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Abstract 
 

Most accidents occur because the driver can only see, with the sensors and the current 

electronic driver aids, as far as the vehicles directly in front of him/her, behind him/her, or 

on either side. A competent driver might notice more than one car ahead or behind, notice 

the signal lights and act preemptively to prevent any sudden actions or accidents. However, 

sometimes this isn’t enough. If any sudden action was taken faster than the driver’s reaction 

such as a vehicle coming in a very high speed next to him/her or realizing there’s a huge 

obstacle when the car is too near to take the needed precautions, this will lead to dangerous 

consequences. As a result, there has to be another solution that will car itself notice the 

sudden changes to take precautions if the driver couldn’t. Also there has to be a solution to 

make the able to see more than 2 vehicles ahead or behind to alert the driver of the changes 

that happen a little further than his/her sight so that the driver can act smoothly and 

preemptively. Car accidents have risen to 14500 accident in 2015. A total of 63.3 percent 

of car accidents were caused by humans. A total of 6203 were killed and 19325 were 

injured due to such accidents in 2015. 

One of the technological advances that could solve this problem is vehicle to vehicle 

communication. This report will include more information about V2V communication, its 

benefits and its market nowadays. Next, an overview of the IEEE standard that is used to 

implement the PHY layer of the V2V communication system is explained. After that, the 

project design is discussed along with the tools used as well as the importance of each tool 

in our project. Then, the actual implementation of our project along with the testing 

methods and results are furtherly explained. Finally, the lessons learned while working on 

our project as well as the next phases are discussed. 
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Chapter 1  

Introduction 

1.1 About V2X 

 

 

ehicle to vehicle communication is, as its name describes, a way for 

vehicles to send and receive signals to each other to explain their location, 

speed and direction. If there was a car that decided to change lanes and the 

driver didn’t pay attention to the other cars who want to do the same, the 

car that fall behind in line with 3-4 cars between will send signals to this vehicle to inform 

it to wait until it passes to prevent future possible accidents. That way, the car can know 

what other out-of-sight cars, are doing or about to do. 

In addition to that, the communication will not be between vehicles only, but between 

vehicles and infrastructure as well (V2I), reducing any human errors that lead to accidents. 

V2V and V2I have become one name, V2X. 

V2X communications are being standardized in various countries and are anticipated to be 

an important technology for achieving autonomous driving. Development of this 

technology by automotive manufacturers, chip manufacturers, and technology and solution 

providers is accelerating. 

 

V 
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1.2 V2X market 

V2X communication’s market is growing every year due to the enhancement of 

technology use in vehicles. A lot of investment is done in this field nowadays. Middle 

Eastern countries are considered a great potential for this technology due to the increase in 

population as well as the focus of many automobile companies on regions such as the 

Middle East and Africa. The development of this technology by automotive manufacturers, 

chip manufacturers as well as technology and solution providers is accelerating. 

 

Figure 1-1 the range of signals sent by the car   

 

Figure 1-2 the future of V2X systems 
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1.3 V2X competition landscape 

There are many companies interested in this technology such as BMW, Audi, Daimler, 

Volvo, and Ford- Applink. Among the solution providers Etrans Systems, Qualcomm 

Technologies Inc., Cisco Systems Inc., Delphi Automotive PLC, Autotalks Ltd., Denso, 

Arada Systems, Kapsch Group and Savari Inc., are included in the vehicle to vehicle 

communication market. 

 

1.4 Standardized V2X protocols 

Since, V2X requires devices and vehicles of different manufacturers communicate with 

each other, there has to be a standard that all companies and manufacturers will follow. 

That’s why IEEE developed the 802.11p standard which explains the physical and mac 

layers of vehicular transceivers. That way, any other European or American standards 

developed, will have to be based on the lower-level IEEE 802.11p standard, to ensure the 

compatibility of different devices communicating with each other. 

 

1.5 Project description 

Our project is to build a prototype of the V2V transceiver on the PHY layer to be used 

as a testbed of the actual V2V transceivers. That way we can test any other device by 

sending data to it or receiving data from it to make sure it’s working properly and to 

measure how far the data can travel. 
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Chapter 2  

OFDM PHY Layer Specification 

 

 his chapter includes the basic information that is needed to be known to 

implement OFDM PHY layer. The first part is the standard part which will 

go through OFDM PHY layer structure, its sublayers and the frame structure 

that is sent by the transmitter. The standard mainly helps in transmitter implementation, 

that’s why it is needed to study some receiving concepts to implement the receiver which 

is discussed in the second part of this chapter.  

 

 

 

 

 

 

 

 

 

T  
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2.1 Standard IEEE-802.11p overview 

2.1.1  Introduction 

This standard is developed by IEEE (Institute of electrical and electronics engineers) 

organization to describe telecommunications and information exchange between systems 

Local and metropolitan area networks— Specific requirements and it’s mainly determines 

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.  

The standard has more than one amendment: 

 IEEE Std 802.11k™-2008: Radio Resource Measurement of Wireless LANs 

 IEEE Std 802.11r™-2008: Fast Basic Service Set (BSS) Transition (Amendment 2) 

 IEEE Std 802.11y™-2008: 3650–3700 MHz Operation in USA (Amendment 3) 

 IEEE Std 802.11w™-2009: Protected Management Frames (Amendment 4) 

 IEEE Std 802.11n™-2009: Enhancements for Higher Throughput (Amendment 5) 

 IEEE Std 802.11p™-2010: Wireless Access in Vehicular Environments  

 IEEE Std 802.11z™-2010: Extensions to Direct-Link Setup (DLS) (Amendment 7) 

 IEEE Std 802.11v™-2011: IEEE 802.11 Wireless Network Management 

 IEEE Std 802.11u™-2011: Interworking with External Networks (Amendment 9) 

 IEEE Std 802.11s™-2011: Mesh Networking (Amendment 10) 

Our project is following mainly amendment IEEE Std 802.11p™-2010: Wireless 

Access in Vehicular Environments (Amendment 6). Specifically it is an implementation 

for orthogonal frequency division multiplexing (OFDM) PHY specification part in the 

standard. 
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2.1.2 Reasons of using OFDM 

OFDM transceiver has a lot of advantages that enhance the communication systems 

and also solves main problems. There are two main problems that are solved using (OFDM) 

First one: Multi-path problem in the channel, There is a lot of interacting objects in the 

channel that cause the problem of multi-path fading as shown in (Fig.2-1), But (OFDM) or 

mainly the family of (FDM) solves this problem as it divides the band to sub-bands or sub 

carriers which mean that the signal will be extended in time domain what leads to 

minimization of effect of the delay on the incoming signal as its time is much greater than 

the delay. 

 

Figure 2-1 MPC effect 

Second problem: Is the frequency selective nature of the channel and this was solved in 

(FDM) as the signal is carried over more than one channel, in only one channel carrier 

whole signal will be corrupted but in multi-carrier some of the channel will be corrupted 

not whole the signal and more over using the concepts of coding and frequency diversity 

will prevent these corrupted subcarriers from corrupting the original signal. Moreover 

(OFDM) is better than (FDM) as it is more efficient usage of the bandwidth as shown in 

(Fig.2-2)  
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Figure 2-2 Illustration of Frequency selectivity in FDM and OFDM techniques 

2.1.3 PHY layer structure in the standard 

The physical layer consists of three main sub-layers as shown in the next figure  

 PLCP sub-layer 

 PMD sub-layer 

 PLME sub-layer  

 

Figure 2-3 Sub-layers in PHY layer 

2.1.3.1 PLCP sub-layer (Physical Layer Convergence Protocol) 

Provides a convergence procedure in which PSDUs (PLCP Service Data Unit) are 

converted to and from PPDUs (PLCP protocol data unit).During transmission, the PSDU 

shall be provided with a PLCP preamble and header to create the PPDU. At the receiver, 

the PLCP preamble and header are processed to aid in demodulation and delivery of the 

PSDU. 
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Figure 2-4 PPDU frame format 

 Overview of the PPDU encoding process 

 Produce the PLCP Preamble field, composed of 10 repetitions of a “short training 

sequence” (used for AGC convergence, diversity selection, timing acquisition, 

and coarse frequency acquisition in the receiver) and two repetitions of a “long 

training sequence” (used for channel estimation and fine frequency acquisition in 

the receiver), preceded by a guard interval (GI) 

 

 Produce the PLCP header field from the RATE, LENGTH, and SERVICE fields 

of the TXVECTOR by filling the appropriate bit fields. The RATE and LENGTH 

fields of the PLCP header are encoded by a convolutional code at a rate of R = 

1/2, and are subsequently mapped onto a single BPSK encoded OFDM symbol, 

denoted as the SIGNAL symbol. In order to facilitate a reliable and timely 

detection of the RATE and LENGTH fields, 6 zero tail bits are inserted into the 

PLCP header. The encoding of the SIGNAL field into an OFDM symbol follows 

the same steps for convolutional encoding, interleaving, BPSK modulation, pilot 

insertion, Fourier transform, and prepending a GI as described subsequently for 

data transmission with BPSK-OFDM modulated at coding rate 1/2. The contents 

of the SIGNAL field are not scrambled as shown in the next figure. 

 

Figure 2-5 PLCP header field 
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 Calculate from RATE field of the TXVECTOR the number of data bits per OFDM 

symbol (NDBPS), the coding rate (R), the number of bits in each OFDM subcarrier 

(NBPSC), and the number of coded bits per OFDM symbol (NCBPS). 

 

 Append the PSDU to the SERVICE field of the TXVECTOR. Extend the resulting 

bit string with zero bits (at least 6 bits) so that the resulting length is a multiple of 

NDBPS. The resulting bit string constitutes the DATA part of the packet. 

 

 Initiate the scrambler with a pseudorandom nonzero seed, generate a scrambling 

sequence, and XOR it with the extended string of data bits. 

 

 Replace the six scrambled zero bits following the data with six non-scrambled zero 

bits. (Those bits return the convolutional encoder to the zero state and are denoted 

as tail bits). 

  

 Divide the encoded bit string into groups of NCBPS bits. Within each group, 

perform an “interleaving” (reordering) of the bits according to a rule corresponding 

to the desired RATE. 

 

 Divide the encoded bit string into groups of NCBPS bits. Within each group, 

perform an “interleaving” (reordering) of the bits according to a rule corresponding 

to the desired RATE. 

 

 Divide the complex number string into groups of 48 complex numbers. Each such 

group is associated with one OFDM symbol. In each group, the complex numbers 

are numbered 0 to 47 and mapped hereafter into OFDM subcarriers numbered –26 

to –22, –20 to –8, –6 to –1, 1 to 6, 8 to 20, and 22 to 26. The subcarriers –21, –7, 7, 

and 21 are skipped and, subsequently, used for inserting pilot subcarriers. The 0 

subcarrier, associated with center frequency, is omitted and filled with the value 0. 

 

 For each group of subcarriers –26 to 26, convert the subcarriers to time domain 

using inverse Fourier transform. Prepend to the Fourier-transformed waveform a 

circular extension of itself thus forming a GI, and truncate the resulting periodic 

waveform to a single OFDM symbol length by applying time domain windowing. 

 

 Up-convert the resulting “complex baseband” waveform to an RF according to 

the center frequency of the desired channel and transmit. 
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Declarations 

Coding (rate): Every bit in the data stream is coded (repeated) to allow error 

correction. 

              E.g.     1        111     (“1/3” coding) 

                         0 00       (“1/2” coding) 

 

Interleaving: This is done to achieve frequency diversity to resist the frequecy 

selectivity nature of the channel. 

 

Preamble: Samples known by the receiver to support in the process of retreiving the 

original data at it has three functionalities : 

 Time sync 

 Frequency offset determining  

 Channel estimation 

 

Pilot insertion: The preamble is not sufficient for retreiving the original data process 

as the channel is suffering from variations all the time, to make perfect estimation of the 

channel some known bits are sent inside the data over some subchannels called pilots. 

 

Service field: Used to send the type of the modulation , number of symbols and the 

required information to correctly de-modulate the signal 

 

Cyclic extension: It is added to overcome the problems of ISI and ICI, It must be 

removed from the received frame in order to have the information only. 
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2.1.3.2 OFDM PMD sublayer 

The PMD sublayer accepts the PLCP sub layer primitives and provides the actual 

means by which data are transmitted or received from the medium. 

The PMD sublayer primitives and services for the transmission and reception functions 

include data stream, timing information, and associated signal parameters being delivered 

to and from the PLCP sublayer. 

THE OFDM sublayer primitives are divided into two different categories: 

1- Service primitives that support PLCP peer-to-peer interactions 

PMD_DATA.request: This primitive defines the transfer of data from the PLCP 

sublayer to the PMD entity. When generated, this primitive shall be generated by the 

PLCP sublayer to request transmission of one OFDM symbol. The data clock for this 

primitive shall be supplied by the PMD layer based on the OFDM symbol clock. 

 

PMD_DATA.indication: This primitive defines the transfer of data from the PMD 

entity to the PLCP sublayer. When generated by the PMD, it forwards received data 

to the PLCP sublayer. The data clock for this primitive shall be supplied by the PMD 

layer based on the OFDM symbol clock. 

 

2- Service primitives that have local significance and support sublayer-to-

sublayer interactions 

PMD_TXSTART.request: This primitive is generated by the PHY PLCP sublayer. It 

initiates PPDU transmission by the PMD layer. 

PMD_TXEND.request: This primitive is generated by the PHY PLCP sublayer. It 

ends PPDU transmission by the PMD layer. 

PMD_TXPWRLVL.request: This primitive is generated by the PHY PLCP sublayer 

to select the power level used by the PHY for transmission. 

PMD_RATE.request: This primitive is generated by the PHY PLCP sublayer to select 

the modulation rate that shall be used by the OFDM PHY for transmission. 

PMD_RSSI.indication: This primitive, generated by the PMD sublayer, provides the 

receive signal strength to the PLCP and MAC entity. 

PMD_RCPI.indication: This primitive, generated by the PMD sublayer, provides the 

RCPI to the PLCP and MAC entity. 
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2.1.3.3 PLME sub layer 

The PLME performs management of the local PHY functions in conjunction with the 

MLME. It also has the MIB (Management Information Base) attributes which are used in 

the communication process. 

Its parameters are divided into 3 categories: 

TXVECTOR parameters 

Table 1 Transmitter vector parameters in PLME sublayer 

Parameter Description Associated primitive Value 

LENGTH 

This value is used by the PHY 

to determine the number of octet 

transfers that will occur between 

the MAC and the PHY after 

receiving a request to start the 

transmission. 

PHY-

TXSTART.request 

(TXVECTOR) 

1–4095 

DATATRATE 

It describes the bit rate at 

which the PLCP shall transmit the 

PSDU. 

PHY-

TXSTART.request 

(TXVECTOR) 

6, 9, 12, 18, 24, 36, 48, 

and 54 Mb/s for 20 MHz 

channel spacing (Support of 

6, 12, and 24 Mb/s data 

rates is mandatory.) 

3, 4.5, 6, 9, 12, 18, 24, 

and 27 Mb/s for 10 MHz 

channel spacing (Support of 

3, 6, and 12 Mb/s data rates 

is mandatory.) 

1.5, 2.25, 3, 4.5, 6, 9, 

12, and 13.5 Mb/s for 5 

MHz channel spacing 

(Support of 1.5, 3, and 6 

Mb/s data rates is 

mandatory.) 

SERVICE 

The SERVICE parameter 

consists of 7 null bits used for the 

scrambler initialization and 9 null 

bits reserved for future use. 

PHY-

TXSTART.request 

(TXVECTOR) 

Scrambler 

initialization; 7 null bits + 9 

reserved null bits 
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TXPWR_LEVEL 

This parameter is used to 

indicate which of the available 

TxPowerLevel attributes defined in 

the MIB shall be used for the 

current transmission. 

PHY-

TXSTART.request 

(TXVECTOR) 

1-8 

TIME_OF_ 

DEPARTURE_ 

REQUESTED 

A parameter value of true 

indicates that the MAC sublayer is 

requesting that the PLCP entity 

provides measurement of when the 

first frame energy is sent by the 

transmitting port and reporting 

within the PHY-

TXSTART.confirm(TXSTATUS) 

primitive 

PHY-

TXSTART.request 

(TXVECTOR) 

False, true. When true, 

the MAC entity requests 

that the PHY PLCP entity 

measures and reports time 

of departure parameters 

corresponding to the time 

when the first frame energy 

is sent by the transmitting 

port; when false, the MAC 

entity requests that the PHY 

PLCP entity neither 

measures nor reports time 

of departure parameters. 

 

RXVECTOR parameters 

Table 2 Receiver vector parameters in PLME sublayer 

Parameter Description Associated Primitive Value 

LENGTH 

The MAC and PLCP use this 

value to determine the number of 

octet transfers that will occur 

between the two sublayers during 

the transfer of the received PSDU. 

PHY-

RXSTART.indication 
1-4095 

RSSI 

RSSI shall be measured during 

the reception of the PLCP 

preamble. 

PHY-

RXSTART.indication 

(RXVECTOR) 

0–RSSI maximum 

DATARATE 

DATARATE shall represent 

the data rate at which the current 

PPDU was received. 

PHY-

RXSTART.indication 

(RXVECTOR) 

6, 9, 12, 18, 24, 36, 48, 

and 54 Mb/s for 20 MHz 

channel spacing (Support of 

6, 12, and 24 Mb/s data 

rates is mandatory.) 

3, 4.5, 6, 9, 12, 18, 24, 

and 27 Mb/s for 10 MHz 

channel spacing (Support of 

3, 6, and 12 Mb/s data rates 
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is mandatory.) 

1.5, 2.25, 3, 4.5, 6, 9, 

12, and 13.5 Mb/s for 5 

MHz channel spacing 

(Support of 1.5, 3, and 6 

Mb/s data rates is 

mandatory.) 

SERVICE  

PHY-

RXSTART.indication 

(RXVECTOR) 

Null 

RCPI 

This parameter is a measure 

by the PHY of the received channel 

power. 

 

 

PHY-

RXSTART.indication 

(RXVECTOR) 

0-255 

RX_START_OF_

FRAME_OFFSET 

An estimate of the offset from 

the point in time at which the start 

of the preamble corresponding to 

the incoming frame arrived at the 

receive antenna port to the point in 

time at which this primitive is 

issued to the MAC 

PHY-

RXSTART.indication 

(RXVECTOR) 

0 to 2^32 – 1. 
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TXSTATUS parameters 

Table 3 Transmitter status parameters in PLME sublayer 

Parameter Description 
Associated 

Primitive 
Value 

TIME_OF_DEP

ARTURE 

The locally measured time 

when the first frame energy is sent 

by the transmitting port, in units 

equal to 

1/TIME_OF_DEPARTURE_Clock

Rate. This parameter is present 

only if 

TIME_OF_DEPARTURE_REQU

ESTED is true in the corresponding 

request. 

PHY- 

TXSTART.confirm 

(TXSTATUS) 

0 to 2^32 – 1. 

TIME_OF_DEP

ARTURE_ClockRa

te 

The clock rate, in units of 

MHz, is used to generate the 

TIME_OF_DEPARTUREvalue. 

This parameter is present only if 

TIME_OF_DEPARTURE_RE

QUESTED is true in the 

corresponding request. 

PHY- 

TXSTART.confirm 

(TXSTATUS) 

0 to 2^16 – 1 

TX_START_O

F_FRAME_OFFSE

T 

An estimate of the offset (in 

10 ns units) from the point in time 

at which the start of the preamble 

corresponding to the frame was 

transmitted at the transmit antenna 

port to the point in time at which 

this primitive is issued to the MAC. 

PHY- 

TXSTART.confirm 

(TXSTATUS) 

0 to 2^32 - 1 
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2.2 Receiver Overview 

This part will go through some concepts in the PHY layer receiver. As noticed, what 

the standard mostly state about the receiver functionality that it is the opposite of 

transmitting functions, which is correct. However, it is needed to discover some receiving 

concepts to be able to implement those opposite operations such as synchronization, 

decoding …etc. This part will go through these concepts one by one and mention important 

notes related to the OFDM receiver.  

To receive a frame, the following steps take place: 

1. Start of frame is detected 

2. Transition from short sequence to channel estimation sequence is detected and fine 

timing is established 

3. Coarse and fine frequency offsets are estimated 

4. The packet is then compensated with the estimated frequency offset 

5. The complex channel response coefficients are estimated for each subcarrier 

6. For each symbol inside the OFDM symbol, the symbol is transformed into 

subcarrier received values, then the phase is estimated using the four pilots and the 

subcarriers are compensated with this phase. After that, every subcarrier is divided 

with the complex estimated channel response coefficient. 

7. The signal field is then further analyzed to find out the modulating technique, the 

parsing rate and the number of data octets 

8. Finally, the output data is de-interleaved, de-scrambled and de-punctured and 

decoded to produce the message. 
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2.2.1 Frame detection 

The first step in the receiver is to detect the start of the frame received. Each OFDM 

frame starts with a short preamble sequence followed by long training sequence then 

followed by the data as shown in the following figure. To detect the data, operations on 

each part in the frame should be made. Firstly, with the short preamble sequence which 

consists of a pattern of 16 samples and repeated 10 times. 

 

Figure 2-6 Detailed OFDM frame structure 

 

The frame detection algorithm is based on autocorrelation of the short training sequence. 

Then in order the values to be independent of the absolute values, autocorrelation value 

will be divided by the average power. Firstly, the autocorrelation absolute value is 

calculated by the following equation, the value of a[n] results of the incoming sample 

stream s [n+k] multiplied with the complex conjugate of s lagged by 16. By summing up 

over an adjustable window we can get the auto correlated values. Secondly, to have 

independent correlated values of the absolute level of incoming samples, a[n] will be 

normalized with the average power p[n] and calculate the auto correlation coefficients c[n].   

 

Figure 2-7 Autocorrelation calculation algorithm 
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Figure 2-8 Normalized auto correlation values with the average power 

 

Due to cyclic property of the short training sequence, the autocorrelation values will be 

high at the start of OFDM frame which will detect the start of the frame by comparing 

values with a threshold. Final thing to do to be sure that the frame start is detected is to 

leave the first three values (called plateau) more than the threshold value. And if the values 

after that still greater than the threshold, then the frame start is detected. If they are still 

less than threshold then the frame is not detected yet. Note that the size of plateau and the 

value of threshold can vary from a receiver to another. The following figure is an example 

of autocorrelation distribution in frame detection. 

 

 

Figure 2-9 Autocorrelation function behavior in the frame detection 
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2.2.2 Frequency offset correction 

Frequency offset correction is required due to the fact of receiving slightly different 

frequencies. To compensate these differences, there are many algorithms to recover this 

frequency offset. One of these algorithms is applicable on OFDM receiver which depends 

on the frame cyclic property. In another words, it’s expected in the normal case that a 

sample s[n] should correspond to the sample s [n+16]. But, due noise and frequency offset 

occurrence this is no longer the case and s[n]*conj(s [n+16]) is not a real number as in the 

ideal case.  

In order to neglect the noise, the argument of the product that corresponds to 16 times the 

rotation that is introduced by the frequency offset between samples. Then to estimate the 

final frequency offset value, averaging is applied (dividing by 16) as shown in df equation 

in the next figure. Where Nshort is the length of the short training sequence.  

Using the argument of sum of the products is more robust against noise, as samples with 

small magnitudes which are more affected by noise are weighted less.  

Finally, the frequency offset is applied to each sample as shown in the next figure. 

 

 

Figure 2-10 Frequency offset calculation equation and updating frame with the new phase   
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2.2.3 Symbol Alignment 

After the frequency offset estimation. Symbol alignment is then performed. The main 

mission of the symbol alignment is to calculate where the symbol starts, extract the data 

symbols and send them to FFT algorithm to be transformed from time domain to frequency 

domain. This task is done with the help of the long training sequence which is composed 

of 64 samples that repeat 2.5 times. As the alignment have to be very precise, matched 

filtering is applied first for this operation.  

In the next figure, a graph is showing the correlation of the input stream with the known 

sequence.  

 

Figure 2-11 Sample Index 

The indices of the highest three peaks are calculated using this equation 

𝑁𝑝 = arg(𝑚𝑎𝑥3)∑𝑠[𝑛 + 𝑘]𝐿𝑇[𝑘]𝑤ℎ𝑒𝑟𝑒𝑛 ∈ {0,1, … . , 𝑁𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒}

63

𝑘=0

 

Where N preamble represents the added length of the short and long preambles, LT is the 

long preamble pattern that spans 64 samples and arg (max3) return the top three indices 

maximizing this expression. 

The first data symbol starts at the following sample index as the latest peak of the matched 

filter output is 64 samples before the end of the long training sequence.  

𝑛𝑝 = max(𝑁𝑝) + 64 

After the relative frame start is detected, the data symbols are then extracted and passed to 

the FFT algorithm as samples multiples of 64 to perform the FFT with size 64. 
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In addition to that, knowing the start of the data symbols, the cyclic prefix can be removed 

by sub setting the data stream and grouping samples that correspond to individual data 

symbols 

(𝑠[𝑛𝑝 + 16], … . . , 𝑠[𝑛𝑝 + 79], 𝑠[𝑛𝑝 + 80 + 16], , , , , , ) 

 

Where s [np+16] up to s [np+79] are considered the first symbol and the rest is the second 

symbol and so on. 

 

2.2.4 Phase offset correction 

After the symbol alignment, the output symbols are turned from time domain to 

frequency domain using the FFT algorithm of size 64. Then, the phase offset correction is 

done. This phase offset is calculated using the pilot symbols that are inserted inside each 

OFDM symbol. The phase correction is not only done using the pilots of each symbol 

independently, but the residual offset is also calculated through the phase offset between 

the pilot symbols of subsequent symbols. That way, the phase offset can be calculated, 

compensated and updated frequently to compensate with the fast channel changes. 

 

2.2.5 Channel estimation 

After the phase and frequency correction, the data is transformed from complex 

numbers to octets to be further decoded. This is done using channel coefficients that are 

extracted using different channel estimation techniques. They perform the same task but 

with different techniques that give them different efficiencies. These techniques are further 

discussed in the code description and code design. 

 

2.2.6 Signal field decoding 

The first step at the receiver after correct channel equalization and synchronization is 

to decode the signal field. In each frame, the short and long training sequences are followed 

by the signal field, which is a BPSK modulated OFDM symbol encoded with a rate of 1/2 

that carries information about the length and encoding of the following symbols. In order 

to do so, we use the deinterleaver function to deinterleave the received signal field bits and 

a Viterbi decoder to decode the output of the deinterleaver. 
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If the signal field is decoded successfully, i.e., if the rate field contains a valid value 

and if the parity bit is correct, the Decode Signal Field return the type of encoding of the 

data and the number of symbols in each frame and pass it to the next block Frame Decode 

block. 

 

Figure 2-12 Signal field assignment 

2.2.7 Frame decoding 

The final step in the receiver after correct decoding of signal field is the decoding of 

the actual payload. It is performed in multiple sub-steps, as follows. 

 Demodulation: The OFDM Decode block receives vectors of 48 constellation 

points in the complex plane, corresponding to the 48 data subcarriers per OFDM 

symbol. According to the used modulation scheme, these constellations are mapped 

to floating point values, representing the soft-bits of the employed modulation. 

 DE interleaving: At which the bits of a symbol are permuted. The permutation is 

the same for all symbols of a frame. 

 Convolutional Decoding and Puncturing: Depending on the coding rate we use 

Viterbi decoder for decoding a bit stream that has been encoded using Forward 

error correction. 

 Descrambling: The final step in the decoding process is descrambling. In the 

encoder the initial state of the scrambler is set to a pseudo random value. As the 

scrambler is implemented with a seven bit feedback shift register, 27= 128 initial 

states are possible. The first 7 bit of the payload are part of the service field and 

always set to zero, in order to allow the receiver to deduce the initial state of the 

scrambler. 

The mapping from these first bits to the initial state is implemented via a lookup 

table. 
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Chapter 3  

Project Design 

 

n this chapter, we’ll focus on how we designed the project to achieve its 

functionality and what were the needed components. We will state a quick 

overview on everything we used to create the picture of the project for the 

reader to understand the following chapters. Also we’ll discuss our testing 

plan, project phases and cost. 

 

 

 

 

 

 

 

 

 

I 
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3.1 Implementation Overview 

Our implementation started by the need of a development kit to process the TX/RX 

code and a RF antenna to send and receive data stream. It was found that the model of the 

PHY layer can be represented by two ways: 

3.1.1 Standalone device model 

 Steps of model creation: 

1- Develop codes of transmitter and receiver 

2- Burn the code of transmitter or receiver to the DSP kit for processing data 

3- Connect DSP kit with an RF tool to start sending 

4- On the other side of reception, there will be the same components receiving data 

 Notes: 

- The standalone model didn’t work with USRP since its driver didn’t work on DSP   

kit when we tried to make it. That’s why we needed another RF tool that will be made 

by Consultix corporate (our sponsor).  

3.1.2 Step by step model 

 

 

Figure 3-1 USRP and DSP kit connection 
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 Steps of model creation: 

1- Develop codes of transmitter and receiver 

2- Connect DSP kit with its emulator (debugger) to the laptop 

3- Set the configuration file to deal with DSP emulator xdvs100 

4- Start running transmitter code on CCS 

5- Save Transmitter output to file 

6- In GNUradio transceiver blocks (USRP channel), add the transmitter processed 

 data  

7- Connect USRP and save the data received on GNUradio 

8- In CCS receiver, insert the data received and debug the code 

9- Data received successfully  

 

3.2 Project Testing 

3.2.1  Functional Testing 

We tested each function in the code by comparing its results by GNUradio block 

results using Octave tool. 

 

3.2.2  Integration Testing 

To test TX, we used GNUradio blocks and implemented the following: 

1- Disabled the transmitter blocks from GNUradio 

2- Add our transmitter results to be sent instead of disabled blocks 

3- Receiver blocks is unchanged to check our transmitter functionality 

 

 To test the RX, we used CCS and GNUradio and implemented the following: 

1- From GNUradio, take the input to the receiver by the help of octave  

2- Read the file in CCS to the receiver code and run 
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3.3 Project phases 

The project is divided into two main phases. Phase 1 which was done in the first half 

of the year and phase two in the second half. 

3.3.1  Phase 1 

- Standard IEEE802.11p understanding 

- Adapting with GNU radio and studying IEEE blocks 

- Standard verification with GNU radio blocks 

- Studying USRP and try sending and receiving through two antennas and GNU radio 

- DSP SDK understanding 

3.3.2  Phase 2 

- Setting up the environment either software or hardware tools 

- Start implementing TX and RX C functions on DSP kit 

- Testing 

- Project Documentation 

 

3.4  Project Cost  
Table 4 Project Budget 

Item Specification Price 

USRP Model: B200 686 $ (already available- 

Board only) 

2 Antennas Model: VERT900 36 $ each (already 

available) 

DSP kit Model:mityDSP OMAP-

L138f 

708 $ 

Emulator (Debugger) Model: XDS100  79 $ 

Total Cost:  1545 $ 
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4.1 Software Tools 

4.1.1 Gnu radio 

In this section, we'll describe GNU radio a very important software that was used in 

the V2V PHY layer implementation, we’ll first make an overview on it and describe its 

general usage, and then we’ll go through how it was in the project. 

4.1.1.1 Overview: 

GNU Radio is a free software development toolkit that provides signal processing 

blocks to implement software-defined radios and signal-processing systems. It can be used 

with external RF hardware to create software-defined radios, or without hardware in a 

simulation-like environment. It is widely used in hobbyist, academic, and commercial 

environments to support both wireless communications research and real-world radio 

systems. 

 

The GNU Radio software provides the framework and tools to build and run software radio 

or just general signal-processing applications. The GNU Radio applications themselves are 

generally known as 'flow graphs', which are a series of signal processing blocks connected 

together, thus describing a data flow. As with all software-defined radio systems, re-

configurability is a key feature. Instead of using different radios designed for specific but 

disparate purposes, a single, general-purpose, radio can be used as the radio front-end, and 

the signal-processing software (here, GNU Radio), handles the processing specific to the 

radio application. 

These flow graphs can be written in either C++or the Python programming language. The 

GNU Radio infrastructure is written entirely in C++, and many of the user tools are written 

in Python. 

We used the GNU Radio Companion as a graphical UI used to develop GNU Radio 

applications. This is the front-end to the GNU Radio libraries for signal processing. 

 

The main advantage of the gnu radio is that the standard 802.11is already implemented 

using C++and is an open source, so we used it as a test bed to verify that it’s working with 

the 802.11p standard. Thus, we can use it for validation method when implementing the 

standard on the DSP kit. 
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4.1.1.2 Block diagrams of GNU radio 

 

Wi-Fi Physical hierarchy 

 

Figure 4-1 Physical hierarchy block diagram 

The previous block diagram shows the blocks of the physical hierarchy in details and as 

explained in the standard. The Wi-Fi Mapper does the functions of the PLCP; scrambling, 

interleaving and splitting the data into symbols. The OFDM carrier allocator puts the 

symbols into the destined subcarriers, adds the pilots and prepares the OFDM symbol for 

the IFFT block to perform inverse fast Fourier transform. At the end, before transmitting, 

the cyclic prefix is added through the OFDM Cyclic pre-fixer block. 

 

On the other half of the block diagram is the physical hierarchy of the receiver. This half 

reverses all the operations done on the transmitter after removing the cyclic prefix and 

recovering the signal from the traffic. 
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Wi-Fi transmitter 

 

Figure 4-2 Transmitter block diagram 

 

The physical hierarchy is all inserted into a single block called Wi-Fi PHY hierarchy. This 

block diagram shows the insertion of data into the MAC layer, then into the physical layer 

up to the USRP block which puts the data on the channel to be sent. 
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Wi-Fi Receiver 

 

Figure 4-3 Receiver block diagram 

This block diagram takes the receiver part of the physical hierarchy to receive the data from 

the channel first using the USRP block, then recover the data from the channel and start 

de-modulating, de-interleaving and de-scrambling the data. 
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Wi-Fi transceiver 

 

Figure 4-4 Transceiver block diagram 

 

To show both sides in one block diagram, this block diagram shows the transmitter, the 

channel and the receiver. The channel here is created using USRP. 
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Wi-Fi loopback 

 

Figure 4-5 Loopback block diagram 

 

Loopback also shows both sides in one block diagram, which are the transmitter, the 

channel and the receiver. The difference from transceiver is that the channel here is virtual 

channel model. 
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4.1.2 CCS (Code Composer Studio) 

Code composer studio is an integrated development environment that supports TI’s 

microcontrollers. It has tools to develop and debug embedded applications. These tools are 

an optimizing C/C++ compiler, source code editor, project build environment, debugger, 

profiler, and many other features. Code composer studio combines the advantages of 

Eclipse with advanced embedded debug capabilities of TI microcontrollers. 

Code composer studio V7 is the latest version. It’s efficient with the debugger used with 

the mitydsp kit (XDS 100v2). However, sometimes only a simulator is needed to make 

testing and trying easier. This is not available in v7 but it’s available in CCS v5. CCS v5 

has simulators that work for several DSP kits and processors. Since our project is DSP 

based, it was easy to find a simulator for (C674x processor) in CCS v5 

In addition to that, there is a DSP library available for C674x processor. It has various 

useful functions that are rather used in our code such as FFT, IFFT and FIR filter. What’s 

impressive about this library is that it’s done using Assembly which increases its efficiency. 

Also, there are functions that are especially made for complex numbers which makes it a 

lot easier and more efficient for us to use this library. 

 

 

Figure 4-6 CCS logo 
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4.1.3 GNU Octave 

In this section, we'll describe GNU Octave a very important software that was used in 

the V2V PHY layer implementation, we’ll first make an overview on it and describe its 

general usage, and then we’ll go through how it was in the project. 

4.1.3.1 Overview: 

GNU Octave is software featuring a high-level programming language, primarily 

intended for numerical computations. Octave helps in solving linear and nonlinear 

problems numerically, and for performing other numerical experiments using a language 

that is mostly compatible with MATLAB. It also provides extensive graphics capabilities 

for data visualization and manipulation. It is free software under the terms of the GNU 

General Public License. 

4.1.3.2 The Octave language 

The Octave language is an interpreted programming language. It is a structured 

programming language (similar to C) and supports many common C standard 

library functions, and also certain UNIX system calls and functions. However, it does not 

support passing arguments by reference. 

Its syntax is very similar to MATLAB, and careful programming of a script will allow it to 

run on both Octave and MATLAB.  

Because Octave is made available under the GNU General Public License, it may be freely 

changed, copied and used. The program runs on Microsoft Windows and 

most Unix and Unix-like operating systems, including macOS.  

 

 

 

Figure 4-7 Octave logo 

https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/MacOS
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4.1.3.3 Usage in the project: 

Since Octave can read the output file from any block in the gnu radio using a file sink, 

Octave has been used in this project to test the output from each block by comparing it to 

the output of the gnu radio block. It can read any type of data stored in a file with any size, 

with any format and convert to any type of data for displaying, here is a sample code for 

reading from a file. 

1. PS1(">>") 

2. addpath("/home/UserName/gnuradio/gr-utils/octave") 

3. c=read_char_binary("File_Sink_Output.txt") 

The second line of code is used to direct the path to the octave folder, the third line will 

read the file sink output that contains data in the form of characters and convert it to binary 

data and display it on the screen. 

 

 

Figure 4-8 File Sink block 
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4.2 Hardware Tools 

4.2.1 USRP 

It stands for Universal Software Radio peripheral, the device is used as transceiver for 

radio frequency signals in wireless communication systems through the development of 

Software-defined radios.  

 

Figure 4-9 USRP B200 

4.2.1.1 Hardware overview 

"Following a common software-defined radio architecture, NI USRP hardware 

implements a direct conversion analog front end with high-speed analog-to-digital 

converters (ADCs) and digital-to-analog converters (DACs) featuring a fixed-personality 

FPGA for the digital down conversion (DDC) and digital up conversion (DUC) steps. The 

receiver chain begins with a highly sensitive analog front end capable of receiving very 

small signals and digitizing them using direct down conversion to in-phase (I) and 

quadrature (Q) baseband signals. Down conversion is followed by high-speed analog-to-

digital conversion and a DDC that reduces the sampling rate and packetizes I and Q for 

transmission to a host computer using Gigabit Ethernet for further processing. The 

transmitter chain starts with the host computer where I and Q are generated and transferred 

over the Ethernet cable to the NI USRP hardware. A DUC prepares the signals for the DAC 

after which I-Q mixing occurs to directly up convert the signals to produce an RF frequency 

signal, which is then amplified and transmitted." ("What Is NI USRP Hardware? - National 

Instruments", 2017)  
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Figure 4-10 USRP 2920 system level diagram 

 

4.2.1.2 USRP usage in our project  

In this project the USRP B200 used to transfer the data from one end to the other end 

after setting the required antenna parameters and bandwidth occupied by the transferred 

data this happened through two principle blocks in GNU radio 

USRP sink is that responsible for adjusting the parameters at the transmitter side  

USRP source is that responsible for adjusting the parameters at the receiver side  

In the following figure, the channel is represented by block called "channel model" in the 

loopback code for the IEEE standard 802.11, which is substituted by the USRP blocks for 

real transceiver connected through the USRP device. 
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Figure 4-11 Simulated channel model using GNU radio 

 

Figure 4-12 USRP channel using GNU radio 

4.2.1.3 Challenges 

One of our goals was to connect the USRP with the mitydsp kit directly. However, the DSP 

kit was considered a third party device with an operating system that is different than most 

operating systems that can install the USRP driver easily. A lot of challenges were faced 

while trying to install the libraries needed for the USRP driver. As a result, using the PC 

with Gnuradio as a communication host between the USRP and the DSP kit was a suitable 

satisfactory solution. 
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How we used the USRP and Gnuradio with our transmitter: 

Gnu radio uses C++ language to make its blocks and Python to connect the blocks and 

make them communicate with each other. Using the C++ code of the last block of the 

transmitter, we managed to replace its code and make it write our own data that was made 

by our transmitter. That way, we can send our own data but by using Gnu radio’s method 

of communication to send the data with no errors. 

 

 

Figure 4-13 the last block in GNU Radio transmitter 

 

Figure 4-14 commenting code that is not needed 

 

Figure 4-15 adding our own data 
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How we used the USRP and Gnuradio with our receiver: 

Since Gnu radio has a block that communicates with the USRP, there wasn’t any problems 

communicating with the USRP. However, the main concern was how to read the data after 

it’s received and transfer it to our own receiver. So, we decided to add a file sink block 

after the USRP block. This block reads the received data and saves it into a file. After that, 

our receiver reads the data from this file and starts to analyze it and operate normally. That 

way, we facilitated the communication between Gnu radio, USRP and our own receiver 

using normal .txt files. 

 

 

Figure 4-16 USRP blocks and File sink block 

In this figure, the USRP sink is the block that takes the data to USRP to be sent. The USRP 

source is the block that receives the data from the receiving antenna and puts it to Gnu 

Radio. This received data is then written in the file that’s path is written inside the block. 

FInally, our receiver reads the data from that same file and starts analyzing it. 
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4.2.2 MitydspL138F 

In this section, we'll describe the kit that we used to create an environment applicable 

to test the V2V PHY layer implementation, we’ll first make an introduction to DSP and its 

general usage, and then we will go through an overview on its Hardware and Software 

usage. 

4.2.2.1 Introduction to DSP 

It is an electronic board with Digital Signal Processor used for experiments, evaluation 

and development. A digital signal processor is a specialized microprocessor used to 

measure continuous real-world analog signals. Applications are developed in DSP Kits 

using a software usually referred as an Integrated Development Environment. Texas 

Instruments and Spectrum Digital are some of the companies who produce these kits. 

 
Figure 4-17 MityDsp-L138F 

 

 

https://en.wikipedia.org/wiki/Digital_Signal_Processor
https://en.wikipedia.org/wiki/Integrated_Development_Environment
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/Texas_Instruments
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In our project, we are going to use a MitydspL138-F shown in the following figure, 

developed by Critical link an electronics product development company. 

4.2.2.2 Overview on the MitydspL138-F: 

The MityDSP-L138F System on Module (SoM) is the highest performance module in 

the OMAP-L138 family (a family of development kits) of MityDSPs. It features the dual-

core OMAP-L138 CPU from Texas Instruments which provides both an ARM9 

applications processor and a C674x Fixed / Floating Point DSP. 

4.2.2.3 Applications: 

1. Embedded Instrumentation 

2. Industrial Automation 

3. Industrial Instrumentation 

4. Medical Instrumentation 

5. Embedded Control Processing 

6. Network Enabled Data Acquisition 

7. Test and Measurement 

8. Software Defined Radio 

9. Bar Code Scanners 

10. Power Protection Systems 

11. Portable Data Terminals 

4.2.2.4 Specifications: 

 C674x Fixed  / Floating point DSP 

 

 

 

 

 

 

 

 

Table 4-1 C674x Fixed / Floating point DSP 
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 ARM processor 

 

 

 Memory 

 

 FPGA  

 

 

 

 

 

 

 

 

 

Table 4-2 ARM processor 

Table 4-3 Memory 

Table 4-4 FPGA 
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4.2.2.5 Block diagram 

4.2.2.6 Interfaces 

 

 

Table 4-5 Interfaces 

 

 

 

 

 

Figure 4-18 Block diagram 
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4.2.2.7 Mechanical 

 

 

Table 4-6 Mechanical 

 

 

 

 

 

 

 

\ 

Figure 4-19 Dimensions 
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4.2.2.8 Development tools and software  

 

 

Table 4-8 Development tools 

 

4.2.2.9 UPP 

The uPP (Universal Parallel Port) interface is one of the most important interfaces 

found in the mitydspL138F, It is particularly well suited to data acquisition through the on-

board Xilinx FPGA. 

 It offers a very high-speed parallel data bus with several important features: 

 Two independent channels with separate data buses 

 Channels can operate in same or opposing directions simultaneously 

 I/O speeds up to 75 MHz with 8-16 bit data width per channel 

 Internal DMA – leaves CPU EDMA free 

 Simple protocol with few control pins (configurable: 2-4 per channel) 

 Single and double data rates (use one or both edges of clock signal) 

 Double data rate imposes a maximum clock speed of 37.5 MHz 

 Multiple data packing formats for 9-15 bit data widths 

 Data interleave mode (single channel only) 

Table 11 Software support 
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4.2.2.10 Usage of the DSP kit in the project 

The choice of this particular kit comes back to the fact that it’s C674x Fixed / Floating 

Point DSP features an optimized general-purpose DSP function library as well as a MATH 

library for C Programmers typically used in computationally intensive applications. These 

libraries were very useful in the course of this project because many complex functions 

were needed through the implementation of the signal processing for both the transmitter 

and the receiver. 

Another motive for choosing this particular kit, because of the UPP interface that was 

supposed to be used to transmit data with very high rates from the transmitter to the USRP. 

An XDS100v2 low cost JTAG debug probes (emulators) is used for the connection with 

the mitydsp kit in the software development using code composer studio. It provides the 

feature of debugging the code line by line without the need to download the code on the 

kit. 

 

 

 

 

 

 

 

 

 

Figure 4-20 XDS100v2 low cost JTAG debug probe 
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Chapter 5  

Code Description 
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5.1 Transmitter  

5.1.1 Mapper 

In this section, we will explain the Mapper block, the first block in the transmitter chain 

that performs all the signal processing on the data PSDU and append service bits,tail bits 

and pad bits  to it to create multiple OFDM symbols depending on the length of the PSDU 

then pass it to the chunks to symbols for modulation. 

5.1.1.1 Design: 

The signal processing in the Mapper is composed of many detailed steps, which are 

described fully later in the implementation, the following overview intends to facilitate 

understanding the details of the design procedure sequence: 

1. Calculate from the type of encoding the number of data bits per OFDM symbol 

(NDBPS), the coding rate (R), he number of bits in each OFDM subcarrier 

(NBPSC), and the number of coded bits per OFDM symbol (NCBPS). Refer to 

Table 1-1 for details. 

 

2. Append the PSDU to the SERVICE field of the TXVECTOR. Extend the 

resulting bit string with zero bits (at least 6 bits) so that the resulting length is a 

multiple of NDBPS. The resulting bit string constitutes the DATA part of the 

packet. Refer to Figure 1-1for details. 

 

3. Initiate the scrambler with a pseudorandom nonzero seed, generate a 

scrambling sequence, and XOR it with the extended string of data bits. 

  

4. Replace the six scrambled zero bits following the data with six unscrambled 

zero bits (Those bits return the convolutional encoder to the zero state and are 

denoted as tail bits). 

 

5. Encode the extended, scrambled data string with a convolutional encoder (R = 

1/2). Omit (puncture) some of the encoder output string (chosen according to 

“puncturing pattern”) to reach the desired “coding rate”. 
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Figure 5-1 PPDU Frame format 

Table 13 Modulation dependent parameters 
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5.1.1.2 Implementation: 

The Mapper is divided into ten major functions, these functions contributes in the 

signal processing of the data and in the implementation of other blocks rather than the 

Mapper, and these functions are: 

1. Void ofdm_param_intialization(Encoding e, ofdm_param* ofdm): 

This function is used to initialize the OFDM parameters depending on the type of 

encoding as mentioned in Table 1-1, the OFDM parameters variable is implemented as a 

struct and consists of the following:  

a. Encoding encoding; // Encoding type  

b. char rate_field; // rate field of the SIGNAL header 

c. int n_bpsc; // number of coded bits per sub carrier 

d. int n_cbps; // number of coded bits per OFDM symbol 

e. int n_dbps; // number of data bits per OFDM symbol 

 

2. Void frame_param_intialization(ofdm_param* ofdm, frame_param* 

frame,int psdu_length): 

This function is used to initialize the frame parameters depending on the parameter of the 

OFDM calculated in ofdm_param_intialization function and the PSDU size, the FRAME 

parameters variable is implemented as a struct and consists of the following:  

a. int psdu_size; // PSDU size in bytes 

b. int n_sym; // number of OFDM symbols (17-11) 

c. int n_pad; // number of padding bits in the DATA field (17-13) 

d. int n_encoded_bits; 

e. int n_data_bits; // number of data bits, including service and padding (17-12) 

 

3. Void generate_bits(const unsigned char *psdu, char *data_bits, 

frame_param* frame): 

This function is used to append the 16 zero service bits before data, 6 tail bits and 

padding bits to the end of the PSDU, It also take a copy of every bit of the data into a 

separate byte to  facilitate the signal processing later on. 

 

The PSDU consists of an array of characters contain the data field, while the output of 

this function is an array of characters, the first 16 bits are the services bits ,then  each 

character represent one bit of the data then 6 tail bits then pad bits. 
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4. Void scramble(const char *input, char *out, frame_param* frame,char 

initial_state): 

This function implements the scrambler, the DATA field, composed of SERVICE, 

PSDU, tail, and pad parts that shall be scrambled with a length-127 frame-synchronous 

scrambler. The octets of the PSDU are placed in the transmit serial bit stream, bit 0 first 

and bit 7 last. The frame synchronous scrambler uses the generator polynomial S(x) as 

follows: 

 

Equation 1 Scrambler 

The 127-bit sequence generated repeatedly by the scrambler shall be (leftmost used first), 

0000111011110010 11001001 00000010 00100110 00101110 10110110 00001100 

11010100 11100111 1011010000101010 11111010 01010001 10111000 1111111, when 

the all ones initial state is used. The same scrambler is used to scramble transmit data and 

to descramble receive data. When transmitting, the initial state of the scrambler shall be set 

to a pseudorandom nonzero state. The seven LSBs of the SERVICE field shall be set to all 

zeros prior to scrambling to enable estimation of the initial state of the scrambler in the 

receiver. 

 

Figure 5-2 Data Scrambler 

5. void reset_tail_bits(char *scrambled_data, frame_param* frame): 

The 6 tails bits should be unscrambled as mentioned in the design process that follows 

the instructions of the standard of IEEE 802.11, since those bits return the convolutional 

encoder to the zero state. This function is used to reset these 6 tail bits to the zero state. 



Graduation Project-2 V2V PHY layer Implementation Final Report  

 

 CCE-E Page | 54 

 

6. void convolutional_encoding(const char *input, char *out, frame_param* 

frame): 

The DATA field, composed of SERVICE, PSDU, tail, and pad parts, shall be coded 

with a convolutional encoder of coding rate R = 1/2, 2/3, or 3/4, corresponding to the 

desired data rate. The convolutional encoder shall use the industry-standard generator 

polynomials, g0 = 1338 and g1 = 1718, of rate R = 1/2, as shown in Figure 1-3. The bit 

denoted as “A” shall be output from the encoder before the bit denoted as “B.” 

 
Figure 5-3 Convolutional encoding (k=7) 

 

7. Void puncturing(const char *input, char *out, frame_param* frame, 

ofdm_param* ofdm): 

Higher rates (2/3,3/4) are derived from convolutional encoding by employing 

“puncturing.” Puncturing is a procedure for omitting some of the encoded bits in the 

transmitter (thus reducing the number of transmitted bits and increasing the coding rate) 

and inserting a dummy “zero” metric into the convolutional decoder on the receive side in 

place of the omitted bits. 
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8. Void interleave(const char *input, char *out, frame_param* frame,, 

ofdm_param* ofdm): 

All encoded data bits shall be interleaved by a block interleaver with a block size 

corresponding to the number of bits in a single OFDM symbol, NCBPS. The interleaver is 

defined by a two-step permutation. The first permutation ensures that adjacent coded bits 

are mapped onto nonadjacent subcarriers. The second ensures that adjacent coded bits are 

mapped alternately onto less and more significant bits of the constellation and, thereby, 

long runs of low reliability (LSB) bits are avoided. 

The index of the coded bit before the first permutation shall be denoted by k; i shall be the 

index after the first and before the second permutation; and j shall be the index after the 

second permutation, just prior to modulation mapping. 

 The first permutation is defined by the rule: 

 
Equation 2 Interleaver first permutation 

 

The function Floor (.) denotes the largest integer not exceeding the parameter. 

 The second permutation is defined by the rule: 

 
Equation 3 Interleaver second permutation 

The value of s is determined by the number of coded bits per subcarrier, NBPSC, according 

to s = max (NBPSC/2, 1) 

 

9. Void split_symbols(const char *input, char *out, frame_param* 

frame,ofdm_param* ofdm): 

This function is used to split the data symbols according to the modulation type,e.g case of 

BPSK each symbol contains only one bit, so each element in the output array will contain 

only one bit,case QPSK each symbol contains 2 bits ,so each element in the output array 

will contain 2 bits,other Bits Per Symbol For Common Modulation Formats can be found 

in Table 1-2 ,this function is implemented  using bit wise operations and shifting of the 

data bits according to the modulation type. 
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Table 10 Bits Per Symbol For Common Modulation Formats 

 

10. unsigned char* mapper_general_work_function(const unsigned char* 

psdu,int psdu_length, ofdm_param* d_ofdm, frame_param * frame): 

This function is the main function of the Mapper block, it calls all the functions stated 

above in the same order as they were mentioned to preform the signal processing 

mentioned in the design process. 

 

5.1.1.3 Testing technique of the block: 

In order to test this block, the correct output from each function is read from the Gnu 

radio by adding a print line in the code of the block after the function that needs to be 

tested, then the output is copied as an array to the CSS, subsequently compared to the 

output of the CSS by subtracting the two arrays. 

 

 

 

 

 

 

 

 



Graduation Project-2 V2V PHY layer Implementation Final Report  

 

 CCE-E Page | 57 

 

5.1.2 Packet header generator 

In this section, we will explain the packet header generator block, a parallel block to 

the Mapper in the transmitter chain, it produces the PLCP header excluding the service 

bits, it contains the LENGTH, RATE, reserved bit, and parity bit (with 6 zero tail bits 

appended) that constitute a separate single OFDM symbol, denoted SIGNAL, that is 

necessary for the demodulation, synchronization process at the receiver side. 

 

 

Figure 5-4 PPDU Frame Format 

5.1.2.1 Design: 

The OFDM training symbols shall be followed by the SIGNAL field, which contains 

the RATE and the LENGTH fields of the TXVECTOR. The RATE field conveys 

information about the type of modulation and the coding rate as used in the rest of the 

packet. The encoding of the SIGNAL single OFDM symbol shall be performed with BPSK 

modulation of the subcarriers and using convolutional coding at R = 1/2.  

The encoding procedure of the signal field includes convolutional encoding, interleaving 

as used for transmission of data in the Mapper with BPSK-OFDM modulated at coding 

rate 1/2. The contents of the SIGNAL field are not scrambled. 

The SIGNAL field shall be composed of 24 bits, as illustrated in Figure 1-2. The four bits 

0 to 3 shall encode the RATE. Bit 4 shall be reserved for future use. Bits 5–16 shall encode 

the LENGTH field of the TXVECTOR, with the LSB being transmitted first. 
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Figure 5-5 Signal field assignment 

5.1.2.2 Implementation: 

There is only Two new functions implemented for the signal field block: 

1. int get_bit(int b, int i) : 

This function returns the ith bit in the int b variable,it is used to set the Rate field and the 

Length field consequently from the rate field in the OFDM parameters, and the psdu size 

in the FRAME  parameters mentioned above in the explanation of the Mapper block. 

int get_bit(int b, int i) { 

return (b & (1 << i) ? 1 : 0); 

} 

 

2. unsigned char * generate_signal_field(frame_param* signal_param, 

ofdm_param* signal_ofdm,frame_param* data_frame, ofdm_param* 

data_ofdm): 

This function calls the get_bit function to set the RATE field. Bit 4 is reserved. It shall be 

set to 0 on transmit and ignored on receive. Then the LENGTH field is set using the get_bit 

function, Bit 17 shall be a positive parity (even parity) bit for bits 0–16, finally 6 zero tail 

bits are inserted in order to facilitate a reliable and timely detection of the RATE and 

LENGTH fields. 

It then preforms convolutional encoding with rate ½  then interleaving using the same 

functions implemented in the Mapper block in order to transmit the Signal field with the 

most robust combination of BPSK modulation and a coding rate of R = 1/2. 

 

5.1.2.3 Testing technique of the block: 

In order to test this block, the correct output from each function is read from the Gnu radio 

by adding a print line in the code of the block after the function that needs to be tested, then 

the output is copied as an array to the CSS, subsequently compared to the output of the 

CSS by subtracting the two arrays. 
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5.1.3 Chunks to symbols 

5.1.3.1 Function: 

The output divided Chunks of  the encoded and interleaved binary serial input data bits 

as groups of  (1, 2, 4, or 6) bits from the previous  block are modulated by using BPSK, 

QPSK, 16-QAM, or 64-QAM, depending on the Encoding type and converted into 

complex numbers representing BPSK, QPSK, 16-QAM, or 64-QAM constellation points. 

The conversion is performed according to Gray-coded constellation mappings, illustrated 

in the standard. 

Finally, it appends the modulated data field and to the modulated signal field in one array 

as an input for the next block. 

5.1.3.2 Implementation: 

To implement the modulation we use two functions: 

1. The Constellation_implemenation function:  

This function is responsible for generating the constellation by creating an array containing 

the complex numbers of this constellation and the size of this array is determined according 

to the coding type. 

For example : if the encoding type is QPSK , then the array size will be four complex 

elements and as in this block we don’t use the complex library for simplicity , we will have 

eight elements as shown in Figure 1 . 

 

Figure 5-6 QPSK constellation implementation function 
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Then this function returns a pointer to the created array to be used by the other function 

which is the Chunks to symbols implementation function. 

 

2. The Chunks to symbols implementation function: 

This function uses the constellation implementation function to create the array according 

to the encoding type and uses the created array to map each chunk of bits into the suitable 

complex number. 

The idea of mapping is based on using the decimal value of the chunk bits as an index to 

the constellation array to get the suitable complex number corresponding to these bits. 

For example: if we have this chunk of  four binary bits [1000]  , the chunks to symbols 

function maps these bits to the complex number at index =8 which is the equivalent decimal 

value of the chunk [1000] as shown in figure 2. 

 

 

Figure 5-7 Mapping of the chunks into the complex numbers 

 

5.1.4 Tagged stream MUX 

This block simply creates a frame that contains signal field followed by the rest of the 

frame. 

 

 

 

 

 

 

 

 



Graduation Project-2 V2V PHY layer Implementation Final Report  

 

 CCE-E Page | 61 

 

5.1.5 OFDM carrier allocator 

5.1.5.1 Standard requirements 

According to the standard it is required to rearrange the 64 subcarriers entering the FFT 

with a certain sequence specified in the standard 

The 64 subcarriers will be: 

 Data carriers 48 subcarrier 

 Pilot carriers 4 subcarriers  

 Zero padding 12 subcarriers 

Data carriers will be in {-26,-25,-24,-23,-22,-20,-19,-18,-17,-16,-15,-14,-13,-12,-11,-10,-

9,-8,-6,-5,-4,-3,-2,-1, 26,25,24,23,22,20,19,18,17,16,15,14,13,12,11,10,9,8,6,5,4,3,2,1} 

Pilot carriers will be in {-21,-7, 7, 21} subcarriers 

5.1.5.2 Function Input 

1. Data to be put on the OFDM frame  

2. FFT-length which is 64 in the transceiver  

3. Occupied_carriers 48 subcarrier positions specified in the standard 

4. Pilot_carriers 4 subcarrier positions specified in the standard 

5. Pilot_symbols the values of the pilot symbols 

6. Sync word to be put in the beginning of the frame 

5.1.5.3 Implementation  

The sync words will be placed in the beginning of the frame directly. Then the input will 

be divided such that each part consists of 64 subcarriers to be delivered to the FFT. 

The block consists of three objects for this, typically called occupied_carriers (for 

the data symbols), pilot_carriers and pilot_symbols (for the pilot symbols). 

 occupied_carriers and pilot_carriers identify the position within a frame 

where data and pilot symbols are stored, respectively. 

 

 Clarification example:  

occupied_carriers = (-2, -1, 1, 3) 

pilot_carriers = (-3, 2) 

Every OFDM symbol carries 4 data symbols. They are on carriers -2, -1, 1 and 3. Carriers 

-3 and 2 are not used, so they are where the pilot symbols can be placed.  
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5.1.6 IFFT 

5.1.6.1 Design 

This block only performs the IFFT (Inverse Fast Fourier Transform) of the data to turn 

it from frequency domain to time domain to be sent to the channel after adding the cyclic 

prefix to it. The FFT size is 64. The only addition is that before it performs the IFFT to 

every 64 elements, it scales the data to the actual number of sub carriers ( 52) and performs 

a shift on the data before transforming it into time domain. Every 64 elements are divided 

into two arrays, the first array is shifted to be in the place of the second array and vice 

versa. Then the two arrays are combined again and an IFFT is performed on the data. 

 

5.1.6.2 Implementation 

One of the advantages of digital signal processing is the availability of a lot of DSP 

libraries in C language. Our DSP library has a ready–made function for the IFFT. However, 

this function doesn’t perform the scaling or the shifting. So, we had to do both manually. 

First, every 64 elements are multiplied by 64 (to reverse the original normalization) and 

then divided by the square root of 52. Then the shifting is done using (memcpy()) function. 

Finally, the IFFT function is called to perform the Fourier transform. One of the great 

advantages of the IFFT function in the DSP library is that it’s implemented in assembly to 

maximize the performance. Also, the function takes the complex numbers in the form of 

an array; the real numbers have an even index while the imaginary numbers have an odd 

index. 

 

5.1.6.3 Testing 

Since the window scale is not part of the normative specifications of the standard, there 

was no need to compare it to the standard. However, comparing it to Gnu Radio. It was 

easy to take the output of the IFFT block and store it into a file using File sink, then read 

the contents of this file using Octave. Comparing the ouput of IFFT to our own IFFT, the 

results were identical. 
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5.1.7 Cyclic prefix 

5.1.7.1 Design 

It consists of two parts: 

 First part cyclic prefix: 

 Cyclic prefix usage:  

 It increases the immunity to multipath fading. 

 Second part cyclic suffix and windowing: 

 Cyclic suffix usage: 

It creates a smooth transition between the last sample of one symbol and the first 

sample of the next symbol. 

 

5.1.7.2 Implementation 

1. Cyclic prefix implementation: 

It is implemented in CyclicPrefix function which exists in CyclicPrefix.c file as shown in 

figure1. It appends the last 16 samples of the 64 point IFFT to the front of the symbol, 

creating a composite symbol that is 80 samples long. 

 

Figure 5-8 Implementation of cyclic prefix function in code 

2. Cyclic suffix and windowing implementation: 

It is implemented in CyclicPrefix function which exists in CyclicPrefix.c file as 

shown in figure2. 

 

Figure 5-9 Implementation of cyclic suffix and windowing function in code 
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The window and the cyclic suffix length depend on the value of roll length of the raised 

cosine used. 

Two windows are applied, one being the mathematical inverse of the other. The first raised 

cosine window is applied to the cyclic suffix of the previous symbol, and rolls off from 1 

to 0 over its duration (down flank window). The second raised cosine window is applied 

to the cyclic prefix of the current symbol, and rolls on from 0 to1 over its duration (up flank 

window). 

The cyclic suffix of the previous symbol multiplied by down flank window (delay line) is 

summed with the cyclic prefix of the next symbol multiplied by the up flank window as 

shown in figure3.  

 

 
Figure 5-10 Cyclic prefix implementation 

 

5.1.7.3 Testing technique of the block 

First read input of cyclic prefix block in GNURADIO using OCTAVE and store it in 

an array called gnuradio_input in CCS then use it as input array of cyclic prefix function 

in CCS. After that read output of cyclic prefix block in GNURADIO using OCTAVE and 

store it in an array called gnuradio_output in CCS. Finally subtract gnuradio_output array 

from output of cyclic prefix function in CCS if we get an array of zeros then we succeed 

to implement the cyclic prefix function. 
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5.2 Receiver 

5.2.1 The blocks before Synch short 

 

Figure 5-11 Blocks before sync short 

5.2.1.1 Description 

These blocks take the Input to the receiver which comes from the channel (either the 

channel model in GNuradio or USRP channel). As we discussed before, this part is 

responsible for frame detection and to detect the frame start we must make some 

calculations to reach to the auto correlated values 

There are mainly three inputs to the sync short which are: 

1. Delayed input 

2. Window summation result 

3. Auto-correlated values 

5.2.1.2 Implementation 

1. void delayy(const float complex *input, float complex *output, short int 

delay , short int input_size, float complex delay_before_sync_short[]) 

- The function delay is used to pad zeros at the beginning of the frame by size 

delay 

- The output array size is input size + delay 

- Therefore, when the input is multiplied by delayed input, it will result to 

neglecting the 16 short sequence 

 

2. void movingAverage(float* arr,float* out ,short int size ,short int 

length,float*sum,float x[]) 

- Used to calculate the summation of each window frame 

- In the delayed path, we assume the window size to be (64-16 = 48) 

- In the non-delayed path, the window size is normally 64 



Graduation Project-2 V2V PHY layer Implementation Final Report  

 

 CCE-E Page | 66 

 

 

5.2.2 Synch Short 

5.2.2.1 Description 

Completing the frame detection operation, sync short calculates the frame start, the 

frequency offset and calculates the indices that has some special conditions that will be 

discussed in the following part. Sync short mainly consists of two main cases which are: 

Case Search: 

It is used to search an index. This index describes the start of data that is more than 

0.56 threshold. Known that there is a check which says that to return the index there must 

be three successive input more than threshold value (min plateau).  

Consider the following example: 

Assume that the following is the frame that is received from autocorrelation function 

0.123 0.22 0.45 0.6 0.57 0.4 0.2 0.58 0.57 0.62 0.7 .. .. .. 

The start index that will come out in case of the previous table is 10 (value = 0.62) 

Case Copy: 

Once the index of the start of data is found. Case copy is used to copy all the rest of 

frame taking into consideration two things: 

1- Minimum Gap case 

Reaching min gap condition indicates that the case copy copied number of samples more 

than threshold which exceed the min gap value. In other words, if another frame arrives 

shortly after the first one, it won’t be detected without minimum gap condition. Therefore 

when it reaches that condition it indicates that there is a start of a new frame (either it is a 

correct or wrong frame but it completed the size of min gap). The response to min gap case 

is normal, it will complete copying as it is and will break in two cases:  

 If we reached input size (break and complete rest of the operations on the 

frames detected from min gap condition) 

 If the counter copying (d_copied) reached max_samples 
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2- Maximum samples case  

This case solves a limitation that may happen while copying. Which is the size of the frame 

that can be decoded is limited to a configurable number of OFDM symbols which doesn’t 

contain a frame yet (all noise less than threshold after accessing case copy), Therefore, if 

we set a maximum number of samples which is a multiples of the OFDM frame size, we 

could set size limitation to solve the problem of not finding a frame (minimum gap case 

doesn’t happen) which will let us return to Search case again and it will be stuck in sync 

short between search and copy if the minimum gap case doesn’t happen. 

 

5.2.3 Sync Long 

5.2.3.1 Design 

This block is responsible for frequency offset correction and the symbol alignment. 

As mentioned above, the symbol alignment as well as the frequency offset is calculated 

by getting the correlation of the received data with the long training sequence, getting the 

maximum peaks of this correlation and then detecting the frame start. 

In our design, the correlation is extracted by using an FIR (Finite Impulse Response) 

filter. 

5.2.3.2 Implementation 

1. Case SYNC: 

In this case we are preparing the incoming data samples to detect the exact 

frame start of the frame and frequency offset of the samples by executing 

some functions that are described as follows  

1.1.FIR_Filter(…):  

It is used to calculate the correlation between the received samples with 

the well-known long training samples to calculate the exact frame start. 

this operation of the FIR filter is described as in Fig 5.12 such that:  

𝑦[𝑛] = ℎ0. 𝑥[𝑛] + ℎ1. 𝑥[𝑛 − 1] + ⋯+ ℎ𝑁 − 1. 𝑥[𝑛 − 𝑁 + 1] 

Xn:nth element of the input data samples 

hn: nth element of the long training sequence array  

N: Number of  complex long training sequence which is 64 in out case 

Yn: nth element of the FIR filter response  
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Figure 5-12 the logical structure of the FIR filter 

1.2.Search_frame_start(…): 

It is used to calculate the frequency offset and the index of the first 

training sample in the received frame to be fed to the FFT. 

So first we reorder the resulted correlation from the FIR filter to get the 

maximal two correlated samples so that we can get the start of the frame 

and the frequency offset to be corrected.  

 

2. Case COPY:  

In this case the output of sync long is being constructed taking into account the 

beginning of  long training sequence followed by the OFDM data symbols, removing 

the cyclic prefix and correcting the frequency by multiplying by frequency offset that 

was calculated previously. 

 

5.2.3.3 Testing technique of the block 

The testing process here is achieved through testing three parts: 

1. FIR_Filter testing: The input and the output of the FIR filter is read through 

OCTAVE from the GNU Radio simulation results then the results is compared 

through showing the difference from that in GNU Radio and what is 

implemented. 

2. Frequency offset and frame start testing: It is achieved by enforcing the same 

input array of samples obtained from the GNU Radio to the implemented 

Search_frame_start() and observing the frequency offset and the frame start 

achieved. 

3. Output array: By observing the difference between the output array of sync 

long and that obtained from the GNU radio 
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5.2.4 FFT 

5.2.4.1 Design 

The FFT block is very similar to the IFFT. The only difference is that it doesn’t need 

scaling. Also, the shifting is done after the FFT not before it; unlike the IFFT block. 

5.2.4.2 Implementation 

Using the FFT function from the DSP library, which is also written in Assembly to 

maximize the performance, the data was transformed to frequency domain. After that, the 

data was shifted using (memcpy()) function to return it to its original positions. 

5.2.4.3 Testing 

By reading the output of GNU radio’s FFT block though Octave and comparing the data 

with our FFT output, the results were identical. 
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5.2.5  Frame Equalizer 

5.2.5.1 Design 

This block has four main important roles 

1. Compensating the frequency and phase offsets through the Sync long and Sync 

short offsets and through the pilots 

2. Calculating the model channel through various techniques (LS, LMS, STA or 

COMB) 

3. Identifying the Data length, modulation technique and parsing technique used 

through analyzing the signal field 

4. Compensating the data and transforming them from complex numbers to octets 

to be further analyzed by the next block 

This block deals with each OFDM symbol before it goes to the other. After reading 64 

complex numbers (1 OFDM symbol), it compensates every sample in the data with the 

frequency offsets calculated from the previous blocks (Sync short and Sync long) as well 

as the sampling offsets. Next, residual frequency offset is calculated by adding the phase 

of the four pilots of every symbol and compensating the OFDM symbol with this offset. 

To update this offset and correct the next symbol with it as well, the phase difference 

between the pilots of adjacent OFDM symbols is calculated as well to correct the next 

symbol. Then, the channel model is calculated using the long preamble sequence which are 

the first two OFDM symbols entering the equalizer. After that, the signal field is estimated 

using the channel model and de-modulated then further analyzed to know the data length, 

the modulating technique and the parsing rate. Finally, every data symbol is compensated 

like the others, estimated using the pre-calculated channel model, de-modulated and 

becomes the output of the block. 

Signal field decoding 

In each frame, the short and long training sequences are followed by the signal _field, 

which is a BPSK modulated OFDM symbol encoded with a rate of 1/2 that carries 

information about the length and encoding of the following symbols. The first step done in 

this function is to de-interleave the signal field and then decode the output bits using a 

Viterbi decoder. 

If the signal _field is decoded successfully, i.e., if the rate_field contains a valid value and 

the parity bit is correct, the Decode Signal Field returns the type of encoding of the data 

and the number of symbols in each frame and passes it to the next block Frame Decode 

block. 
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Channel estimation techniques 

1- LS 

This technique is called the least squares. It uses the received long preamble symbols and 

the saved version of the symbols to estimate the channel. Then, it uses the channel to 

estimate all 48 symbols inside the OFDM symbol. 

𝐻^(𝑘) = 
𝑌1(𝑘) + 𝑌2(𝑘)

2𝑋𝑙𝑡(𝑘)
 

H(k) is the channel model. Y1(k) and Y2(k) are the received long training symbols while 

Xlt(k) is the saved long training sequence. 

 

2- LMS (Least minimum squares) 

The LS technique is very efficient. However, it suffers when the frame gets longer or the 

coherence time gets shorter. This technique solves the problems that the LS technique can’t 

solve. Not only does it estimate the channel using the same way as LS, it also calculates 

the error percentage coming from the difference between the actual channel and the 

estimated channel. That way, it updates the channel in every single symbol to be more 

accurate than LS technique. 

It updates the channel after the ith OFDM symbol using the constellation point Xi that the 

received Yi was de-mapped to. 

H^i(k) =  (1 − α)H^i − 1(k) + α
𝑌𝑖(𝑘)

𝑋𝑖^(𝑘)
 

Where Hi(k) is the channel model used for the next symbol, Hi-1 is the channel model used 

for the current symbol. It’s discovered that the best design is when alpha is 0.5. 

The LS and LMS techniques use every subcarrier independently and they don’t use 

averaging in frequency domain. 

 

 Figure 5-13 Signal Field Assignment 
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3-STA (The Spectral Temporal Averaging) 

What makes this technique different is that it doesn’t deal with every subcarrier 

independently, it correlates the channel coefficients in the frequency domain as well. First, 

the LS estimate is used as an initial estimate then data decision feedback is done by 

demodulating the first data symbol compensated by the LS initiate estimate. 

After that, a more accurate channel estimation is done by dividing the received data with 

the demodulated data as follow 

𝐻𝑖(𝑘) = 
𝑌𝑖(𝑘)

𝑋𝑖^(𝑘)
 

Then, the frequency domain correlation is done by using this equation 

𝐻𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑘) =  ∑ 𝑊𝑖𝐻(𝑘 + 𝑖)

𝛽

𝑖=−𝛽

 

H updated is the channel estimate based on the correlation between the neighboring 

subcarriers, β is the window size where the weighted average happens and Wi is the weight 

of each in the window subcarrier. After the frequency domain averaging is done, the time 

domain averaging is done using the factor α. 

 

𝐻(𝑡) = (1 −
1

𝛼
)𝐻(𝑡 − 1) +

1

𝛼
𝐻𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑡) 

 

4-COMB 

This type is totally different than the other three techniques. Comb Type channel estimation 

uses the information about the channel at the pilots’ location to be able to update the 

channel estimate to track channel variations during the same OFDM symbol. The Comb 

equalizer interpolates linearly in frequency domain using the four pilots and the mean of 

the pilots as well. The mean value of the pilots are used at the border of the vector used for 

interpolation [mp, P1, P2, P3, P4, mp], where P1..4 are the four comb pilots and mp is their 

mean. This interpolation is done for every OFDM symbol. Afterwards, a low-pass filter 

similar to the previous techniques is done over the channel in time domain. 

𝐻(𝑡) = (1 −
1

𝛼
)𝐻(𝑡 − 1) +

1

𝛼
𝐻𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑡) 

Where H updated is the updated channel model using the linear interpolation of the four 

pilots. 
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5.2.5.2 Implementation 

After compensating the frequency offsets and the sampling offsets by adding these offsets 

to the phase of the current symbols, there are two important functions to be discussed 

 

1- Signal field implementation 

There are three functions used in the signal field decoding: 

a. deinterleave(uint8_t *rx_bits , uint8_t * d_deinterleaved): 

This function takes the received bits and the deinterleaving sequence as an array and 

performs the inverse relation of the interleaving that is also defined by two permutations. 

Here, the index of the original received bit before the first permutation shall be denoted by 

j; i shall be the index after the first and before the second permutation and k shall be the 

index after the second permutation, just prior to delivering the coded bits to the 

convolutional (Viterbi) decoder. 

The first permutation is defined by the rule: 

 

Equation 4 First permutation 

Where s is defined before in the interleaving function in the Mapper block. 

The second permutation is defined by the rule: 

 

b. bool parse_signal(uint8_t *decoded_bits): 

This function takes the output decoded bits from the Viterbi decoder and finds the rate 

field and length field by shifting and using bit wise operation, it also computes the parity 

bit of the first 17 bits and if the parity bit is correct, then it uses a switch case to return the 

type of encoding and subsequently find the number of symbols in the frame. 

Equation 5 Second permutation 
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Table 11 The rate field content 

 

c. bool decode_signal_field(uint8_t *rx_bits): 

This function calls all the above function in the same order as they were mentioned, it 

also allocates memory for the output bits and the OFDM parameters and FRAME 

parameters for correct parsing of the signal field. 

 

2- Channel estimation 

The two most important functions to discuss are the following: 

 

a. Unsigned char  decision_maker(unsigned char[]) 

This function’s main task is demodulating the estimated symbol from the channel 

response coefficient according to its modulation technique. 

• For BPSK 

 The bits are estimated by observing the signs of the real part of the symbol. 

 

Figure 5-14 BPSK constellation 
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• For QPSK 

 The bits are estimated by observing the signs of the real and imaginary parts of the symbol 

 

Figure 5-15 QPSK constellation 

• For 16-QAM 

This estimation is more complicated as the constellation is divided into more levels. Not 

only does it observe the signs of the real and imaginary numbers, it also the level of them. 

 

Figure 5-16 16-QAM constellation 
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• FOR 64-QAM 

It’s the same as 16-QAM constellations but with more constrictions to the level of the real 

and imaginary parts of the symbol. 

 

Figure 5-17 64-QAM constellation 

 

b. Linear interpolation in COMB channel estimation technique 

As mentioned before, the COMB channel estimation uses linear interpolation of the 

pilots of each symbol along with the mean value of the pilots. The linear interpolation is 

done as follow: 

For the first 11 symbols the interpolation is done using the average value of pilots along 

with the first pilot. For the 12th symbol until the 25th symbol, the interpolation is done using 

the first two pilots. For the 26th symbol till the 39th symbol, the interpolation is done using 

the second and third pilots. For  the 40th symbol up until the 53rd symbol, the interpolation 

is done using the 3rd and 4th pilots. Finally, the rest of the symbols (54th to 64th) use the last 

pilot along with the mean value of pilots. 

5.2.5.3 Testing 

The correct output from each function is read from the Gnu radio by adding a print line 

in the code of the block after the function that needs to be tested. Then, this output is copied 

as an array to the CCS, subsequently compared to the output of the CCS by subtracting the 

two arrays. 



Graduation Project-2 V2V PHY layer Implementation Final Report  

 

 CCE-E Page | 77 

 

5.2.6  Frame Decoder 

5.2.6.1 Design: 

The final step in the receiver is the decoding of the actual payload. It is performed in 

multiple sub-steps, as follows, deinterleaving, convolutional, decoding and   puncturing, 

depending on the coding rate we use a Viterbi decoder for decoding. 

 

Viterbi decoder uses the Viterbi algorithm for decoding a bit stream that has been 

encoded using Forward error correction based on a convolution encoder shown in Figure 

1 where the following notations are used: 

 c = number of output bits.  

x = number of input bits entering at a time.  

m = number of stages of shift register. 

 K (constraint length) = (m + 1) digits.  

 R (bit rate) = x / c. 

 

 

Figure 5 -18  Convolution encoder for constraint length (k) = 7, bit rate (r) = 1/2 
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Viterbi decoder used to estimate the original sequence from the sequence of data 

received from the channel. It consists of the following functional units as shown in 

Figure 2: 

 Branch Metric Unit (BMU)  

 Add Compare and Select Unit (ACS)  

 Survivor Memory Unit  

 Trace Back Unit (TBU) 

 
Figure 5-19 Block diagram of viterbi decoder 

 

Basic definitions 

 State: 

The state of an encoder is defined as its shift register contents. Each new 'x' bit input 

results in a new state. Therefore for one bit entering the encoder there are 2 possible 

branches for every state. If the Constraint length k=7, then the size of shift register 

would be m=6 which results in 2𝑚 states. Therefore 26 = 64 states are named from S0 

to S63. 

 Branch metric: 

The branch metric is a measure of the “distance” between what was transmitted and 

what was received, and is defined for each arc in the trellis and the number on the arc 

shows the branch metric for that transition as shown in Figure 3. 
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Figure 5-20 Trellis diagram for K = 3 and r = 1/2 in this example the received bits by decoder 

 Path metric: 

The path metric is a value associated with a state in the trellis. it corresponds to the 

Hamming distance with respect to the received parity bit sequence over the most likely 

path from the initial state to the current state in the trellis. The most likely path means 

the path with smallest Hamming distance between the initial state and the current state, 

measured over all possible paths between the two states. 

 

The final step in the decoding process is descrambling. In the encoder the initial state 

of the scrambler is set to a pseudo random value.  
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5.3  Implementation 

5.3.1 Deinterleaving 

It is implemented in interleave function which exists in utils.c file. This function can 

operate as interleaver or deinterleaver depending on the value of the Enum_reverse 

parameter. If Enum_reverse = reverse function will work as deinterleaver, else it will work 

as interleaver. 

5.3.2  Convolutional Decoding and Puncturing 

5.3.2.1 Depuncture 

Design 

Higher rates are derived from convolutional encoder by employing "puncturing".  

Puncturing is a procedure for omitting some of the encoded bits in the transmitter In 

order to reduce the number of transmitted bits and increase encoder bit rate and in the 

receiver convolutional decoder side we insert dummy bits in place of the omitted bits. 

 

        Implementation 

It is implemented in depuncture function which exists in viterbi_decoder.c file. 

Many methods can be used to perform puncturing operation, however, one of the 

puncture approach used in IEEE 802.11p is specified by a binary puncturing vector which 

consistent of two bit sequences 1110,111001 for rate 2/3, 3/4 consequently. So in the 

receiver side we use these two bit sequences to insert dummy "2" in place of the omitted 

bits as shown in Figure 4. 

 

 

Figure 5 -21 Implementation of depuncture function in code 
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5.3.2.2 .Viterbi decoder:  

Implementation: 

             Branch metric unit: 

Four parallel binary bits are passed to viterbi_buterfly2_sse2 function which 

exists in viterbi_decoder.c file. This function processed over each two parallel bits 

at a time. It calculates sixty four set of hamming distance. Each set consists of two 

values because each current state can be reached by two possible paths. In order to 

calculate the hamming distance it compares the received codes with the expected 

codes of the current state by using xor bitwise operator as shown in Figure 5. 

 

Figure 5-22 Block diagram of Branch Metric Unit 

The expected codes are calculated in function called viterbi_chunks_init_sse2 

which exists in viterbi_decoder.c file. Also this function used to reset all variables 

used by Viterbi decoder before starting to process on the received data bits. 

 

At the decoder, when using a punctured code, missing parity bits don’t participate 

in the calculation of branch metrics. Since we have replaced missing parity bits by 

2 in the depuncture function which exists in viterbi_decoder.c file. So we will 

subtract one from calculated hamming distance if one of the processed bits is equal 

2 as shown in figure6. 
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Figure 5-23  Implementation of branch metric unit in code. 

            Add compare and select unit: 

This unit is also implemented in viterbi_buterfly2_sse2 as shown in Figure7. Path 

metric of the state is found by adding the path metric from the previous stage and the 

present branch metrics. Since there are two possible ways to reach any state two path 

metrics are obtained, these two are compared to select the one with the least path metric. 

The selected least path metric is sent for storage as well as it is used as benchmark for 

calculating the path metric of next stage as shown in figure 8. 

 

 

Figure 5-24 Implementation of add compare and select unit in code 
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Figure 5-25 Block diagram of add compare and select unit 

              Survivor memory unit: 

This unit is also implemented in viterbi_buterfly2_sse2.It is used for storing the 

survivor path values of the ACS unit. For each stage there are 64 survivor paths and 

number of stages varies depending on the length of encoded bits received. 

            Trace back unit: 

This unit is implemented in viterbi_get_output_sse2. Once the minimum path metrics 

of all the states at each stage is calculated, the minimum path metric at the last stage is 

found. The state having the minimum path metrics at the last stage is given as input to 

Trace Back Unit and then it starts trace backing the survival paths from that node and 

outputs the corresponding bit which has caused the transition of that path as shown in 

Figure 9. 
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Figure 5-26 - Trace back procedure of optimal path 

 

5.3.3 Descrambling: 

It is implemented in descramble function which exists in decoder_mac.c file. This 

function uses first 7 bit of input data to deduce the initial state of the scrambler as shown 

in Figure 10. 

 

Figure 5-27 Implementation of descrambling function in code 
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Chapter 6  

Conclusion  

 

o conclude, this report firstly discussed the need of V2V communication, 

V2X communication and their need in the market nowadays. No doubts that 

the new cars’ generation is going through a massive development to self-

driving cars which increases the importance of V2Vcommunication.  

Our role in the project was the first step to implement this communication, the PHY layer 

which is the start of network creation between devices. Throughout our work, we took into 

consideration that the PHY layer is verified with the standard rules of IEEE802.11p. The 

implementation of the project after understanding all its technical aspects was coding 

transceiver blocks with the help of simulation tools such as GNUradio, octave..etc. Then 

by processing the transceiver on a DSP kit we was able to send and receive data through 

RF in USRP. We also stated that the PHY layer usage can have another application 

perspective which is testing transceiver modules. Finally, take into consideration that the 

next phases is very important to complete V2V as an application. 

 

 

 

 

 

 

T  
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6.1  Lessons learned throughout the year 

In this section, knowledge that we took from college which helped us to understand a 

lot of our research in the project throughout the year will be stated. Thanks to all that were 

reason for us to complement some of our academic knowledge with this graduation project. 

It was a great experience and responsibility.  

Back to V2V PHY layer implementation, these were the topics that understanding it helped 

us a lot in the project: 

a) Concept of OFDM technique  

b) C programming 

c) Linux usage 

d) Some basic understanding of memory mapping and optimization  

 

6.2  Future Work 

There are two paths for this project as we stated at the beginning of the report. So the 

future work of the project will be divided into two paths which we’ll discuss in this section; 

the first is connecting the DSP kit with C700 through FPGA and create the standalone 

device which can be used in testing, the second is the mac layer implementation. 

All the above mentioned process in this report was only in order to implement the physical 

layer of the vehicle to vehicle communication, the next step is to implement the upper 

layers in the OSI model stated in the figure below that must be also verified with the 

standard of IEEE802.11 so as to implement a full optimized device at the end that could be 

inserted into a car to fulfill the project goal in the first place. 
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Figure 6-1 OSI model 

Moreover, there are some optimizations and modifications that could be done to the 

hardware, that we are currently working on, this will include downloading the code on the 

Mitydsp kit, deriving the output to the UPP (Universal parallel port) and connecting the kit 

to C700, an alternative for the USRP that possess the same functionality and could be 

connected to the FPGA on the kit which couldn’t be done with the USRP. 
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Appendix A  

Installation Guide 
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A.1 Installation Guide for Code Composer Studio 

The installation steps for CCS v7 and v5 are almost the same. 

For Windows 

1- Open http://processors.wiki.ti.com/index.php/Download_CCS 

2- Choose your operating system (Windows, Linux…etc) 

3- Open the executable file that was downloaded 

4- Mark “I accept the terms of the license  agreement” and click next 

5- Select your intsallation folder and then click next 

6- Select the following processors (OMAP-L1x DSP + ARM9 processor, C6000 

Power optimized DSP, C64x multicore DSP) 

7- For the debug probes, select TI XDS Debug Probe Support and Spectrum Digital 

Debug Probes and Boards (it’s better to select all if you’re not sure about the debug 

probe you’ll use yet) 

8- Finally, select finish 

 

For Ubuntu 

Before the installation, make sure to install some dependencies. Open the command 

window and write this command 

- sudo apt-get update 

- sudo apt-get install libc6:i386 libx11-6:i386 libasound2:i386 libatk1.0-0:i386 

libcairo2:i386 libcups2:i386 libdbus-glib-1-2:i386 libgconf-2-4:i386 libgdk-pixbuf2.0-

0:i386 libgtk-3-0:i386 libice6:i386 libncurses5:i386 libsm6:i386 liborbit2:i386 

libudev1:i386 libusb-0.1-4:i386 libstdc++6:i386 libxt6:i386 libxtst6:i386 libgnomeui-

0:i386 libusb-1.0-0-dev:i386 libcanberra-gtk-module:i386 gtk2-engines-murrine:i386 

unzip 

After installing the dependencies, the same steps are applied. The only difference is 

that the executable file’s format is .bin 

To open this file, open the command window and go to the location where the 

downloaded file exists then write  

sudo ./”file name”.bin 

The same steps are then applied. 

 

 

 

 

http://processors.wiki.ti.com/index.php/Download_CCS
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A.1.1 Installing the DSP library 

1- Open http://www.ti.com/tool/sprc265 

2- Download C674x-DSPLIB 

3- Click on the link suitable to your operating system (Windows 64- Windows 32- 

Ubuntu…etc) 

 

 

For Windows 

4- Click on the executable file and select your language 

5- Select the installation folder of CCS (c:/ti/DSPlib folder) 

6- Finally, select next and agree on the terms and conditions 

For Linux  

Same steps as Windows. To open the executable file, open the command window and 

run the .bin file 

A.1.2 Make a new project on CCS 

1- Open file -> new -> CCS project 

2- Select the family c6000 for DSP based projects and ARM for ARM based 

projects 

3- In Variant, select OMAPL138 

4-  Write the project name and click on Finish 

5- Right click on the project -> new -> Target configuration file 

6- In case of simulator, choose Texas Instruments Simulator, then choose C674x 

CPU Cyclic Accurate Simulator, Little Endian for DSP project or ARM9e CPU 

Cyclic Accurate Simulator, Little Endian for ARM based project 

7- In case of emulator, choose your emulator (XDS 100v2 USB) then choose 

LCDKOMAPL138 

A.1.3 Including the DSP library in the project 

1- Right click on the project and select properties 

2- Open compiler -> include options 

3- In the “Add dir to #include search path” field -> add the path of your 

dsplib/packages 

4- Open linker -> File search path 

5- In the  “Include library file or command file as input” field, add these two lines 

“dsplib.lib” 

“dsplib_cn.lib” 

6- In the “Add dir to library search path” field, add the folder path of these 2 

libraries, you will find it in the DSP library folder /packages/ti/dsplib/lib 

7- Now you can use the DSPlib functions in your code. 

 

 

http://www.ti.com/tool/sprc265
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A.2 USRP hardware driver Installation guide 

A.2.1 Installation Requirements  

 linux OS (ubuntu)  

A.2.2 Installation guide 

1) Open terminal window 

2) Write these commands: 

 sudo apt -get install libuhd –dev libuhd uhd -host 

 sudo add-apt-repository ppa:ettusresearch/uhd 

 sudo apt-get update 

 sudo apt-get install libuhd-dev libuhd003 uhd-host 

 

 

A.3 GNU Radio Installation guide 

A.3.1 Installation Requirements  

 linux OS 

 GNU radio program 

 IEEE 802.11 standerd blocks 

A.3.2 Installation guide 

3) Open terminal window 

4) Write these commands: 

 (sudo apt-get update ) then enter the username and password  

 wget http://www.sbrac.org/files/build-gnuradio && chmod a+x build-gnuradio && 

./build-gnuradio 

5) To open the gnu radio for the first time we need to open it through the terminal ,so we 

write (gnuradio-companion) 

6) To get the blocks Write these commands: 

 sudo apt-get install liblog4cpp5-dev 

 sudo port install log4cpp 

 git clone https://github.com/bastibl/gr-foo.git 

 cd gr-foo 

 mkdir build 

 cd build 

 cmake .. 

 make 
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 sudo make install 

 sudo ldconfig 

 git clone git://github.com/bastibl/gr-ieee802-11.git 

 cd gr-ieee802-11 

 mkdir build 

 cd build 

 cmake .. 

 make 

 sudo make install 

 sudo ldconfig 

 sudo sysctl -w kernel.shmmax=2147483648 

 
 
 

A.4 Octave Installation guide 

A.4.1 Installation Requirements  

 linux OS 

A.4.2 Installation guide 

7) Open terminal window 

8) Write these commands: 

 sudo apt-add repository ppa:octave/stable  

 sudo apt -get update 

 sudo apt -get install octave 

 octave 

A.4.3 Usage guide 

After opening the program write these commands to open the files: 

 PS1(">>") 

 addpath("/home/username/gnuradio/gr-utils/octave") 
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Appendix B  

CCS Code 
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B.1 Transmitter  

 

B.1.1 Main function 

/* 
 * main.c 
 */ 
#include  "IEEE802_11_Common_Variables.h" 
#include  "utils.h" 
#include "Mapper.h" 
#include "signal_field_impl.h" 
#include "constellations_impl.h" 
#include "chunks_to_symbols_impl.h" 
#include "ifft.h" 
#include "CyclicPrefix.h" 
#include  "ofdm_carr_alloc_func.h" 
 
#define N 64 
/* The length of the message received from the Mac layer */ 
#define psdu_length  100 
#define signal_field_size 48 
void main(void) { 
 FILE *fp; 
 /* This is where the main function will be called */ 
 Encoding e = QAM16_3_4; 
 /* constructing an instant of the frame and the ofdm parameters */ 
 // This is the message : PSDU  generated by the mac-layer 
 uint8 d_psdu[100] = { 4, 2, 0, 46, 0, 96, 8, 205, 55, 166, 0, 32, 214, 1, 
   60, 241, 0, 96, 8, 173, 59, 175, 0, 0, 74, 111, 121, 44, 32, 

98, 
   114, 105, 103, 104, 116, 32, 115, 112, 97, 114, 107, 32, 

111, 102, 
   32, 100, 105, 118, 105, 110, 105, 116, 121, 44, 10, 68, 97, 

117, 
   103, 104, 116, 101, 114, 32, 111, 102, 32, 69, 108, 121, 

115, 105, 
   117, 109, 44, 10, 70, 105, 114, 101, 45, 105, 110, 115, 105, 

114, 
   101, 100, 32, 119, 101, 32, 116, 114, 101, 97, 103, 51, 33, 

182 }; 
 float32 window[2 * N]; 
 int sizeof_input_sym; 
 int test; 
 int data_size; 
 int i = 0; 
 int loop = 1408 / (2 * N); 
 ofdm_param* data_field_ofdm; 
 frame_param* data_field_frame; 
 ofdm_param* signal_field_ofdm; 
 frame_param* signal_field_param; 
 uint8 *out_processed_signal_field; 
 uint8 * Output_Processed_Data; 
 float32 *out_modulated_data; 
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 float32 *out_modulated_signal_field; 
 float32 *out_tagged_mux; 
 float32* Output_From_OFDMCarrierAllocator; 
 float32* Output_From_IFFT; 
 float32* Output_From_CyclicPrefix; 
 StructCyclicPrefix_Init *CyclicPtr; 
 while (1) { 
  data_field_ofdm = (ofdm_param *) malloc(sizeof(ofdm_param)); 
  ofdm_param_intialization(e, data_field_ofdm); 
  data_field_frame = (frame_param *) malloc(sizeof(frame_param)); 
  frame_param_intialization(data_field_ofdm, data_field_frame, 
    psdu_length); 
  /* Check the value of the frame_param */ 
  print_frame_param(data_field_frame); 

  
  Output_Processed_Data = mapper_general_work_function(d_psdu, 
    psdu_length, data_field_ofdm, data_field_frame); 
            /*generating the signal field and creating frame and ofdm 

paramters*/           
  signal_field_ofdm = (ofdm_param *) malloc(sizeof(ofdm_param)); 
  ofdm_param_intialization(BPSK_1_2, signal_field_ofdm); 
  signal_field_param = (frame_param *) malloc(sizeof(frame_param)); 
  frame_param_intialization(signal_field_ofdm, signal_field_param, 

0); 
  out_processed_signal_field = 

generate_signal_field(signal_field_param, 
    signal_field_ofdm, data_field_frame, 

data_field_ofdm); 
  //Data modulation 
  data_size = data_field_frame->n_sym * 48; 
  out_modulated_data = malloc(data_size * 2 * sizeof(float32)); 
  chunks_to_symbols_impl(Output_Processed_Data, out_modulated_data, 
    data_size, e); 
  //Signal field modulation 
  out_modulated_signal_field = malloc( 
    signal_field_size * 2 * sizeof(float32)); 
  chunks_to_symbols_impl(out_processed_signal_field, 
    out_modulated_signal_field, signal_field_size, 

BPSK_1_2); 
  //Tagged_stream_MUX 
  out_tagged_mux = malloc( 
    (data_size + signal_field_size) * 2 * 

sizeof(float32)); 
  memcpy(out_tagged_mux, out_modulated_signal_field, 
    signal_field_size * 2 * sizeof(float32)); 
  memcpy(out_tagged_mux + (signal_field_size * 2), 

out_modulated_data, 
    data_size * 2 * sizeof(float32)); 
  // part OFDM carrier allocater 
  sizeof_input_sym = (2 * signal_field_size) + (2 * data_size); 
  Output_From_OFDMCarrierAllocator = (float32 *) malloc( 
    1408 * sizeof(float32)); 
  if (Output_From_OFDMCarrierAllocator == NULL) { 
  printf("Not enough memory for Output_From_OFDMCarrierAllocator 

\n"); 
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  } 
  test = ofdm_carr_alloc(occupied_carriers, pilot_carriers, 

pilot_symbols, 
    sync_words, fft_len, output_is_shifted, 

out_tagged_mux, 
    Output_From_OFDMCarrierAllocator, sizeof_input_sym); 
  /*-----------------IFFT---------------------*/ 
  Output_From_IFFT = (float32 *) malloc(1408 * sizeof(float32)); 
  for (i = 0; i < loop; i++) { 
   ifft(Output_From_OFDMCarrierAllocator, Output_From_IFFT, 

N, 52.0, 
     true, window); 
   Output_From_OFDMCarrierAllocator += (2 * N); 
   Output_From_IFFT += (2 * N); 
  } 
  Output_From_IFFT -= (loop * 2 * N); 
  /*---------------------- Part cyclic prefix----------------------

---**/ 
  Output_From_CyclicPrefix = (float32*) malloc( 
    (1408 / 64) * 80 * 2 * sizeof(float32)); 
  CyclicPtr = (StructCyclicPrefix_Init *) malloc( 
    sizeof(StructCyclicPrefix_Init)); 
  ; 
  CyclicPrefix_Init(CyclicPtr, 1408 / 64); 
  CyclicPrefix(CyclicPtr, Output_From_IFFT, 

Output_From_CyclicPrefix); 
  /*----------------------- test cyclic prefix---------------------

--**/ 
  // Writing to a file 
  if ((fp = fopen("Test2.txt", "a+")) == NULL) { 
   printf("Cannot open file.\n"); 
  } 
  fseek(fp, 0, SEEK_END); 
  if (fwrite(Output_From_CyclicPrefix, sizeof(float32), (1408 / 64) 

* 80, 
    fp) != (1408 / 64) * 80) 
   printf("File read error."); 
  fflush(fp); 
  fclose(fp); 
  free(Output_From_CyclicPrefix); 
  free(Output_From_IFFT); 
  free(Output_From_OFDMCarrierAllocator); 
  free(out_tagged_mux); 
  free(out_modulated_signal_field); 
  free(out_modulated_data); 
  free(out_processed_signal_field); 
  free(signal_field_param); 
  free(signal_field_ofdm); 
  free(Output_Processed_Data); 
  free(data_field_frame); 
  free(data_field_ofdm); 
 } 
} 
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B.1.2 Generic files used by more than one block 

B.1.2.1 utils.h file 

/* 
 * utils.h 
 * 
 *  Created on: Feb 7, 2017 
 *      Author: Salma Khaled 
 */ 
#ifndef UTILS_H_ 
#define UTILS_H_ 
#include "IEEE802_11_Common_Variables.h" 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include <assert.h> 
#define MAX_PAYLOAD_SIZE 1500 
#define MAX_PSDU_SIZE (MAX_PAYLOAD_SIZE + 28) // MAC, CRC 
#define MAX_SYM (((16 + 8 * MAX_PSDU_SIZE + 6) / 24) + 1) 
#define MAX_ENCODED_BITS ((16 + 8 * MAX_PSDU_SIZE + 6) * 2 + 288) 
/**--------------------------------ofdm_param_implementation---------------

------**/ 
typedef enum { 
 BPSK_1_2 = 0, 
 BPSK_3_4 = 1, 
 QPSK_1_2 = 2, 
 QPSK_3_4 = 3, 
 QAM16_1_2 = 4, 
 QAM16_3_4 = 5, 
 QAM64_2_3 = 6, 
 QAM64_3_4 = 7, 
} Encoding; 
typedef struct { 
 // data rate 
 Encoding encoding; 
 // rate field of the SIGNAL header 
 char rate_field; 
 // number of coded bits per sub carrier 
 int n_bpsc; 
 // number of coded bits per OFDM symbol 
 int n_cbps; 
 // number of data bits per OFDM symbol 
 int n_dbps; 
 
} ofdm_param; 
/** This function is used to initialize the parameters of the ofdm */ 
void ofdm_param_intialization(Encoding, ofdm_param*); 
/** This function print the values of the ofdm param */ 
void print_ofdm_param(const ofdm_param*); 
 
 
 
 



Graduation Project-2 V2V PHY layer Implementation Final Report  

 

 CCE-E Page | 101 

/**---------------------------frame_param_implementation-------------------
-------**/ 

typedef struct { 
 // PSDU size in bytes 
 int psdu_size; 
 // number of OFDM symbols (17-11) 
 int n_sym; 
 // number of padding bits in the DATA field (17-13) 
 int n_pad; 
 int n_encoded_bits; 
 // number of data bits, including service and padding (17-12) 
 int n_data_bits; 
} frame_param; 
/** This function is used to initialize the parameters of the ofdm */ 
void frame_param_intialization(ofdm_param*, frame_param*, int); 
/** This function is used to print the value of the frame param */ 
void print_frame_param(const frame_param*); 
/*---------------------------------PSDU_Processing-------------------------

-------**/ 
void scramble(const uint8 *input, char unsigned *out, 
  frame_param* frame, uint8 initial_state); 
void reset_tail_bits(uint8 *scrambled_data, frame_param* frame); 
void convolutional_encoding(const uint8 *input, char unsigned *out, 
  frame_param* frame); 
void puncturing(const uint8 *input, uint8 *out, 
  frame_param* frame, ofdm_param* ofdm); 
void interleave(const uint8 *input, uint8 *out, 
  frame_param* frame, ofdm_param* ofdm); 
void split_symbols(const uint8 *input, uint8 *out, 
  frame_param* frame, ofdm_param* ofdm); 
void generate_bits(const uint8 *psdu, uint8 *data_bits, 
  frame_param* frame); 
#endif /* UTILS_H_ */ 
 

B.1.2.2 utils.c file: 

/* 
 * utils.c 
 * 
 *  Created on: Feb 7, 2017 
 *      Author: Salma Khaled 
 */ 
#include "utils.h" 
/**-----------------------------ofdm_param_implementation------------------

----**/ 
void ofdm_param_intialization(Encoding e, ofdm_param* ofdm) { 
 ofdm->encoding = e; 
 switch (e) { 
 case BPSK_1_2: 
  ofdm->n_bpsc = 1; 
  ofdm->n_cbps = 48; 
  ofdm->n_dbps = 24; 
  ofdm->rate_field = 0x0D; // 0b00001101 
  break; 
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 case BPSK_3_4: 
  ofdm->n_bpsc = 1; 
  ofdm->n_cbps = 48; 
  ofdm->n_dbps = 36; 
  ofdm->rate_field = 0x0F; // 0b00001111 
  break; 
 case QPSK_1_2: 
  ofdm->n_bpsc = 2; 
  ofdm->n_cbps = 96; 
  ofdm->n_dbps = 48; 
  ofdm->rate_field = 0x05; // 0b00000101 
  break; 
 case QPSK_3_4: 
  ofdm->n_bpsc = 2; 
  ofdm->n_cbps = 96; 
  ofdm->n_dbps = 72; 
  ofdm->rate_field = 0x07; // 0b00000111 
  break; 
 case QAM16_1_2: 
  ofdm->n_bpsc = 4; 
  ofdm->n_cbps = 192; 
  ofdm->n_dbps = 96; 
  ofdm->rate_field = 0x09; // 0b00001001 
  break; 
 case QAM16_3_4: 
  ofdm->n_bpsc = 4; 
  ofdm->n_cbps = 192; 
  ofdm->n_dbps = 144; 
  ofdm->rate_field = 0x0B; // 0b00001011 
  break; 
 case QAM64_2_3: 
  ofdm->n_bpsc = 6; 
  ofdm->n_cbps = 288; 
  ofdm->n_dbps = 192; 
  ofdm->rate_field = 0x01; // 0b00000001 
  break; 
 case QAM64_3_4: 
  ofdm->n_bpsc = 6; 
  ofdm->n_cbps = 288; 
  ofdm->n_dbps = 216; 
  ofdm->rate_field = 0x03; // 0b00000011 
  break; 
 default: 
  assert(false); 
  break; 
 } 
} 
/** a function to print the values of the ofdm_param */ 
void print_ofdm_param(const ofdm_param* ofdm) { 
 printf("OFDM Parameters:   \n"); 
 printf("encoding     : %i\n", ofdm->encoding); 
 printf("rate_field     : %i\n", ofdm->rate_field); 
 printf("n_bpsc         : %i\n", ofdm->n_bpsc); 
 printf("n_cbps         : %i\n", ofdm->n_cbps); 
 printf("n_dbps         : %i\n", ofdm->n_dbps); 
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} 
 
/**----------------------------frame_param_implementation------------------

---**/ 
void frame_param_intialization(ofdm_param* ofdm, frame_param* frame, 
  int psdu_length) { 
 frame->psdu_size = psdu_length; 
 // number of symbols (17-11) 
 frame->n_sym = (int) ceil( 
   (16 + 8 * (frame->psdu_size) + 6) / (double) ofdm-

>n_dbps); 
 frame->n_data_bits = (frame->n_sym) * (ofdm->n_dbps); 
 // number of padding bits (17-13) 
 frame->n_pad = (frame->n_data_bits) - (16 + 8 * (frame->psdu_size) + 6); 
 frame->n_encoded_bits = (frame->n_sym) * (ofdm->n_cbps); 
} 
/** a function to print the values of the frame_param */ 
void print_frame_param(const frame_param* frame) { 
 printf("FRAME Parameters : \n"); 
 printf("psdu_size   :%i\n", frame->psdu_size); 
 printf("n_sym     :%i\n", frame->n_sym); 
 printf("n_pad     :%i\n", frame->n_pad); 
 printf("n_encoded_bits   :%i\n", frame->n_encoded_bits); 
 printf("n_data_bits   :%i\n", frame->n_data_bits); 
} 
/**-------------------------------PSDU_Processing--------------------------

-----**/ 
//1-Generate_bits: 
void generate_bits(const uint8 *psdu, uint8 *data_bits, 
  frame_param* frame) { 
 
 //printf(" This is the generate bits" ); 
 // first 16 bits are zero (SERVICE/DATA field) 
 memset(data_bits, 0, 16); 
 data_bits += 16; 
 int i; 
 int b; 
 for (i = 0; i < frame->psdu_size; i++) { 
  for (b = 0; b < 8; b++) { 
   data_bits[i * 8 + b] = !!(psdu[i] & (1 << b)); 
  } 
 } 
} 
//2-Scrambling the data 
void scramble(const uint8 *input, uint8 *out, 
  frame_param* frame, uint8 initial_state) { 
 //printf("This is the scrambler \n"); 
 int state = initial_state; 
 int feedback; 
 int i; 
 for (i = 0; i < frame->n_data_bits; i++) { 
  feedback = (!!(state & 64)) ^ (!!(state & 8)); 
  out[i] = feedback ^ input[i]; 
  //printf("%i",out[i]); 
  state = ((state << 1) & 0x7e) | feedback; 
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 } 
} 
//3-Reseting tail bits 
void reset_tail_bits(uint8 *scrambled_data, frame_param* frame) { 
 memset(scrambled_data + frame->n_data_bits - frame->n_pad - 6, 0, 
   6 * sizeof(char)); 
} 
//4-Convolutional encoding 
int ones(int n) { 
 int sum = 0; 
 int i; 
 for (i = 0; i < 8; i++) { 
  if (n & (1 << i)) { 
   sum++; 
  } 
 } 
 return sum; 
} 
void convolutional_encoding(const uint8 *input, uint8 *out, 
  frame_param* frame) { 
 //printf(" This is the Convolutional encoder"); 
 int state = 0; 
 int i; 
 for (i = 0; i < frame->n_data_bits; i++) { 
  assert(input[i] == 0 || input[i] == 1); 
  state = ((state << 1) & 0x7e) | input[i]; 
  out[i * 2] = ones(state & 0155) % 2; 
  out[i * 2 + 1] = ones(state & 0117) % 2; 
  //printf("%i",out[i]); 
 } 
} 
//5- Puncturing the data 
void puncturing(const uint8 *input, uint8 *out, 
  frame_param* frame, ofdm_param* ofdm) { 
 int mod; 
 int i; 
 for (i = 0; i < frame->n_data_bits * 2; i++) { 
  switch (ofdm->encoding) { 
  case BPSK_1_2: 
  case QPSK_1_2: 
  case QAM16_1_2: 
   *out = input[i]; 
   out++; 
   break; 
  case QAM64_2_3: 
   if (i % 4 != 3) { 
    *out = input[i]; 
    out++; 
   } 
   break; 
  case BPSK_3_4: 
  case QPSK_3_4: 
  case QAM16_3_4: 
  case QAM64_3_4: 
   mod = i % 6; 
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   if (!(mod == 3 || mod == 4)) { 
    *out = input[i]; 
    out++; 
   } 
   break; 
  default: 
   assert(false); 
   break; 
  } 
 } 
} 
//6-Interleaving data 
void interleave(const uint8 *input, uint8 *out, 
  frame_param* frame, ofdm_param* ofdm) { 
 int n_cbps = ofdm->n_cbps; 
 ptoi first = (ptoi) calloc(n_cbps, sizeof(int)); 
 if (first == NULL) { 
  printf("Not enough memory for first in the interleaver \n"); 
 } 
 ptoi second = (ptoi) calloc(n_cbps, sizeof(int)); 
 if (second == NULL) { 
  printf("Not enough memory for second in the interleaver \n"); 
 } 
 int s = max(ofdm->n_bpsc / 2, 1); 
 int j; 
 for (j = 0; j < n_cbps; j++) { 
  first[j] = s * (j / s) + ((j + (int) (floor(16.0 * j / n_cbps))) 

% s); 
 } 
 int i; 
 for (i = 0; i < n_cbps; i++) { 
  second[i] = 16 * i - (n_cbps - 1) * (int) (floor(16.0 * i / 

n_cbps)); 
 } 
 int k; 
 for (i = 0; i < frame->n_sym; i++) { 
  for (k = 0; k < n_cbps; k++) { 
 
   out[i * n_cbps + k] = input[i * n_cbps + 

second[first[k]]]; 
   //printf("%i", out[i * n_cbps + k]); 
  } 
 } 
 free(second); 
 free(first); 
} 
//7-splitting the symbols according to the modulation type: BPSK, QPSK, 

QAM16, ... 
void split_symbols(const uint8 *input, uint8 *out, 
  frame_param* frame, ofdm_param* ofdm) { 
 //printf(" This is the split symbols "); 
 int symbols = frame->n_sym * 48; 
 int i; 
 int k; 
 for (i = 0; i < symbols; i++) { 
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  out[i] = 0; 
  for (k = 0; k < ofdm->n_bpsc; k++) { 
   assert(*input == 1 || *input == 0); 
   out[i] |= (*input << k); 
   input++; 
   //printf("%c",out[i]); 
  } 
 } 
} 
 

B.1.2.3 IEEE802_11_Common_Variables.h 

/* 
 * IEEE802_11_Common_Variables.h 
 * 
 *  Created on: Feb 7, 2017 
 *      Author: Salma Khaled 
 */ 
#ifndef IEEE802_11_COMMON_VARIABLES_H_ 
#define IEEE802_11_COMMON_VARIABLES_H_ 
typedef unsigned char uint8; 
typedef signed char sint8; 
typedef unsigned short uint16; 
typedef signed short sint16; 
typedef unsigned long uint32; 
typedef signed long sint32; 
typedef unsigned long longuint64; 
typedef signed long longsint64; 
typedef float float32; 
typedef double float64; 
typedef int* ptoi; 
typedef int bool; 
#define true              1 
#define false             0 
#define max(a,b) \ 
   ({ __typeof__ (a) _a = (a); \ 
       __typeof__ (b) _b = (b); \ 
     _a > _b ? _a : _b; }) 
#define min(a,b) \ 
   ({ __typeof__ (a) _a = (a); \ 
       __typeof__ (b) _b = (b); \ 
     _a < _b ? _a : _b; }) 
#endif /* IEEE802_11_COMMON_VARIABLES_H_ */ 

 

B.1.3 Code  of the Mapper block 

B.1.3.1 Mapper.h file 

/* 
 * Mapper.h 
 * 
 *  Created on: Feb 7, 2017 
 *      Author: Salma Khaled 
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 */ 
#ifndef MAPPER_H_ 
#define MAPPER_H_ 
#ifndef MAPPER_IMP_H_ 
#define MAPPER_IMP_H_ 
#include  "IEEE802_11_Common_Variables.h" 
#include "utils.h" 
/* The Number of data carriers */ 
#define Data_Carriers 48 
uint8 * mapper_general_work_function(const uint8* psdu, 
  int psdu_length, ofdm_param* d_ofdm, frame_param * frame); 
#endif /* MAPPER_IMP_H_ */ 
#endif /* MAPPER_H_ */ 
 

B.1.3.2 Mapper.c file 

/* 
 * Mapper.c 
 * 
 *  Created on: Feb 9, 2017 
 *      Author: Salma Khaled 
 */ 
#include "Mapper.h" 
#include <inttypes.h> 
// This is the general work function of the Mapper that is used to call the 

function that will do all the PSDU processing 
uint8* mapper_general_work_function(const uint8* psdu, 
  int psdu_length, ofdm_param* d_ofdm, frame_param * frame) { 
 char * d_symbols; 
 int d_symbols_offset = 0; 
 int d_symbols_len = 0; 
 // calculate the length of the processed data 
 d_symbols_len = frame->n_sym * 48; 
 int i = d_symbols_len - d_symbols_offset; 
 // Final output array 
 uint8 * out = (uint8*) calloc(i, sizeof(char)); 
 // This is the final output from the Mapper without   offset 
 d_symbols = (char*) calloc(d_symbols_len, 1); 
 printf("MAPPER called offset: %i\n", d_symbols_offset); 
 printf("length: %i\n", d_symbols_len); 
 while (!d_symbols_offset) { 
  printf("MAPPER: received new message \n"); 
  if (frame->n_sym > MAX_SYM) { 
 
   printf("packet too large, maximum number of symbols is 

%i\n ", 
     MAX_SYM); 
   return 0; 
  } 
  //allocate memory for modulation steps 
  uint8 *data_bits = (uint8*) calloc(frame->n_data_bits, 
    sizeof(uint8)); 
  if (data_bits == NULL) { 
   printf("Not enough memory for data_bits \n"); 
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  } 
  uint8 *scrambled_data = (uint8*) calloc( 
    frame->n_data_bits, sizeof(uint8)); 
  if (scrambled_data == NULL) { 
   printf("Not enough memory for scrambled_data\n"); 
  } 
  uint8 *encoded_data = (uint8*) calloc( 
    frame->n_data_bits * 2, sizeof(uint8)); 
  if (encoded_data == NULL) { 
   printf("Not enough memory for encoded_data \n"); 
  } 
  uint8 *punctured_data = (uint8*) calloc( 
    frame->n_encoded_bits, sizeof(uint8)); 
  if (punctured_data == NULL) { 
   printf("Not enough memory for punctured_data \n"); 
  } 
  uint8 *interleaved_data = (uint8*) calloc( 
    frame->n_encoded_bits, sizeof(uint8)); 
  if (interleaved_data == NULL) { 
   printf("Not enough memory for interleaved_data \n"); 
  } 
  uint8 *symbols = (uint8*) calloc( 
    (frame->n_encoded_bits / d_ofdm->n_bpsc), 
    sizeof(uint8)); 
  if (symbols == NULL) { 
   printf("Not enough memory for symbols \n"); 
  } 
  //generate the WIFI data field, adding service field and pad bits 
  generate_bits(psdu, data_bits, frame); 
  // scrambling 
  // Initial state of the scrambler is set  to : 93 
  static uint8_t scrambler = 93; 
  scramble(data_bits, scrambled_data, frame, scrambler); 
  if (scrambler > 127) { 
   scrambler = 1; 
  } 
  // reset tail bits 
  reset_tail_bits(scrambled_data, frame); 
  // encoding 
  convolutional_encoding(scrambled_data, encoded_data, frame); 
  // puncturing 
  puncturing(encoded_data, punctured_data, frame, d_ofdm); 
  // interleaving 
  interleave(punctured_data, interleaved_data, frame, d_ofdm); 
  // one byte per symbol 
  split_symbols(interleaved_data, symbols, frame, d_ofdm); 
  memcpy(d_symbols, symbols, d_symbols_len); 
  // free the allocated memory 
  free(symbols); 
  free(interleaved_data); 
  free(punctured_data); 
  free(encoded_data); 
  free(scrambled_data); 
  free(data_bits); 
  break; 
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 } 
 // if there was an offset copy it to the out data 
 memcpy(out, d_symbols + d_symbols_offset, i); 
 d_symbols_offset += i; 
 if (d_symbols_offset == d_symbols_len) { 
  d_symbols_offset = 0; 
  free(d_symbols); 
  d_symbols = 0; 
 } 
 return out; 
 
} 
/* Function to print the output data from the mapper can be used after the 

split symbols */ 
void print_Output_bits(char* output, frame_param* frame, ofdm_param* 

d_ofdm) { 
 int i; 
 int k; 
 int symbols_length = frame->n_sym * 48; 
 for (i = 0; i < symbols_length; i++) { 
  for (k = 0; k < d_ofdm->n_bpsc; k++) { 
   printf("%i", output[i]); 
  } 
 } 
} 
 

B.1.4 Code of the Packet header generater block  

B.1.4.1 signal_field_impl.h 

/* 
 * signal_field_impl.h 
 * 
 *  Created on: Feb 21, 2017 
 *      Author: Dina Mohamed 
 */ 
#ifndef SIGNAL_FIELD_IMPL_H_ 
#define SIGNAL_FIELD_IMPL_H_ 
#include  "IEEE802_11_Common_Variables.h" 
#include "utils.h" 
uint8 * generate_signal_field(frame_param* signal_param, 
  ofdm_param* signal_ofdm, frame_param* data_frame, 
  ofdm_param* data_ofdm); 
int get_bit(int b, int i); 
#endif /* SIGNAL_FIELD_IMPL_H_ */ 
 
 
 

B.1.4.2 signal_field_impl.c 

/*signal_field_impl.c 
 *  Created on: Feb 21, 2017 
 *      Author: Dina Mohamed 
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 */ 
#include "signal_field_impl.h" 
#include  "IEEE802_11_Common_Variables.h" 
// This function returns the ith bit in the int b variable 
int get_bit(int b, int i) { 
 return (b & (1 << i) ? 1 : 0); 
} 
/** This is the general work function of the Packet header generator block 

that is used to produce the signal field**/ 
uint8 * generate_signal_field(frame_param* signal_param, 
  ofdm_param* signal_ofdm, frame_param* data_frame, ofdm_param* 

data_ofdm) { 
 //output frame of 48 bits (24*2) 0->47 
 uint8 * out = (uint8 *) malloc(sizeof(uint8) * 48); 
 //data bits of the signal header 
 uint8 *signal_header = (uint8 *) malloc( 
   sizeof(uint8) * 24); 
 //convolutional encoding 
 uint8 *encoded_signal_header = (uint8 *) malloc( 
   sizeof(uint8) * 48); 
 //interleaving 
 uint8 *interleaved_signal_header = (uint8 *) malloc(sizeof(uint8) * 48); 
 //length of the psdu coming from the mac layer 
 int length = data_frame->psdu_size; 
 // first 4 bits represent the modulation and coding scheme 
 signal_header[0] = get_bit(data_ofdm->rate_field, 3); 
 signal_header[1] = get_bit(data_ofdm->rate_field, 2); 
 signal_header[2] = get_bit(data_ofdm->rate_field, 1); 
 signal_header[3] = get_bit(data_ofdm->rate_field, 0); 
 // 5th bit is reserved and must be set to 0 
 signal_header[4] = 0; 
 // then 12 bits represent the length 
 signal_header[5] = get_bit(length, 0); 
 signal_header[6] = get_bit(length, 1); 
 signal_header[7] = get_bit(length, 2); 
 signal_header[8] = get_bit(length, 3); 
 signal_header[9] = get_bit(length, 4); 
 signal_header[10] = get_bit(length, 5); 
 signal_header[11] = get_bit(length, 6); 
 signal_header[12] = get_bit(length, 7); 
 signal_header[13] = get_bit(length, 8); 
 signal_header[14] = get_bit(length, 9); 
 signal_header[15] = get_bit(length, 10); 
 signal_header[16] = get_bit(length, 11); 
 //18-th bit is the parity bit for the first 17 bits 
 int sum = 0; 
 int i; 
 for (i = 0; i < 17; i++) { 
  if (signal_header[i]) { 
   sum++; 
  } 
 } 
 signal_header[17] = sum % 2; 
 // last 6 bits must be set to 0 
 for (i = 0; i < 6; i++) { 
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  signal_header[18 + i] = 0; 
 } 
 //allocating an OFDM parameter and a FRAME parameter objects 
 ofdm_param_intialization(BPSK_1_2, signal_ofdm); 
 frame_param_intialization(signal_ofdm, signal_param, 0); 
 //convolutional encoding (scrambling is not needed) 
 convolutional_encoding(signal_header, encoded_signal_header, 

signal_param); 
 // interleaving 
 interleave(encoded_signal_header, out, signal_param, signal_ofdm); 
 free(interleaved_signal_header); 
 free(encoded_signal_header); 
 free(signal_header); 
 return out; 
} 

 

B.1.5 Code of the Chuncks to symbols block  

B.1.5.1 chuncks_to_symbols.h 

/* 
 * chunks_to_symbols_impl.h 
 * 
 *  Created on: Feb 23, 2017 
 *      Author: Shereen Othman 
 */ 
#ifndef CHUNKS_TO_SYMBOLS_IMPL_H_ 
#define CHUNKS_TO_SYMBOLS_IMPL_H_ 
#include "utils.h" 
void chunks_to_symbols_impl(uint8 *input_items, float32 *output_items, 
  int data_size, Encoding encoding); 
#endif /* CHUNKS_TO_SYMBOLS_IMPL_H_ */ 
 

B.1.5.2 chuncks_to_symbols.c 

/* 
 * chunks_to_symbols_impl.c 
 * 
 *  Created on: Feb 23, 2017 
 *      Author: Shereen Othman 
 */ 
#include "chunks_to_symbols_impl.h" 
#include "constellations_impl.h" 
// This is the general work function of the Chunks to symbols block that is 

used to // modulate the output bits from the Mapper and Packet header 
generator according to // the frame parameters 

void chunks_to_symbols_impl(uint8 *input_items, float32 *output_items, 
  int data_size, Encoding encoding) { 
 float32 *d_mapping; 
    switch (encoding) { 
 case BPSK_1_2: 
 case BPSK_3_4: 
  d_mapping = constellation_bpsk_impl(); 
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  break; 
    case QPSK_1_2: 
 case QPSK_3_4: 
  d_mapping = constellation_qpsk_impl(); 
  break; 
 case QAM16_1_2: 
 case QAM16_3_4: 
  d_mapping = constellation_16qam_impl(); 
  break; 
    case QAM64_2_3: 
 case QAM64_3_4: 
  d_mapping = constellation_64qam_impl(); 
  break; 
    default: 
  printf("wrong encoding"); 
  assert(false); 
  break; 
 } 
 int i; 
 int index = 0; 
 for (i = 0; i < data_size; i++) { 
  index = (int) input_items[i]; 
  output_items[i * 2] = d_mapping[index * 2]; 
  output_items[(i * 2) + 1] = d_mapping[(index * 2) + 1]; 
 } 
 free(d_mapping); 
} 

B.1.5.3 constellation_impl.h 

/* 
 * constellations_impl.h 
 * 
 *  Created on: Feb 23, 2017 
 *      Author: Shereen Othman 
 */ 
#ifndef CONSTELLATIONS_IMPL_H_ 
#define CONSTELLATIONS_IMPL_H_ 
#include  "IEEE802_11_Common_Variables.h" 
float *constellation_bpsk_impl(); 
float *constellation_qpsk_impl(); 
float *sconstellation_16qam_impl(); 
float *constellation_64qam_impl(); 
#endif /* CONSTELLATIONS_IMPL_H_ */ 

B.1.5.4 constellation_impl.c 

/* 
 * constellations_impl.c 
 * 
 *  Created on: Feb 23, 2017 
 *      Author: Shereen Othman 
 */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
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#include "chunks_to_symbols_impl.h" 
#include "constellations_impl.h" 
/**------------------------------FUNCTIONS IMPLEMENTATIONS--------------------
----**/ 
// This function is used to implement the BPSK constellation using gray coding 
float32 *constellation_bpsk_impl() { 
 float32 *d_constellation = calloc(2 * 2, sizeof(float32)); //as each 
complex number will take 2 successive bytes 
 d_constellation[0] = -1; //first real 
 d_constellation[1] = 0; //first imag 
 d_constellation[2] = 1; //second imag 
 d_constellation[3] = 0; //second imag 
 return d_constellation; 
} 
// This function is used to implement the QPSK constellation using gray coding 
float32 *constellation_qpsk_impl() { 
 const float32 level = sqrt((float32) (0.5)); 
 float32 *d_constellation = calloc(4 * 2, sizeof(float32)); 
 
 d_constellation[0] = -level; 
 d_constellation[1] = -level; 
 d_constellation[2] = level; 
 d_constellation[3] = -level; 
 d_constellation[4] = -level; 
 d_constellation[5] = level; 
 d_constellation[6] = level; 
 d_constellation[7] = level; 
 return d_constellation; 
} 
// This function is used to implement the QAM16 constellation using gray 
coding 
float32 *constellation_16qam_impl() { 
 const float32 level = sqrt((float32) (0.1)); 
 float32 *d_constellation = calloc(16 * 2, sizeof(float32)); 
 d_constellation[0] = -3 * level; 
 d_constellation[1] = -3 * level; 
 d_constellation[2] = 3 * level; 
 d_constellation[3] = -3 * level; 
 d_constellation[4] = -1 * level; 
 d_constellation[5] = -3 * level; 
 d_constellation[6] = 1 * level; 
 d_constellation[7] = -3 * level; 
 d_constellation[8] = -3 * level; 
 d_constellation[9] = 3 * level; 
 d_constellation[10] = 3 * level; 
 d_constellation[11] = 3 * level; 
 d_constellation[12] = -1 * level; 
 d_constellation[13] = 3 * level; 
 d_constellation[14] = 1 * level; 
 d_constellation[15] = 3 * level; 
 d_constellation[16] = -3 * level; 
 d_constellation[17] = -1*level; 
 d_constellation[18] = 3 * level; 
 d_constellation[19] = -1 * level; 
 d_constellation[20] = -1 * level; 
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 d_constellation[21] = -1 * level; 
 d_constellation[22] = 1 * level; 
 d_constellation[23] = -1 * level; 
 d_constellation[24] = -3 * level; 
 d_constellation[25] = 1 * level; 
 d_constellation[26] = 3 * level; 
 d_constellation[27] = 1 * level; 
 d_constellation[28] = -1 * level; 
 d_constellation[29] = 1 * level; 
 d_constellation[30] = 1 * level; 
 d_constellation[31] = 1 * level; 
 return d_constellation; 
} 
// This function is used to implement the QAM64 constellation using gray 
coding 
float32 *constellation_64qam_impl() { 
 const float32 level = sqrt((float32) (1 / 42.0)); 
 float32 *d_constellation = calloc(16 * 2, sizeof(float32)); 
 d_constellation[0] = -7 * level; 
 d_constellation[1] = -7 * level; 
 d_constellation[2] = 7 * level; 
 d_constellation[3] = -7 * level; 
 d_constellation[4] = -1 * level; 
 d_constellation[5] = -7 * level; 
 d_constellation[6] = 1 * level; 
 d_constellation[7] = -7 * level; 
 d_constellation[8] = -5 * level; 
 d_constellation[9] = -7 * level; 
 d_constellation[10] = 5 * level; 
 d_constellation[11] = -7 * level; 
 d_constellation[12] = -3 * level; 
 d_constellation[13] = -7 * level; 
 d_constellation[14] = 3 * level; 
 d_constellation[15] = -7 * level; 
 d_constellation[16] = -7 * level; 
 d_constellation[17] = 7 * level; 
 d_constellation[18] = 7 * level; 
 d_constellation[19] = 7 * level; 
 d_constellation[20] = -1 * level; 
 d_constellation[21] = 7 * level; 
 d_constellation[22] = 1 * level; 
 d_constellation[23] = 7 * level; 
 d_constellation[24] = -5 * level; 
 d_constellation[25] = 7 * level; 
 d_constellation[26] = 5 * level; 
 d_constellation[27] = 7 * level; 
 d_constellation[28] = -3 * level; 
 d_constellation[29] = 7 * level; 
 d_constellation[30] = 3 * level; 
 d_constellation[31] = 7 * level; 
 d_constellation[32] = -7 * level; 
 d_constellation[33] = -1 * level; 
 d_constellation[34] = 7 * level; 
 d_constellation[35] = -1 * level; 
 d_constellation[36] = -1 * level; 
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 d_constellation[37] = -1 * level; 
 d_constellation[38] = 1 * level; 
 d_constellation[39] = -1 * level; 
 d_constellation[40] = -5 * level; 
 d_constellation[41] = -1 * level; 
 d_constellation[42] = 5 * level; 
 d_constellation[43] = -1 * level; 
 d_constellation[44] = -3 * level; 
 d_constellation[45] = -1 * level; 
 d_constellation[46] = 3 * level; 
 d_constellation[47] = -1 * level; 
 d_constellation[48] = -7 * level; 
 d_constellation[49] = 1 * level; 
 d_constellation[50] = 7 * level; 
 d_constellation[51] = 1 * level; 
 d_constellation[52] = -1 * level; 
 d_constellation[53] = 1 * level; 
 d_constellation[54] = 1 * level; 
 d_constellation[55] = 1 * level; 
 d_constellation[56] = -5 * level; 
 d_constellation[57] = 1 * level; 
 d_constellation[58] = 5 * level; 
 d_constellation[59] = 1 * level; 
 d_constellation[60] = -3 * level; 
 d_constellation[61] = 1 * level; 
 d_constellation[62] = 3 * level; 
 d_constellation[63] = 1 * level; 
 d_constellation[64] = -7 * level; 
 d_constellation[65] = -5 * level; 
 d_constellation[66] = 7 * level; 
 d_constellation[67] = -5 * level; 
 d_constellation[68] = -1 * level; 
 d_constellation[69] = -5 * level; 
 d_constellation[70] = 1 * level; 
 d_constellation[71] = -5 * level; 
 d_constellation[72] = -5 * level; 
 d_constellation[73] = -5 * level; 
 d_constellation[74] = 5 * level; 
 d_constellation[75] = -5 * level; 
 d_constellation[76] = -3 * level; 
 d_constellation[77] = -5 * level; 
 d_constellation[78] = 3 * level; 
 d_constellation[79] = -5 * level; 
 d_constellation[80] = -7 * level; 
 d_constellation[81] = 5 * level; 
 d_constellation[82] = 7 * level; 
 d_constellation[83] = 5 * level; 
 d_constellation[84] = -1 * level; 
 d_constellation[85] = 5 * level; 
 d_constellation[86] = 1 * level; 
 d_constellation[87] = 5 * level; 
 d_constellation[88] = -5 * level; 
 d_constellation[89] = 5 * level; 
 d_constellation[90] = 5 * level; 
 d_constellation[91] = 5 * level; 
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 d_constellation[92] = -3 * level; 
 d_constellation[93] = 5 * level; 
 d_constellation[94] = 3 * level; 
 d_constellation[95] = 5 * level; 
 d_constellation[96] = -7 * level; 
 d_constellation[97] = -3 * level; 
 d_constellation[98] = 7 * level; 
 d_constellation[99] = -3 * level; 
 d_constellation[100] = -1 * level; 
 d_constellation[101] = -3 * level; 
 d_constellation[102] = 1 * level; 
 d_constellation[103] = -3 * level; 
 d_constellation[104] = -5 * level; 
 d_constellation[105] = -3 * level; 
 d_constellation[106] = 5 * level; 
 d_constellation[107] = -3 * level; 
 d_constellation[108] = -3 * level; 
 d_constellation[109] = -3 * level; 
 d_constellation[110] = 3 * level; 
 d_constellation[111] = -3 * level; 
 d_constellation[112] = -7 * level; 
 d_constellation[113] = 3 * level; 
 d_constellation[114] = 7 * level; 
 d_constellation[115] = 3 * level; 
 d_constellation[116] = -1*level; 
 d_constellation[117] = 3 * level; 
 d_constellation[118] = 1 * level; 
 d_constellation[119] = 3 * level; 
 d_constellation[120] = -5 * level; 
 d_constellation[121] = 3 * level; 
 d_constellation[122] = 5 * level; 
 d_constellation[123] = 3 * level; 
 d_constellation[124] = -3 * level; 
 d_constellation[125] = 3 * level; 
 d_constellation[126] = 3 * level; 
 d_constellation[127] = 3 * level; 
 return d_constellation; 
} 
 

B.1.6 Code of the OFDM carrier allocator 

B.1.6.1 ofdm_carr_alloc_func.h file 

/* 
 * ofdm_carr_alloc_func.h 
 * 
 *  Created on: Feb 24, 2017 
 *      Author: Mohamed Elnaggar 
 */ 
#ifndef OFDM_CARR_ALLOC_FUNC_H_ 
#define OFDM_CARR_ALLOC_FUNC_H_ 
#include  "IEEE802_11_Common_Variables.h" 
/**----------------------All are form the standard definition-----------------
----**/ 
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// Occupied carriers 
int occupied_carriers[48] = { -26, -25, -24, -23, -22, -20, -19, -18, -17, -

16, 
-15, -14, -13, -12, -11, -10, -9, -8, -6, -5, -4, -3, -2, -1, 1, 2, 3, 
4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 

25, 26 }; 
// positions of the pilot symbols 
int pilot_carriers[4] = { -21, -7, 7, 21 }; 
// values of the pilot symbols 
float32 pilot_symbols[] = { 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 

0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 
0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 
0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 
-1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 
1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 

-1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 
1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 
1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 
1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 
0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 
-1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 
1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 
1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 
-1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 
-1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 
1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 
0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 
0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 
0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 
0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 
1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 
0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 
0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 
0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 
1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 
1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 
-1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 
-1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 
0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 
0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 
0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 
-1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 
-1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 
1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 
-1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 
0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 
0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 
0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 
0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 
-1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 
-1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 
-1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 
1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 
1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 
0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 
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-1, 0, -1, 0, -1, 0, 1 }; 
// synchronization words 
float32 sync_words[] = { 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 

0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 
1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 

1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 
0.0, 0, 0.0, 0, 0.0, 0, -1.4719601443879746, -1.4719601443879746, 0.0, 
0, 0.0, 0, 0.0, 0, -1.4719601443879746, -1.4719601443879746, 0.0, 0, 

0.0, 0, 0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 
0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 

1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 
1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 
0.0, 0, 0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 
0.0, 0, -1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 
0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 
-1.4719601443879746, -1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 

1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 
0.0, 0, 0.0, 0, 0.0, 0, -1.4719601443879746, -1.4719601443879746, 0.0, 
0, 0.0, 0, 0.0, 0, -1.4719601443879746, -1.4719601443879746, 0.0, 0, 

0.0, 0, 0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 
0.0, 0, 1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 

1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 
1.4719601443879746, +1.4719601443879746, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 
0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 
-1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, 1, 0, 0, -1, -1, 0, 
0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1, 0, -0, -1, 1, 0, 0, -1, 
-1, 0, 0, 1, 0, 0, 0, -1, 1, 0, -0, -1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 0, 
0, -1, 1, 0, -0, -1, -1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 

-1, 0, 0, -1, 1, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 
1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 
0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 
-1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 
-1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 

1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 
 
// size of FFT 
int fft_len = 64; 
// This boolean is used to return the OFDM carrier allocater to the start 
int output_is_shifted = 1; 
int ofdm_carr_alloc(int *occupied_carriers, int *pilot_carriers, 
  float32 *pilot_sympols, float32 *sync_words, int fft_len, 
  int output_is_shifted, float32 *input, float32 *output, 
  int sizeof_input_sym); 
#endif /* OFDM_CARR_ALLOC_FUNC_H_ */ 

B.1.6.2 Ofdm_carr_alloc.c file 

/* 
 * ofdm_carr_alloc.c 
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 * 
 *  Created on: Feb 24, 2017 
 *      Author: Mohamed Elnaggar 
 */ 
#ifndef ofdm 
#define ofdm 
#include  "IEEE802_11_Common_Variables.h" 
// The general work function used for OFDM carrier allocation 
int ofdm_carr_alloc(int *occupied_carriers, int *pilot_carriers, 
  float32 *pilot_symbols, float32 *sync_words, int fft_len, 
  int output_is_shifted, float32 *input, float32 *output, 
  int sizeof_input_sym) { 
 int i = 0; 
 int j = 0; 
 int sizeof_occ_carr = 48; 
 int sizeof_pilot_carr = 4; 
 int sizeof_sync_words = 512; 
 //this part changes the zero values in the occupied_carriers to positive 

to  indicate real positions in array 
 for (i = 0; i < sizeof_occ_carr; i++) { 
  if (occupied_carriers[i] < 0) { 
   occupied_carriers[i] += fft_len; 
  } 
  if (occupied_carriers[i] > fft_len || occupied_carriers[i] < 0) { 
   break; 
  } 
  if (output_is_shifted) { 
   occupied_carriers[i] = (occupied_carriers[i] + fft_len / 

2) 
     % fft_len; 
  } 
 } 
 //This part changes the zero values in the pilot_carriers to positive to 

indicate real positions in array 
 for (i = 0; i < sizeof_pilot_carr; i++) { 
  if (pilot_carriers[i] < 0) { 
   pilot_carriers[i] += fft_len; 
  } 
  if (pilot_carriers[i] > fft_len || pilot_carriers[i] < 0) { 
   break; 
  } 
  if (output_is_shifted) { 
   pilot_carriers[i] = (pilot_carriers[i] + fft_len / 2) % 

fft_len; 
  } 
 } 
 // Copy Sync word 
 for (i = 0; i < sizeof_sync_words; i++) { 
  output[i] = sync_words[i]; 
 
 } 
 // Copy data symbols 
 float32 *out_data; 
 out_data = 512 + output; 
 long n_ofdm_symbols = 0; // Number of output items 
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 int symbols_to_allocate = 48; 
 int symbols_allocated = 0; 
 int k; 
 for (i = 0; i < sizeof_input_sym; i = i + 2) { 
  if (symbols_allocated == 0) { 
   n_ofdm_symbols++; 
  } 
  k = occupied_carriers[symbols_allocated]; 
  k = k * 2; 
  out_data[k] = input[i]; 
  out_data[k + 1] = input[i + 1]; 
  symbols_allocated++; 
  if (symbols_allocated == symbols_to_allocate) { 
   symbols_to_allocate = 48; 
   symbols_allocated = 0; 
   out_data = out_data + ((fft_len) * 2); 
  } 
 } 
 // Copy pilot symbols 
 float32 *out_pilot; 
 out_pilot = 512 + output; 
 for (i = 0; i < n_ofdm_symbols; i++) { 
  for (j = 0; j < 8; j = j + 2) { 
   k = pilot_carriers[j / 2]; 
   k = k * 2; 
   out_pilot[k] = pilot_symbols[j + (i * 8)]; 
   out_pilot[k + 1] = pilot_symbols[j + 1 + (i * 8)]; 
  } 
  out_pilot = out_pilot + ((fft_len) * 2); 
 } 
 return 0; 
} 
#endif 
 

B.1.7 Code of the IFFT block 

B.1.7.1 Ifft.h 

/* 
 * ifft.h 
 * 
 *  Created on: Feb 7, 2017 
 *      Author: Habiba Tarek 
 */ 
#ifndef IFFT_H_ 
#define IFFT_H_ 
#include "IEEE802_11_Common_Variables.h" 
extern void gen_twiddle_fft_sp (float32 *w, int n); 
extern void shiftF(float32* before, float32* after, int N); 
extern void ifft(float32* input, float32* output, int N, float32 

WindowScale, int shift, float32* window); 
extern void seperateRealImg(float32* input, float32* real, float32*img, int 

N); 
#endif /* IFFT_H_ */ 
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B.1.7.2 Ifft.c 

/* ifft.c 
 * Created on: Feb 7, 2017 
 *      Author: Habiba Tarek*/ 
#include "ifft.h" 
#include <math.h> 
#include <ti/dsplib/dsplib.h> 
#include <stdlib.h> 
extern uint8 brev[64] = { 
    0x0, 0x20, 0x10, 0x30, 0x8, 0x28, 0x18, 0x38, 
    0x4, 0x24, 0x14, 0x34, 0xc, 0x2c, 0x1c, 0x3c, 
    0x2, 0x22, 0x12, 0x32, 0xa, 0x2a, 0x1a, 0x3a, 
    0x6, 0x26, 0x16, 0x36, 0xe, 0x2e, 0x1e, 0x3e, 
    0x1, 0x21, 0x11, 0x31, 0x9, 0x29, 0x19, 0x39, 
    0x5, 0x25, 0x15, 0x35, 0xd, 0x2d, 0x1d, 0x3d, 
    0x3, 0x23, 0x13, 0x33, 0xb, 0x2b, 0x1b, 0x3b, 
    0x7, 0x27, 0x17, 0x37, 0xf, 0x2f, 0x1f, 0x3f 
}; 
// since complex here is written in the terms of a float32 array, with real 

in even // indices and imaginary in odd indices, this function separates real 
and imaginary // numbers in different arrays*/ 

void seperateRealImg(float32* input, float32* real, float32*img, int N) { 
    int i, j; 
    for (i = 0, j = 0; j < N; i+=2, j++) { 
        real[j] = input[i]; 
        img[j] = input[i + 1]; 
    } 
} 
/* this ready function generates the twiddle factors that will be used in 

IFFT function*/ 
void gen_twiddle_fft_sp (float32 *w, int n) 
{ 
    int i, j, k; 
    double x_t, y_t, theta1, theta2, theta3; 
    const double PI = 3.141592654; 
    for (j = 1, k = 0; j <= n >> 2; j = j << 2) 
    { 
        for (i = 0; i < n >> 2; i += j) 
        { 
            theta1 = 2 * PI * i / n; 
            x_t = cos (theta1); 
            y_t = sin (theta1); 
            w[k] = (float32) x_t; 
            w[k + 1] = (float32) y_t; 
 
            theta2 = 4 * PI * i / n; 
            x_t = cos (theta2); 
            y_t = sin (theta2); 
            w[k + 2] = (float32) x_t; 
            w[k + 3] = (float32) y_t; 
 
            theta3 = 6 * PI * i / n; 
            x_t = cos (theta3); 
            y_t = sin (theta3); 
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            w[k + 4] = (float32) x_t; 
            w[k + 5] = (float32) y_t; 
            k += 6; 
        } 
    } 
} 
/* this function shifts the input so that it swaps the two halves of the 

input (gnuradio uses shift so we did it here as well) */ 
void shiftF(float32* before, float32* after, int N) 
{ 
  int n; 
  for(n = 0; n < (2*N)/2 ; n++) 
  { 
   after[n] = before[(2*N)/2 + n]; 
  } 
  n = (2*N)/2; 
  for(n = (2*N)/2; n < (2*N) ; n++) 
  { 
   after[n] = before[n - (2*N)/2]; 
  } 
} 
void ifft(float32* input, float32* output, int N, float32 WindowScale, int 

shift, float32* window) 
{ 
  gen_twiddle_fft_sp(window, N); 
  /* this small part multiples the input by N to reverse the 

normalization and divides it by the the value of WindowScale to scale the 
input */ 

     int k = 0; 
     for (k = 0; k<2*N; k++) 
     { 
      input[k] = input[k] * ((float32) N / 

(sqrt((float32)WindowScale))); 
     } 
     if(shift  == true) 
     { 
      short int len = (unsigned int)(ceil(2*N/2.0)); 
      float32* temp = calloc(2*N, sizeof(float32)); 
            memcpy(temp, &input[len],sizeof(float32)*(2*N - len)); 
            memcpy(&temp[2*N - len], &input[0],sizeof(float32)*len); 
      memcpy(input,temp,2*N*sizeof(float32)); 
      free(temp); 
     } 
     if(N%4 == 0) 
     { 
      DSPF_sp_ifftSPxSP(N, input, window, output, brev, 4, 0, N); 
     } 
     else 
     { 
      DSPF_sp_ifftSPxSP(N, input, window, output, brev, 2, 0, N); 
     } 
} 
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B.1.8 Code of the cyclic prefix block 

B.1.8.1 CyclicPrefix.h 

/*CyclicPrefix.h 
 *Created on: 1 Feb 2017 
 *Author: User Zeinab Ahmed*/ 
#ifndef CYCLICPREFIX_H_ 
#define CYCLICPREFIX_H_ 
#include  "IEEE802_11_Common_Variables.h" 
typedef struct 
{ 
 int d_fft_len; // initialized in gnuradio by 64 (size of IFFT block) 
 int d_output_size; // output size = d_fft_len + cyclic prefix 

size(initialized // in gnuradio by 16) 
 int d_rolloff_len; // initialized in gnuradio by 2 
 int symbols_to_read; // number of OFDM symbols input to this block 
}StructCyclicPrefix_Init; 
void CyclicPrefix(StructCyclicPrefix_Init*,float32*,float32*); 
void CyclicPrefix_Init(StructCyclicPrefix_Init*,int); 
#endif /* CYCLICPREFIX_H_ */ 
 

B.1.8.2 CyclicPrefix.c 

/*CyclicPrefix.c 
 *Created on: 1 Feb 2017 
 *Author: User Zeinab Ahmed*/ 
#include "CyclicPrefix.h" 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> // added as I use cosine function 
#ifndef M_PI 
#    define M_PI 3.14159265358979323846 
#endif 
// The initialization of the Cyclic prefix 
void CyclicPrefix_Init(StructCyclicPrefix_Init *Cyclic,int num_ofdm_sym) 
{ 
 Cyclic->d_fft_len= 64; 
 Cyclic->d_output_size=80; 
 Cyclic->d_rolloff_len=2; 
 Cyclic->symbols_to_read=num_ofdm_sym; 
} 
// The general work function of the cyclic prefix block 
void CyclicPrefix(StructCyclicPrefix_Init *PtrToStruct,float32 

*data_ptr,float32 *out_ptr) 
{ 
 int i; 
 int d_cp_size = PtrToStruct->d_output_size - PtrToStruct->d_fft_len; 
 float32 *d_up_flank,*d_down_flank,*d_delay_line; 
    if (PtrToStruct->d_rolloff_len == 1) 
    { 
     PtrToStruct->d_rolloff_len = 0; 
    } 
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    if (PtrToStruct->d_rolloff_len) 
    { 
     d_up_flank=(float32*) malloc((PtrToStruct->d_rolloff_len-

1)*sizeof(float32)); 
  d_down_flank=(float32*) malloc((PtrToStruct->d_rolloff_len-

1)*sizeof(float32)); 
  d_delay_line=(float32*) malloc((PtrToStruct->d_rolloff_len-

1)*sizeof(float32)); 
  //---------- construct up flank and down flank ----------// 
  for (i = 1; i < PtrToStruct->d_rolloff_len; i++) 
  { 
   d_up_flank[i-1]   = 0.5 * (1 + cos(M_PI *(float32) 

i/(float32)PtrToStruct->d_rolloff_len - M_PI)); 
   d_down_flank[i-1] = 0.5 * (1 + cos(M_PI 

*(float32)(PtrToStruct->d_rolloff_len-i)/(float32)PtrToStruct->d_rolloff_len - 
M_PI)); 

   d_delay_line[i-1]=0; 
  } 
    } 
 //---------- cyclic prefix implementation ----------// 
 float32 *in=data_ptr; 
 float32 *out=out_ptr; 
 int sym_idx; 
  for (sym_idx = 0; sym_idx < PtrToStruct->symbols_to_read;sym_idx++) 
  { 
  memcpy((out + (d_cp_size*2)),in, PtrToStruct->d_fft_len * 

sizeof(float32)* 2); 
  memcpy(out,(in + (PtrToStruct->d_fft_len*2) - (d_cp_size*2)), 

d_cp_size * sizeof(float32)* 2); 
  if (PtrToStruct->d_rolloff_len) 
  { 
    for (i = 0; i < PtrToStruct->d_rolloff_len-1; i+=2) 
    { 
      out[i] = out[i] * d_up_flank[i/2] + d_delay_line[i/2]; //real part 
      out[i+1] = out[i+1] * d_up_flank[i/2] + d_delay_line[i/2]; 
      d_delay_line[i/2] = in[i] * d_down_flank[i/2]; //real part 
      d_delay_line[i/2] = in[i+1] * d_down_flank[i/2]; //imaginary part 
    } 
  } 

  in += (PtrToStruct->d_fft_len*2); 
  out += (PtrToStruct->d_output_size*2); 
   } 
//---------- adding delay line for the last OFDM symbol ----------// 
  if (PtrToStruct->d_rolloff_len) 
  { 
     for (i = 0; i < PtrToStruct->d_rolloff_len-1; i++) 
     { 
      *out++ = d_delay_line[i/2]; // real part 
         *out++ = d_delay_line[i/2]; // imaginary part 
     } 
    free(d_delay_line); 
    free(d_down_flank); 
    free(d_up_flank); 
 } 

} 


