
#include "Mapper.h"
#include <inttypes.h>
// This is the general work function of the Mapper that is used to call the

function that will do all the PSDU processing
uint8* mapper_general_work_function(const uint8* psdu,
 int psdu_length, ofdm_param* d_ofdm, frame_param * frame) {
 char * d_symbols;
 int d_symbols_offset = 0;
 int d_symbols_len = 0;
 // calculate the length of the processed data
 d_symbols_len = frame->n_sym * 48;
 int i = d_symbols_len - d_symbols_offset;
 // Final output array
 uint8 * out = (uint8*) calloc(i, sizeof(char));
 // This is the final output from the Mapper without offset
 d_symbols = (char*) calloc(d_symbols_len, 1);
 printf("MAPPER called offset: %i\n", d_symbols_offset);
 printf("length: %i\n", d_symbols_len);
 while (!d_symbols_offset) {
 printf("MAPPER: received new message \n");
 if (frame->n_sym > MAX_SYM) {

 printf("packet too large, maximum number of symbols is

%i\n ",
 MAX_SYM);
 return 0;
 }
 //allocate memory for modulation steps
 uint8 *data_bits = (uint8*) calloc(frame->n_data_bits,
 sizeof(uint8));
 if (data_bits == NULL) {
 printf("Not enough memory for data_bits \n");

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 108

 }
 uint8 *scrambled_data = (uint8*) calloc(
 frame->n_data_bits, sizeof(uint8));
 if (scrambled_data == NULL) {
 printf("Not enough memory for scrambled_data\n");
 }
 uint8 *encoded_data = (uint8*) calloc(
 frame->n_data_bits * 2, sizeof(uint8));
 if (encoded_data == NULL) {
 printf("Not enough memory for encoded_data \n");
 }
 uint8 *punctured_data = (uint8*) calloc(
 frame->n_encoded_bits, sizeof(uint8));
 if (punctured_data == NULL) {
 printf("Not enough memory for punctured_data \n");
 }
 uint8 *interleaved_data = (uint8*) calloc(
 frame->n_encoded_bits, sizeof(uint8));
 if (interleaved_data == NULL) {
 printf("Not enough memory for interleaved_data \n");
 }
 uint8 *symbols = (uint8*) calloc(
 (frame->n_encoded_bits / d_ofdm->n_bpsc),
 sizeof(uint8));
 if (symbols == NULL) {
 printf("Not enough memory for symbols \n");
 }
 //generate the WIFI data field, adding service field and pad bits
 generate_bits(psdu, data_bits, frame);
 // scrambling
 // Initial state of the scrambler is set to : 93
 static uint8_t scrambler = 93;
 scramble(data_bits, scrambled_data, frame, scrambler);
 if (scrambler > 127) {
 scrambler = 1;
 }
 // reset tail bits
 reset_tail_bits(scrambled_data, frame);
 // encoding
 convolutional_encoding(scrambled_data, encoded_data, frame);
 // puncturing
 puncturing(encoded_data, punctured_data, frame, d_ofdm);
 // interleaving
 interleave(punctured_data, interleaved_data, frame, d_ofdm);
 // one byte per symbol
 split_symbols(interleaved_data, symbols, frame, d_ofdm);
 memcpy(d_symbols, symbols, d_symbols_len);
 // free the allocated memory
 free(symbols);
 free(interleaved_data);
 free(punctured_data);
 free(encoded_data);
 free(scrambled_data);
 free(data_bits);
 break;

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 109

 }
 // if there was an offset copy it to the out data
 memcpy(out, d_symbols + d_symbols_offset, i);
 d_symbols_offset += i;
 if (d_symbols_offset == d_symbols_len) {
 d_symbols_offset = 0;
 free(d_symbols);
 d_symbols = 0;
 }
 return out;

}
/* Function to print the output data from the mapper can be used after the

split symbols */
void print_Output_bits(char* output, frame_param* frame, ofdm_param*

d_ofdm) {
 int i;
 int k;
 int symbols_length = frame->n_sym * 48;
 for (i = 0; i < symbols_length; i++) {
 for (k = 0; k < d_ofdm->n_bpsc; k++) {
 printf("%i", output[i]);
 }
 }
}

B.1.4 Code of the Packet header generater block

B.1.4.1 signal_field_impl.h

/*
 * signal_field_impl.h
 *
 * Created on: Feb 21, 2017
 * Author: Dina Mohamed
 */
#ifndef SIGNAL_FIELD_IMPL_H_
#define SIGNAL_FIELD_IMPL_H_
#include "IEEE802_11_Common_Variables.h"
#include "utils.h"
uint8 * generate_signal_field(frame_param* signal_param,
 ofdm_param* signal_ofdm, frame_param* data_frame,
 ofdm_param* data_ofdm);
int get_bit(int b, int i);
#endif /* SIGNAL_FIELD_IMPL_H_ */

B.1.4.2 signal_field_impl.c

/*signal_field_impl.c
 * Created on: Feb 21, 2017
 * Author: Dina Mohamed

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 110

 */
#include "signal_field_impl.h"
#include "IEEE802_11_Common_Variables.h"
// This function returns the ith bit in the int b variable
int get_bit(int b, int i) {
 return (b & (1 << i) ? 1 : 0);
}
/** This is the general work function of the Packet header generator block

that is used to produce the signal field**/
uint8 * generate_signal_field(frame_param* signal_param,
 ofdm_param* signal_ofdm, frame_param* data_frame, ofdm_param*

data_ofdm) {
 //output frame of 48 bits (24*2) 0->47
 uint8 * out = (uint8 *) malloc(sizeof(uint8) * 48);
 //data bits of the signal header
 uint8 *signal_header = (uint8 *) malloc(
 sizeof(uint8) * 24);
 //convolutional encoding
 uint8 *encoded_signal_header = (uint8 *) malloc(
 sizeof(uint8) * 48);
 //interleaving
 uint8 *interleaved_signal_header = (uint8 *) malloc(sizeof(uint8) * 48);
 //length of the psdu coming from the mac layer
 int length = data_frame->psdu_size;
 // first 4 bits represent the modulation and coding scheme
 signal_header[0] = get_bit(data_ofdm->rate_field, 3);
 signal_header[1] = get_bit(data_ofdm->rate_field, 2);
 signal_header[2] = get_bit(data_ofdm->rate_field, 1);
 signal_header[3] = get_bit(data_ofdm->rate_field, 0);
 // 5th bit is reserved and must be set to 0
 signal_header[4] = 0;
 // then 12 bits represent the length
 signal_header[5] = get_bit(length, 0);
 signal_header[6] = get_bit(length, 1);
 signal_header[7] = get_bit(length, 2);
 signal_header[8] = get_bit(length, 3);
 signal_header[9] = get_bit(length, 4);
 signal_header[10] = get_bit(length, 5);
 signal_header[11] = get_bit(length, 6);
 signal_header[12] = get_bit(length, 7);
 signal_header[13] = get_bit(length, 8);
 signal_header[14] = get_bit(length, 9);
 signal_header[15] = get_bit(length, 10);
 signal_header[16] = get_bit(length, 11);
 //18-th bit is the parity bit for the first 17 bits
 int sum = 0;
 int i;
 for (i = 0; i < 17; i++) {
 if (signal_header[i]) {
 sum++;
 }
 }
 signal_header[17] = sum % 2;
 // last 6 bits must be set to 0
 for (i = 0; i < 6; i++) {

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 111

 signal_header[18 + i] = 0;
 }
 //allocating an OFDM parameter and a FRAME parameter objects
 ofdm_param_intialization(BPSK_1_2, signal_ofdm);
 frame_param_intialization(signal_ofdm, signal_param, 0);
 //convolutional encoding (scrambling is not needed)
 convolutional_encoding(signal_header, encoded_signal_header,

signal_param);
 // interleaving
 interleave(encoded_signal_header, out, signal_param, signal_ofdm);
 free(interleaved_signal_header);
 free(encoded_signal_header);
 free(signal_header);
 return out;
}

B.1.5 Code of the Chuncks to symbols block

B.1.5.1 chuncks_to_symbols.h

/*
 * chunks_to_symbols_impl.h
 *
 * Created on: Feb 23, 2017
 * Author: Shereen Othman
 */
#ifndef CHUNKS_TO_SYMBOLS_IMPL_H_
#define CHUNKS_TO_SYMBOLS_IMPL_H_
#include "utils.h"
void chunks_to_symbols_impl(uint8 *input_items, float32 *output_items,
 int data_size, Encoding encoding);
#endif /* CHUNKS_TO_SYMBOLS_IMPL_H_ */

B.1.5.2 chuncks_to_symbols.c

/*
 * chunks_to_symbols_impl.c
 *
 * Created on: Feb 23, 2017
 * Author: Shereen Othman
 */
#include "chunks_to_symbols_impl.h"
#include "constellations_impl.h"
// This is the general work function of the Chunks to symbols block that is

used to // modulate the output bits from the Mapper and Packet header
generator according to // the frame parameters

void chunks_to_symbols_impl(uint8 *input_items, float32 *output_items,
 int data_size, Encoding encoding) {
 float32 *d_mapping;
 switch (encoding) {
 case BPSK_1_2:
 case BPSK_3_4:
 d_mapping = constellation_bpsk_impl();

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 112

 break;
 case QPSK_1_2:
 case QPSK_3_4:
 d_mapping = constellation_qpsk_impl();
 break;
 case QAM16_1_2:
 case QAM16_3_4:
 d_mapping = constellation_16qam_impl();
 break;
 case QAM64_2_3:
 case QAM64_3_4:
 d_mapping = constellation_64qam_impl();
 break;
 default:
 printf("wrong encoding");
 assert(false);
 break;
 }
 int i;
 int index = 0;
 for (i = 0; i < data_size; i++) {
 index = (int) input_items[i];
 output_items[i * 2] = d_mapping[index * 2];
 output_items[(i * 2) + 1] = d_mapping[(index * 2) + 1];
 }
 free(d_mapping);
}

B.1.5.3 constellation_impl.h

/*
 * constellations_impl.h
 *
 * Created on: Feb 23, 2017
 * Author: Shereen Othman
 */
#ifndef CONSTELLATIONS_IMPL_H_
#define CONSTELLATIONS_IMPL_H_
#include "IEEE802_11_Common_Variables.h"
float *constellation_bpsk_impl();
float *constellation_qpsk_impl();
float *sconstellation_16qam_impl();
float *constellation_64qam_impl();
#endif /* CONSTELLATIONS_IMPL_H_ */

B.1.5.4 constellation_impl.c

/*
 * constellations_impl.c
 *
 * Created on: Feb 23, 2017
 * Author: Shereen Othman
 */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 113

#include "chunks_to_symbols_impl.h"
#include "constellations_impl.h"
/**------------------------------FUNCTIONS IMPLEMENTATIONS--------------------
----**/
// This function is used to implement the BPSK constellation using gray coding
float32 *constellation_bpsk_impl() {
 float32 *d_constellation = calloc(2 * 2, sizeof(float32)); //as each
complex number will take 2 successive bytes
 d_constellation[0] = -1; //first real
 d_constellation[1] = 0; //first imag
 d_constellation[2] = 1; //second imag
 d_constellation[3] = 0; //second imag
 return d_constellation;
}
// This function is used to implement the QPSK constellation using gray coding
float32 *constellation_qpsk_impl() {
 const float32 level = sqrt((float32) (0.5));
 float32 *d_constellation = calloc(4 * 2, sizeof(float32));

 d_constellation[0] = -level;
 d_constellation[1] = -level;
 d_constellation[2] = level;
 d_constellation[3] = -level;
 d_constellation[4] = -level;
 d_constellation[5] = level;
 d_constellation[6] = level;
 d_constellation[7] = level;
 return d_constellation;
}
// This function is used to implement the QAM16 constellation using gray
coding
float32 *constellation_16qam_impl() {
 const float32 level = sqrt((float32) (0.1));
 float32 *d_constellation = calloc(16 * 2, sizeof(float32));
 d_constellation[0] = -3 * level;
 d_constellation[1] = -3 * level;
 d_constellation[2] = 3 * level;
 d_constellation[3] = -3 * level;
 d_constellation[4] = -1 * level;
 d_constellation[5] = -3 * level;
 d_constellation[6] = 1 * level;
 d_constellation[7] = -3 * level;
 d_constellation[8] = -3 * level;
 d_constellation[9] = 3 * level;
 d_constellation[10] = 3 * level;
 d_constellation[11] = 3 * level;
 d_constellation[12] = -1 * level;
 d_constellation[13] = 3 * level;
 d_constellation[14] = 1 * level;
 d_constellation[15] = 3 * level;
 d_constellation[16] = -3 * level;
 d_constellation[17] = -1*level;
 d_constellation[18] = 3 * level;
 d_constellation[19] = -1 * level;
 d_constellation[20] = -1 * level;

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 114

 d_constellation[21] = -1 * level;
 d_constellation[22] = 1 * level;
 d_constellation[23] = -1 * level;
 d_constellation[24] = -3 * level;
 d_constellation[25] = 1 * level;
 d_constellation[26] = 3 * level;
 d_constellation[27] = 1 * level;
 d_constellation[28] = -1 * level;
 d_constellation[29] = 1 * level;
 d_constellation[30] = 1 * level;
 d_constellation[31] = 1 * level;
 return d_constellation;
}
// This function is used to implement the QAM64 constellation using gray
coding
float32 *constellation_64qam_impl() {
 const float32 level = sqrt((float32) (1 / 42.0));
 float32 *d_constellation = calloc(16 * 2, sizeof(float32));
 d_constellation[0] = -7 * level;
 d_constellation[1] = -7 * level;
 d_constellation[2] = 7 * level;
 d_constellation[3] = -7 * level;
 d_constellation[4] = -1 * level;
 d_constellation[5] = -7 * level;
 d_constellation[6] = 1 * level;
 d_constellation[7] = -7 * level;
 d_constellation[8] = -5 * level;
 d_constellation[9] = -7 * level;
 d_constellation[10] = 5 * level;
 d_constellation[11] = -7 * level;
 d_constellation[12] = -3 * level;
 d_constellation[13] = -7 * level;
 d_constellation[14] = 3 * level;
 d_constellation[15] = -7 * level;
 d_constellation[16] = -7 * level;
 d_constellation[17] = 7 * level;
 d_constellation[18] = 7 * level;
 d_constellation[19] = 7 * level;
 d_constellation[20] = -1 * level;
 d_constellation[21] = 7 * level;
 d_constellation[22] = 1 * level;
 d_constellation[23] = 7 * level;
 d_constellation[24] = -5 * level;
 d_constellation[25] = 7 * level;
 d_constellation[26] = 5 * level;
 d_constellation[27] = 7 * level;
 d_constellation[28] = -3 * level;
 d_constellation[29] = 7 * level;
 d_constellation[30] = 3 * level;
 d_constellation[31] = 7 * level;
 d_constellation[32] = -7 * level;
 d_constellation[33] = -1 * level;
 d_constellation[34] = 7 * level;
 d_constellation[35] = -1 * level;
 d_constellation[36] = -1 * level;

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 115

 d_constellation[37] = -1 * level;
 d_constellation[38] = 1 * level;
 d_constellation[39] = -1 * level;
 d_constellation[40] = -5 * level;
 d_constellation[41] = -1 * level;
 d_constellation[42] = 5 * level;
 d_constellation[43] = -1 * level;
 d_constellation[44] = -3 * level;
 d_constellation[45] = -1 * level;
 d_constellation[46] = 3 * level;
 d_constellation[47] = -1 * level;
 d_constellation[48] = -7 * level;
 d_constellation[49] = 1 * level;
 d_constellation[50] = 7 * level;
 d_constellation[51] = 1 * level;
 d_constellation[52] = -1 * level;
 d_constellation[53] = 1 * level;
 d_constellation[54] = 1 * level;
 d_constellation[55] = 1 * level;
 d_constellation[56] = -5 * level;
 d_constellation[57] = 1 * level;
 d_constellation[58] = 5 * level;
 d_constellation[59] = 1 * level;
 d_constellation[60] = -3 * level;
 d_constellation[61] = 1 * level;
 d_constellation[62] = 3 * level;
 d_constellation[63] = 1 * level;
 d_constellation[64] = -7 * level;
 d_constellation[65] = -5 * level;
 d_constellation[66] = 7 * level;
 d_constellation[67] = -5 * level;
 d_constellation[68] = -1 * level;
 d_constellation[69] = -5 * level;
 d_constellation[70] = 1 * level;
 d_constellation[71] = -5 * level;
 d_constellation[72] = -5 * level;
 d_constellation[73] = -5 * level;
 d_constellation[74] = 5 * level;
 d_constellation[75] = -5 * level;
 d_constellation[76] = -3 * level;
 d_constellation[77] = -5 * level;
 d_constellation[78] = 3 * level;
 d_constellation[79] = -5 * level;
 d_constellation[80] = -7 * level;
 d_constellation[81] = 5 * level;
 d_constellation[82] = 7 * level;
 d_constellation[83] = 5 * level;
 d_constellation[84] = -1 * level;
 d_constellation[85] = 5 * level;
 d_constellation[86] = 1 * level;
 d_constellation[87] = 5 * level;
 d_constellation[88] = -5 * level;
 d_constellation[89] = 5 * level;
 d_constellation[90] = 5 * level;
 d_constellation[91] = 5 * level;

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 116

 d_constellation[92] = -3 * level;
 d_constellation[93] = 5 * level;
 d_constellation[94] = 3 * level;
 d_constellation[95] = 5 * level;
 d_constellation[96] = -7 * level;
 d_constellation[97] = -3 * level;
 d_constellation[98] = 7 * level;
 d_constellation[99] = -3 * level;
 d_constellation[100] = -1 * level;
 d_constellation[101] = -3 * level;
 d_constellation[102] = 1 * level;
 d_constellation[103] = -3 * level;
 d_constellation[104] = -5 * level;
 d_constellation[105] = -3 * level;
 d_constellation[106] = 5 * level;
 d_constellation[107] = -3 * level;
 d_constellation[108] = -3 * level;
 d_constellation[109] = -3 * level;
 d_constellation[110] = 3 * level;
 d_constellation[111] = -3 * level;
 d_constellation[112] = -7 * level;
 d_constellation[113] = 3 * level;
 d_constellation[114] = 7 * level;
 d_constellation[115] = 3 * level;
 d_constellation[116] = -1*level;
 d_constellation[117] = 3 * level;
 d_constellation[118] = 1 * level;
 d_constellation[119] = 3 * level;
 d_constellation[120] = -5 * level;
 d_constellation[121] = 3 * level;
 d_constellation[122] = 5 * level;
 d_constellation[123] = 3 * level;
 d_constellation[124] = -3 * level;
 d_constellation[125] = 3 * level;
 d_constellation[126] = 3 * level;
 d_constellation[127] = 3 * level;
 return d_constellation;
}

B.1.6 Code of the OFDM carrier allocator

B.1.6.1 ofdm_carr_alloc_func.h file

/*
 * ofdm_carr_alloc_func.h
 *
 * Created on: Feb 24, 2017
 * Author: Mohamed Elnaggar
 */
#ifndef OFDM_CARR_ALLOC_FUNC_H_
#define OFDM_CARR_ALLOC_FUNC_H_
#include "IEEE802_11_Common_Variables.h"
/**----------------------All are form the standard definition-----------------
----**/

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 117

// Occupied carriers
int occupied_carriers[48] = { -26, -25, -24, -23, -22, -20, -19, -18, -17, -

16,
-15, -14, -13, -12, -11, -10, -9, -8, -6, -5, -4, -3, -2, -1, 1, 2, 3,
4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24,

25, 26 };
// positions of the pilot symbols
int pilot_carriers[4] = { -21, -7, 7, 21 };
// values of the pilot symbols
float32 pilot_symbols[] = { 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1,

0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1,
0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1,
0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0,
-1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0,
1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

-1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0,
1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0,
1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0,
1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1,
0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0,
-1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0,
1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0,
1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0,
-1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0,
-1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0,
1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1,
0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1,
0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1,
0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1,
0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0,
1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1,
0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1,
0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1,
0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0,
1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0,
1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0,
-1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0,
-1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1,
0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1,
0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1,
0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0,
-1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0,
-1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0,
1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0,
-1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1,
0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1,
0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1,
0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1,
0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0,
-1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0,
-1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0,
-1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0,
1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0,
1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1,
0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0,

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 118

-1, 0, -1, 0, -1, 0, 1 };
// synchronization words
float32 sync_words[] = { 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,

0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,
1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,

1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0, -1.4719601443879746, -1.4719601443879746, 0.0,
0, 0.0, 0, 0.0, 0, -1.4719601443879746, -1.4719601443879746, 0.0, 0,

0.0, 0, 0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0,
0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,

1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,
1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0,
0.0, 0, -1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0,
0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,

1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0, -1.4719601443879746, -1.4719601443879746, 0.0,
0, 0.0, 0, 0.0, 0, -1.4719601443879746, -1.4719601443879746, 0.0, 0,

0.0, 0, 0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0,
0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,

1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0,
1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1,
-1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, 1, 0, 0, -1, -1, 0,
0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1, 0, -0, -1, 1, 0, 0, -1,
-1, 0, 0, 1, 0, 0, 0, -1, 1, 0, -0, -1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 0,
0, -1, 1, 0, -0, -1, -1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1,

-1, 0, 0, -1, 1, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0,
1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1,
0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0,
-1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0,
-1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0,

1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

// size of FFT
int fft_len = 64;
// This boolean is used to return the OFDM carrier allocater to the start
int output_is_shifted = 1;
int ofdm_carr_alloc(int *occupied_carriers, int *pilot_carriers,
 float32 *pilot_sympols, float32 *sync_words, int fft_len,
 int output_is_shifted, float32 *input, float32 *output,
 int sizeof_input_sym);
#endif /* OFDM_CARR_ALLOC_FUNC_H_ */

B.1.6.2 Ofdm_carr_alloc.c file

/*
 * ofdm_carr_alloc.c

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 119

 *
 * Created on: Feb 24, 2017
 * Author: Mohamed Elnaggar
 */
#ifndef ofdm
#define ofdm
#include "IEEE802_11_Common_Variables.h"
// The general work function used for OFDM carrier allocation
int ofdm_carr_alloc(int *occupied_carriers, int *pilot_carriers,
 float32 *pilot_symbols, float32 *sync_words, int fft_len,
 int output_is_shifted, float32 *input, float32 *output,
 int sizeof_input_sym) {
 int i = 0;
 int j = 0;
 int sizeof_occ_carr = 48;
 int sizeof_pilot_carr = 4;
 int sizeof_sync_words = 512;
 //this part changes the zero values in the occupied_carriers to positive

to indicate real positions in array
 for (i = 0; i < sizeof_occ_carr; i++) {
 if (occupied_carriers[i] < 0) {
 occupied_carriers[i] += fft_len;
 }
 if (occupied_carriers[i] > fft_len || occupied_carriers[i] < 0) {
 break;
 }
 if (output_is_shifted) {
 occupied_carriers[i] = (occupied_carriers[i] + fft_len /

2)
 % fft_len;
 }
 }
 //This part changes the zero values in the pilot_carriers to positive to

indicate real positions in array
 for (i = 0; i < sizeof_pilot_carr; i++) {
 if (pilot_carriers[i] < 0) {
 pilot_carriers[i] += fft_len;
 }
 if (pilot_carriers[i] > fft_len || pilot_carriers[i] < 0) {
 break;
 }
 if (output_is_shifted) {
 pilot_carriers[i] = (pilot_carriers[i] + fft_len / 2) %

fft_len;
 }
 }
 // Copy Sync word
 for (i = 0; i < sizeof_sync_words; i++) {
 output[i] = sync_words[i];

 }
 // Copy data symbols
 float32 *out_data;
 out_data = 512 + output;
 long n_ofdm_symbols = 0; // Number of output items

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 120

 int symbols_to_allocate = 48;
 int symbols_allocated = 0;
 int k;
 for (i = 0; i < sizeof_input_sym; i = i + 2) {
 if (symbols_allocated == 0) {
 n_ofdm_symbols++;
 }
 k = occupied_carriers[symbols_allocated];
 k = k * 2;
 out_data[k] = input[i];
 out_data[k + 1] = input[i + 1];
 symbols_allocated++;
 if (symbols_allocated == symbols_to_allocate) {
 symbols_to_allocate = 48;
 symbols_allocated = 0;
 out_data = out_data + ((fft_len) * 2);
 }
 }
 // Copy pilot symbols
 float32 *out_pilot;
 out_pilot = 512 + output;
 for (i = 0; i < n_ofdm_symbols; i++) {
 for (j = 0; j < 8; j = j + 2) {
 k = pilot_carriers[j / 2];
 k = k * 2;
 out_pilot[k] = pilot_symbols[j + (i * 8)];
 out_pilot[k + 1] = pilot_symbols[j + 1 + (i * 8)];
 }
 out_pilot = out_pilot + ((fft_len) * 2);
 }
 return 0;
}
#endif

B.1.7 Code of the IFFT block

B.1.7.1 Ifft.h

/*
 * ifft.h
 *
 * Created on: Feb 7, 2017
 * Author: Habiba Tarek
 */
#ifndef IFFT_H_
#define IFFT_H_
#include "IEEE802_11_Common_Variables.h"
extern void gen_twiddle_fft_sp (float32 *w, int n);
extern void shiftF(float32* before, float32* after, int N);
extern void ifft(float32* input, float32* output, int N, float32

WindowScale, int shift, float32* window);
extern void seperateRealImg(float32* input, float32* real, float32*img, int

N);
#endif /* IFFT_H_ */

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 121

B.1.7.2 Ifft.c

/* ifft.c
 * Created on: Feb 7, 2017
 * Author: Habiba Tarek*/
#include "ifft.h"
#include <math.h>
#include <ti/dsplib/dsplib.h>
#include <stdlib.h>
extern uint8 brev[64] = {
 0x0, 0x20, 0x10, 0x30, 0x8, 0x28, 0x18, 0x38,
 0x4, 0x24, 0x14, 0x34, 0xc, 0x2c, 0x1c, 0x3c,
 0x2, 0x22, 0x12, 0x32, 0xa, 0x2a, 0x1a, 0x3a,
 0x6, 0x26, 0x16, 0x36, 0xe, 0x2e, 0x1e, 0x3e,
 0x1, 0x21, 0x11, 0x31, 0x9, 0x29, 0x19, 0x39,
 0x5, 0x25, 0x15, 0x35, 0xd, 0x2d, 0x1d, 0x3d,
 0x3, 0x23, 0x13, 0x33, 0xb, 0x2b, 0x1b, 0x3b,
 0x7, 0x27, 0x17, 0x37, 0xf, 0x2f, 0x1f, 0x3f
};
// since complex here is written in the terms of a float32 array, with real

in even // indices and imaginary in odd indices, this function separates real
and imaginary // numbers in different arrays*/

void seperateRealImg(float32* input, float32* real, float32*img, int N) {
 int i, j;
 for (i = 0, j = 0; j < N; i+=2, j++) {
 real[j] = input[i];
 img[j] = input[i + 1];
 }
}
/* this ready function generates the twiddle factors that will be used in

IFFT function*/
void gen_twiddle_fft_sp (float32 *w, int n)
{
 int i, j, k;
 double x_t, y_t, theta1, theta2, theta3;
 const double PI = 3.141592654;
 for (j = 1, k = 0; j <= n >> 2; j = j << 2)
 {
 for (i = 0; i < n >> 2; i += j)
 {
 theta1 = 2 * PI * i / n;
 x_t = cos (theta1);
 y_t = sin (theta1);
 w[k] = (float32) x_t;
 w[k + 1] = (float32) y_t;

 theta2 = 4 * PI * i / n;
 x_t = cos (theta2);
 y_t = sin (theta2);
 w[k + 2] = (float32) x_t;
 w[k + 3] = (float32) y_t;

 theta3 = 6 * PI * i / n;
 x_t = cos (theta3);
 y_t = sin (theta3);

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 122

 w[k + 4] = (float32) x_t;
 w[k + 5] = (float32) y_t;
 k += 6;
 }
 }
}
/* this function shifts the input so that it swaps the two halves of the

input (gnuradio uses shift so we did it here as well) */
void shiftF(float32* before, float32* after, int N)
{
 int n;
 for(n = 0; n < (2*N)/2 ; n++)
 {
 after[n] = before[(2*N)/2 + n];
 }
 n = (2*N)/2;
 for(n = (2*N)/2; n < (2*N) ; n++)
 {
 after[n] = before[n - (2*N)/2];
 }
}
void ifft(float32* input, float32* output, int N, float32 WindowScale, int

shift, float32* window)
{
 gen_twiddle_fft_sp(window, N);
 /* this small part multiples the input by N to reverse the

normalization and divides it by the the value of WindowScale to scale the
input */

 int k = 0;
 for (k = 0; k<2*N; k++)
 {
 input[k] = input[k] * ((float32) N /

(sqrt((float32)WindowScale)));
 }
 if(shift == true)
 {
 short int len = (unsigned int)(ceil(2*N/2.0));
 float32* temp = calloc(2*N, sizeof(float32));
 memcpy(temp, &input[len],sizeof(float32)*(2*N - len));
 memcpy(&temp[2*N - len], &input[0],sizeof(float32)*len);
 memcpy(input,temp,2*N*sizeof(float32));
 free(temp);
 }
 if(N%4 == 0)
 {
 DSPF_sp_ifftSPxSP(N, input, window, output, brev, 4, 0, N);
 }
 else
 {
 DSPF_sp_ifftSPxSP(N, input, window, output, brev, 2, 0, N);
 }
}

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 123

B.1.8 Code of the cyclic prefix block

B.1.8.1 CyclicPrefix.h

/*CyclicPrefix.h
 *Created on: 1 Feb 2017
 Author: User Zeinab Ahmed/
#ifndef CYCLICPREFIX_H_
#define CYCLICPREFIX_H_
#include "IEEE802_11_Common_Variables.h"
typedef struct
{
 int d_fft_len; // initialized in gnuradio by 64 (size of IFFT block)
 int d_output_size; // output size = d_fft_len + cyclic prefix

size(initialized // in gnuradio by 16)
 int d_rolloff_len; // initialized in gnuradio by 2
 int symbols_to_read; // number of OFDM symbols input to this block
}StructCyclicPrefix_Init;
void CyclicPrefix(StructCyclicPrefix_Init*,float32*,float32*);
void CyclicPrefix_Init(StructCyclicPrefix_Init*,int);
#endif /* CYCLICPREFIX_H_ */

B.1.8.2 CyclicPrefix.c

/*CyclicPrefix.c
 *Created on: 1 Feb 2017
 Author: User Zeinab Ahmed/
#include "CyclicPrefix.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h> // added as I use cosine function
#ifndef M_PI
define M_PI 3.14159265358979323846
#endif
// The initialization of the Cyclic prefix
void CyclicPrefix_Init(StructCyclicPrefix_Init *Cyclic,int num_ofdm_sym)
{
 Cyclic->d_fft_len= 64;
 Cyclic->d_output_size=80;
 Cyclic->d_rolloff_len=2;
 Cyclic->symbols_to_read=num_ofdm_sym;
}
// The general work function of the cyclic prefix block
void CyclicPrefix(StructCyclicPrefix_Init *PtrToStruct,float32

*data_ptr,float32 *out_ptr)
{
 int i;
 int d_cp_size = PtrToStruct->d_output_size - PtrToStruct->d_fft_len;
 float32 *d_up_flank,*d_down_flank,*d_delay_line;
 if (PtrToStruct->d_rolloff_len == 1)
 {
 PtrToStruct->d_rolloff_len = 0;
 }

Graduation Project-2 V2V PHY layer Implementation Final Report

 CCE-E Page | 124

 if (PtrToStruct->d_rolloff_len)
 {
 d_up_flank=(float32*) malloc((PtrToStruct->d_rolloff_len-

1)*sizeof(float32));
 d_down_flank=(float32*) malloc((PtrToStruct->d_rolloff_len-

1)*sizeof(float32));
 d_delay_line=(float32*) malloc((PtrToStruct->d_rolloff_len-

1)*sizeof(float32));
 //---------- construct up flank and down flank ----------//
 for (i = 1; i < PtrToStruct->d_rolloff_len; i++)
 {
 d_up_flank[i-1] = 0.5 * (1 + cos(M_PI *(float32)

i/(float32)PtrToStruct->d_rolloff_len - M_PI));
 d_down_flank[i-1] = 0.5 * (1 + cos(M_PI

*(float32)(PtrToStruct->d_rolloff_len-i)/(float32)PtrToStruct->d_rolloff_len -
M_PI));

 d_delay_line[i-1]=0;
 }
 }
 //---------- cyclic prefix implementation ----------//
 float32 *in=data_ptr;
 float32 *out=out_ptr;
 int sym_idx;
 for (sym_idx = 0; sym_idx < PtrToStruct->symbols_to_read;sym_idx++)
 {
 memcpy((out + (d_cp_size*2)),in, PtrToStruct->d_fft_len *

sizeof(float32)* 2);
 memcpy(out,(in + (PtrToStruct->d_fft_len*2) - (d_cp_size*2)),

d_cp_size * sizeof(float32)* 2);
 if (PtrToStruct->d_rolloff_len)
 {
 for (i = 0; i < PtrToStruct->d_rolloff_len-1; i+=2)
 {
 out[i] = out[i] * d_up_flank[i/2] + d_delay_line[i/2]; //real part
 out[i+1] = out[i+1] * d_up_flank[i/2] + d_delay_line[i/2];
 d_delay_line[i/2] = in[i] * d_down_flank[i/2]; //real part
 d_delay_line[i/2] = in[i+1] * d_down_flank[i/2]; //imaginary part
 }
 }

 in += (PtrToStruct->d_fft_len*2);
 out += (PtrToStruct->d_output_size*2);
 }
//---------- adding delay line for the last OFDM symbol ----------//
 if (PtrToStruct->d_rolloff_len)
 {
 for (i = 0; i < PtrToStruct->d_rolloff_len-1; i++)
 {
 *out++ = d_delay_line[i/2]; // real part
 *out++ = d_delay_line[i/2]; // imaginary part
 }
 free(d_delay_line);
 free(d_down_flank);
 free(d_up_flank);
 }

}

