
Zewail City for Science and Technology
University of Science and Technology

Nanotechnology & Nanoelectronics Engineering Program

Verification of the Digital Data-Path of
DDR5 PHY

A Graduation Project
Submitted in Partial Fulfillment of

B.Sc. Degree Requirements in
Nanotechnology & Nanoelectronics Engineering

Prepared By
Abdullah Allam 201700419
Tarek Abou-El-Khier 201701167
John Saber 201701287
Mohamed Abdelall 201700417
Shehab Bahaa 201700313

Supervised By

Dr. Hassan Mostafa Signature

2021 - 2022

Acknowledgments

This project would not have been possible without the support of many people.

Thanks to our project supervisor, Dr. Hassan Mostafa, who helped us greatly with his

expertise and connections. Also thanks to Si-Vision engineers who offered guidance

and support.

Thanks to Nanotech. & Nanoelectronics department, especially Dr. Amr Bayoumi, the

program director, for facilitating the collaboration with our industrial partners and

providing us with his help and support. And finally, thanks to our colleagues, and

friends who offer endless support and love.

2

Declaration

We hereby declare that the work which is being presented in the thesis, entitled

“Verification of the Digital Data-Path of DDR5 PHY”, in partial fulfillment of the

requirement for the B.Sc. Degree in Nanotechnology & Nanoelectronics Engineering,

Zewail City is an original work under the guidance of Dr. Hassan Mostafa, assistant

professor at the University of Science and Technology, Zewail City.

The matter embodied in this thesis is original and has not been submitted in whole or

in part for consideration for any other degree or qualification in this, or any other

University.

Abdullah Allam

Tarek Abou-El-Khier

John Saber

Mohamed Abdelall

Shehab Bahaa

June 2022

3

Abstract
The current state of the electronics industry shows a strong need for better DRAM

performance, which relies heavily on the DDR physical layer (PHY) performance.

The latest DDR5 JEDEC JESD79-5A and DFI standards address the industry needs

and describe the features of state-of-the-art DDR5 PHYs. Functional verification of

such sophisticated design is paramount, and it is the subject of this work. UVM along

with SVA was used as a good solution to address the need of a robust and reusable

testbench for the digital data path of the DDR5 PHY. In this work, we adhere to the

verification flow, starting with the specifications extraction from the standards,

developing the verification plan and test plan, then building a UVM verification

environment written in SystemVerilog. The coverage-driven random testing

methodology is also utilized. As a result of testing, 14 bugs were found and reported.

Furthermore, high code and functional coverage were obtained indicating the

completeness of the verification effort.

4

Table of Contents
Table of Contents 5
List of Figures 9
List of Acronyms/Abbreviations 11

Chapter 1
Introduction 13

1.1 General Overview 13
1.2 Problem Definition 15
1.3 Objectives 15
1.4 Functional Requirements 16
1.5 Thesis Organization 16

Chapter 2
Standards used 18

2.1 DDR PHY Interface (DFI v5.1) 18
2.2 JEDEC interface Standard (JESD79-5A): 18
2.3 SystemVerilog IEEE 1800 standard 19
2.4 Universal Verification Methodology (UVM) IEEE 1800.2 standard 19

Chapter 3
Market and Literature Review 20

3.1 Overview and Verification Trends 20
3.2 UVM in Modern Verification 21
3.3 Conclusion 22

Chapter 4
The Digital Verification Process 23

4.1 Challenges of Verification 23
4.1.1 The State-Space Explosion 23
4.1.2 Detecting Incorrect Behavior 24

4.2 Verification Constraints 24
4.2.1 Schedule 24
4.2.2 Cost 25
4.2.3 Quality 26

4.3 Verification Tasks 27
4.4 Digital Verification Technologies 27
4.5 Coverage-Driven Verification 28

4.5.1 Code Coverage 28
4.5.2 Functional Coverage 29
4.5.3 Bug rate 29
4.5.4 Coverage Components of SystemVerilog 30

5

4.6 Simulation-Based vs Formal Verification 30
4.7 Assertion Based Verification 32

4.7.1 Immediate assertion 32
4.7.2 Concurrent assertions 33

Chapter 5
The Universal Verification Methodology 34

5.1 Overview 34
5.2 UVM Testbench Architecture 35
5.3 UVM Class Hierarchy 36
5.4 UVM Test 36
5.5 UVM Environment 37
5.6 UVM Agent 37
5.7 UVM Sequence Items 38
5.8 UVM Sequencers & Sequences 38
5.9 UVM Driver 38
5.10 UVM Monitor 40
5.11 UVM Scoreboard and Reference Model 40
5.12 UVM Subscriber 41
5.13 Resource Database 41
5.14 TLM 43
5.15 UVM Factory 44
5.16 UVM Phases 44

Chapter 6
The DDR5 PHY 46

6.1 Overview of the DRAM system and how it works 46
6.1.1 DRAM architecture 48
6.1.2 DRAM standards: Regular DDR 49

6.2 General Circuit architecture and components of the PHY 51
6.3 DUT Properties as described in the DFI Standard 52
6.4 DUT properties as described in the JEDEC 54

6.4.1 Mode Register Definition: MRR & MRW 54
6.4.2 USED Mode Registers 54
6.4.3 Command Truth Table & 2-Cycle Command Cancel 54
6.4.4 Burst Length, Type, and Order 55
6.4.5 Programmable Preamble & Postamble 55
6.4.6 Interamble 55
6.4.7 Read Operation 55

6.5 DUT properties that are not part of the standards 55

Chapter 7
Project Design 57

6

7.1 Project purpose and constraints 57
7.2 Project technical specifications 58
7.3 Design alternatives and justification 59
7.4 Description of the selected design 60
7.5 Block diagram and functions of the subsystems 61
7.6 Verification Plan 63

Chapter 8
Project Execution 66

8.1 Top Module 66
8.2 Interfaces 67
8.3 Tests 68
8.4 Environment 69
8.5 Agents 70
8.6 Sequence Item 71
8.7 Sequences/Sequencers 72
8.8 MC Driver 75
8.9 MC Monitor 79

8.9.1 Command Thread 79
8.9.2 Data Thread 79
8.9.3 Data Rotation 79
8.9.4 Communication between the Two Threads 80

8.10 DRAM Driver 80
8.10.1 DRAM Response Sequence 82

8.11 DRAM Monitor 83
8.11.1 Using Two Threads In The Run Phase 83
8.11.2 Command Thread Implementation 84
8.11.3 Data Thread Implementation 84
8.11.4 Pattern Detector Implementation 86
8.11.5 Communication Between The Two Threads 87

8.12 Scoreboard and Reference Model 88
8.13 Subscriber 91

8.13.1 Cover Points 92
8.13.2 Cross coverage 92
8.13.3 Transition coverage 93
8.13.4 Coverage Options 94
8.13.5 Write Functions Implementation 94

8.14 DDR Assertions Module 95
8.15 Testcase Library 100

8.15.1 Sanity Test 101
8.15.1.1 Sanity Sequence 101

7

8.15.1.2 Simulation of the Sanity test 102
8.15.2 Random Test 103

8.15.2.1 Random Sequence 103
8.15.2 Random Corners Test 103
8.15.3 Back-to-back Test 104

8.16 Using EDA Tools 104
8.17 Standards Usage in Project Execution 108

Chapter 9
Results 109

9.1 Initial Coverage Report and Steps to improve it. 109
9.1.1 code coverage 109
9.1.2 group coverage 109
9.1.3 initial coverage reports 109
9.1.4 suggested tests and improvements 110

9.2 Final coverage report 113
9.2.1 Applied tests and improvements 113
9.2.2 The final coverage report 114
9.2.3 Improved cover points 115
9.2.4 Future coverage work 116

9.3 Bugs list 117

Chapter 10
Cost Analysis 124

Chapter 11
Conclusion and Future work 125

References 126

Appendices 130

8

List of Figures
Figure 1. A simplified picture of the DRAM System
Figure 2. Verification cost as technology node shrinks [17].
Figure 3. Cost of undetected bugs over time [16].
Figure 4. productivity with respect to schedule and cost [16].
Figure 5. Typical verification process loop [17].
Figure 6. Coverage verification methodology [19].
Figure 7. Coverage comparison [19].
Figure 8. functional coverage methodology [17].
Figure 9. Path of one simulation through the reachable state space of a DUT [16].
Figure 10. practical limitations on formal verification (runtime resources) [16].
Figure 11. UVM development history [21]
Figure 12. UVM Testbench Architecture [20]
Figure 13. UVM Class Hierarchy [20]
Figure 14. UVM Agent [20]
Figure 15. UVM Driver flow of execution [22]
Figure 16. UVM TLM types [23]
Figure 17. Accessing protocol of DRAM columns and rows [24]
Figure 18. Logical organization of wide data-out DRAMs[24]
Figure 19. DDR internal and external clock frequency [25]
Figure 20. Bank grouping in DDR4 [25]
Figure 21. Summarizing the comparison between SDR and DDR generations [25]
Figure 22. Black-box diagram of the DDR5 PHY DUT
Figure 23. random vs direct testing coverage [19]
Figure 24. random vs direct testing progress over time [19]
Figure 25. coverage convergence flow [19]
Figure 26. testbench architecture for the DDR5 PHY
Figure 27. A snippet of design requirement and feature section of the verification plan
Figure 28. Snippet of coverage measurement section of verification plan
Figure 29. A snippet of stimulus generation section of verification plan
Figure 30. Snippet of response checking section of verification plan
Figure 31. Driving and Sampling Scheme
Figure 32. Different testcases inherited from base_test
Figure 33. The env.sv class and sub-components. connections
Figure 34. MC/DRAM Agent components and connections
Figure 35. The base_seq inherits uvm_seq, and it is the parent of all other sequences
Figure 36. A Flow Chart Diagram illustrating the drive_dfi () task
Figure 37. The driver’s run phase illustration
Figure 38. MC monitor communication and threads
Figure 39. DRAM Driver run phase
Figure 40. : Simplified Flow Chart showing the DRAM_resp task flow

9

Figure 41. Two consecutive RDs.
Figure 42. Interamble patterns with commands gap = BL/2 +2.
Figure 43. Case 1: 2nd RD is issued after the data of 1st RD is obtained completely.
Figure 44. Case 2: 2nd RD is issued before the data of 1st RD is obtained completely.
Figure 45. State Transitions Diagram of The Pattern Detector.
Figure 46. Flowchart Demonstrating Command Translation Check
Figure 47. The Classes Architecture Alternatives
Figure 48. constructing a complete transaction before the coverage sampling.
Figure 49. A portion from the sanity test waveform (Matched Freq. ratio)
Figure 50. A portion from the sanity test waveform (1:2 Freq. ratio)
Figure 51. Waveform of the demonstrative testbench
Figure 52. initial code coverage report Results
Figure 53. initial group coverage report Results
Figure 54. License Error that shows up when exclusion file is used
Figure 55. final code coverage report Results summary
Figure 56. final code coverage report Results
Figure 57. final group coverage report Results
Figure 58. Bug 1
Figure 60. Bug 3
Figure 61a. Bug 4 (Previous Read Data)
Figure 61b. Bug 4
Figure 62. Bug 8
Figure 63. Bug 9
Figure 64. Bug 10
Figure 65. Bug 11
Figure 66. Bug 12
Figure 67. Bug 13

10

List of Acronyms/Abbreviations
ACT Activate Command

CDC Clock Domain Crossing

CRV Constrained Random Verification

DDR Double data rate

DES Deselect

DFI DDR-PHY Interface

DQ Data Bus

DQS Data Strobe

DRAM Dynamic random-access memory

DUT Design Under Test

DV Digital Verification

EDA Electronic Design Automation

FV Formal Verification

HW Hardware

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

JEDEC Joint Electron Device Engineering Council

MC Memory Controller

ML Machine Learning

MR Mode register

MRR Mode Register Read

MRW Mode Register Write

NoC Network on Chip

OOP Object-oriented programming

OVM Open Verification Methodology

PHY Physical layer

PREab Precharge all Command

11

RAM Random Access Memory

RD Read Command

RTL Register Transfer Level

SDRAM Synchronous DRAM

SFC SystemVerilog Functional Coverage

SW Software

SV SystemVerilog

SVA SystemVerilog Assertions

TB Testbench

UVM Universal Verification Methodology

VCS Verilog Compiler and Simulator

VIP Verification Intellectual Property

12

Chapter 1

Introduction

1.1 General Overview

Modern computing systems are arguably the most advanced machines that humans

have ever built. They are the most important pillar that enabled the modern era we

live in as it serves as an indispensable tool for virtually any discipline of modern

engineering, science, and art. Currently, the prevalent computing architecture (i.e.,

way of doing computation) is the Von Neuman architecture which was presented

around the middle of the 20th century. It relies on the concept of “stored program

computing” where the systems mainly consist of a processing unit and a memory

element. The idea is that the program (algorithmic instructions to do some task) are

fetched from the memory and the processor does the calculations and then returns the

result back to a memory or a specific data output method such as a screen. Since then,

the processor performance increased exponentially thanks to advances in transistor

technology as described by Moore’s law.

The ideal memory for such huge processing power should be large, fast, and

inexpensive simultaneously. However, the underlying fabrication technologies that are

used to build different types of memory cannot provide all the three attributes

together. Therefore, a memory hierarchy is utilized, where each level of the hierarchy

uses a different memory technology, to provide the best performance possible. An

essential part of the memory hierarchy in a very wide range of applications is the

Dynamic Random Access Memory (DRAM). DRAM offers relatively high capacity

with a relatively fast operation. DRAM is volatile memory; i.e., it needs to be

refreshed periodically to hold on to the data. Although DRAM also benefited from the

technology scaling and advancements, the memory performance lagged behind

processor performance for years leading to the term “the memory bottleneck”. This is

more evident in the age of big data, cloud computing, and artificial intelligence where

a staggering amount of data is being moved and processed especially with the

13

ever-increasing memory-intensive workloads. Therefore, enhancing modern DRAM

systems with higher bandwidth, lower latency, higher capacity, and higher reliability

is desperately needed on a global scale given that the DRAM market size is expected

to reach USD 221.67 billion by 2030 [1].

Double Data Rate (DDR) memories transmit data on both the positive and negative

edges of the clock. DDR memory is twice as fast as Single Data Rate (SDR) memory.

To address the current industry demands, DDR5 was introduced. Generally, the

DRAM memory system, shown in figure 1, consists of the memory controller (MC),

the Physical Layer (PHY), and the DRAM chips themselves. The PHY serves as the

mediator which converts the signals of the MC interface, which is described by the

DFI standard, to the signals of the DRAM interface, which is described by the JEDEC

JESD79-5A standard. The MC is typically part of the processing unit and the DRAM

is typically built on a separate chip. Therefore, the basic function of the PHY is to

deliver commands and data between the MC and DRAM while handling differences

in bus width, protocols, and clock frequency. The overall performance of the DRAM

system relies heavily on the performance of the PHY. As mentioned above, the PHY

specifications are described by two complex standards and the design must be

checked to make sure that it really functions as intended by those standards.

Figure 1. A simplified picture of the DRAM System

Verification of digital circuits is the process of checking the design’s functionality

against a set of specifications that are agreed upon to be the reference for the design.

It has become an essential part of the digital design process because of the high

complexity (millions of Boolean gates) of the designs and the very high cost of fixing

14

bugs after production. In addition, some markets are labeled safety-critical, such as

automotive and space applications, where no chance of error is allowed. Furthermore,

verification can take most of the product development time in state-of-the-art designs;

therefore, it is an extremely critical part of the product cycle. There are two types of

verification that are widely used: dynamic functional and formal verification.

Dynamic verification implies testing the design against a reference model by applying

stimulus to both the design and the reference model and then comparing the output.

Formal verification tries to verify the correctness of the design mathematically

without simulation (stimuli application). There are two types of testing in dynamic

verification: direct and random testing. The current widespread method in complex

designs is the random, coverage-driven, testing methodology because of its efficiency

in providing a good level of confidence in the design within the allocated

time-to-market which is getting tighter. The goal of our project is to develop a

reusable Verification IP based on UVM and SVA which is to be leveraged by DDR5

PHY designers, DDR5 DRAM-based SOC developers, and system integrators whose

designs adhere to the JEDEC JESD79-5A and DFI standards.

1.2 Problem Definition

To verify the correctness of the RTL describing the digital datapath of the DDR5

PHY. This is done by comparing the functionality against the specification defined by

the DFI and JEDEC standards in addition to the extra specifications and constraints

proposed by the RTL design itself (implementation-specific specification).

1.3 Objectives

The objectives are as follows:

A. Extract the design features from the DFI and JEDEC JESD79-5A

standards.

B. Develop the verification plan.

C. Develop a test plan.

15

D. Build a UVM verification environment written in SystemVerilog.

E. Reach the target code and functional coverage.

F. Thoroughly report the bugs.

1.4 Functional Requirements

The outputs of the project should adhere to the following requirements:

A. The feature list should be complete; i.e., it should include all the

features of the PHY as specified by the DFI and JEDEC JESD79-5A

standards in addition to the specification proposed by the RTL design

itself.

B. The verification plan should be complete; i.e., it addresses all the

extracted features.

C. The SystemVerilog code (UVM environment) should adhere to the

principles of object-oriented programming and UVM best practices for

reusability and code performance.

D. The test plan, when translated to code, should achieve high code and

functional coverage.

E. The assertions should complement the UVM-based verification and

address the major and critical design specifications.

F. The testbench should be robust across different simulators.

1.5 Thesis Organization

The structure of the thesis is as follows:

Chapter 2: Standard used

This chapter includes the various IEEE standards used in this work

Chapter 3: Market and Literature Review

This chapter discusses the literature and state-of-the-art methodologies that provide a

16

foundation for the design, and development of the DDR PHY verification

environment. Also, it includes the tools used in this approach.

Chapter 4: The Digital Verification Process

This chapter introduces the verification challenges, constraints, and how to track

progress. Also, the tasks of this process are explained along with the technologies

used.

Chapter 5: The Universal Verification Methodology

This chapter introduces the Universal Verification Methodology (UVM). It describes

the different classes provided by the UVM library and their usage.

Chapter 6: The DDR5 PHY

This chapter describes the DDR5 DRAM system and the PHY digital and analog

circuit components. It also explains the DUT features as described in the DFI and

JEDEC JESD79-5A standards in addition to the design-specific features.

Chapter 7: Project Design

The Verification environment used to test the DDR5 Memory PHY is discussed in this

chapter. Its constraints and alternatives and the selected methodology.

Chapter 8: Project Execution

This chapter includes the description of the implementation of each component of the

testbench (e.g., piece of code).

Chapter 9: Results

This chapter shows the results obtained after project execution. It shows the coverage

results and analysis in addition to the bugs that were found and their explanation.

Chapter 10: Cost Analysis

This chapter describes the financial utility of the work done in this project and

mentions how the output of the project can be monetized.

Chapter 11: Conclusion and Future work

The chapter consists of the conclusions and details of possible future work.

17

Chapter 2

Standards used

A physical layer facilitates the communication between the memory controller and the

DRAM. In order to perform this functionality, it should satisfy both communication

protocols between the memory controller and PHY and between PHY and DRAM

which are DDR PHY Interface (DFI) standard and JESD209-5A standard

respectively. Therefore, both standards will be considered the golden references from

which the PHY features and virtual environment will be constructed. Furthermore, the

project utilizes simulation-based verification using UVM and the SystemVerilog

language. Hence, the testbench development will rely on the IEEE standards of UVM

and SystemVerilog too.

2.1 DDR PHY Interface (DFI v5.1)

The DDR PHY Interface (DFI) protocol helps in transferring command information

and data across the DFI and between the DDR memory controller (MC) and the DDR

PHY (PHY). It defines the signals, timing parameters, and programmable parameters

that are used to do so. DFI consists of interface groups; each one of them contains its

own signals, timing parameters, and programmable parameters. The interface groups

are Command, Write Data, Read Data, Update, Status, PHY Master, Disconnect

Protocol, Error, 2N Mode, Low Power Control, MC to PHY Message, and WCK

Control. Each interface group contains signals that are either required for all DRAMs,

required for certain DDR DRAMs or optional for the others. The purpose of the DFI

protocol is to make the communication between MC and PHY as easy as possible and

nearly compliant with all generations of DRAMs while moving the complexity of

each DRR requirement to the JEDEC interface [2].

2.2 JEDEC interface Standard (JESD79-5A):

The goal of the JEDEC JESD79-5A standard is to describe the minimum

requirements for a JEDEC-compliant SDRAM device. The advancement of DRAM

18

generation should affect the JEDEC JESD79-5A standard hence, each generation

should have its own JEDEC JESD79-5A standard which is not the case for DFI.

These requirements could be signal requirements, timing requirements, and so on.

These must be satisfied to ensure harmony in the data transfer between MC and

DRAM. This standard was published in October 2021 [3].

2.3 SystemVerilog IEEE 1800 standard

SystemVerilog is a hardware description and verification language used to design,

model, simulate, test, verify and implement electronic systems. It’s based on Verilog

with additional extensions i.e. Object-Oriented Programming(OOP) capabilities.

These capabilities ensure maximum reusability, portability, and scalability of the

verification IP developed. The language also comes with verification features to

minimize the development time while ensuring full coverage of all the design

specifications. Some of these features are constrained randomization, assertions,

functional coverage, and code coverage. This standard was published on 6 December

2017

2.4 Universal Verification Methodology (UVM) IEEE

1800.2 standard

UVM is a standardized and the most common methodology used to verify integrated

circuits. It reduces the complexity of developing a verification framework by

providing a well-established, ready-to-use, and universal framework. This paradigm

shift lets verification engineers concentrate on test generation and harness and

develop modular, reusable, and scalable testbenches that can be deployed across

multiple projects. UVM brings in a layer of abstraction where each component in the

verification environment has a specific role. For example, the driver class is

responsible for driving signals to the design while the monitor will be responsible for

monitoring the output of the design and propagating this output to the scoreboard and

subscriber for further processing of the data i.e. comparison with the reference model

and coverage collection. This standard was published on 4 June 2020 [4].

19

Chapter 3

Market and Literature Review

3.1 Overview and Verification Trends

Design verification is no longer an optional endeavor in modern digital circuit design.

Verification importance grew with the growing design complexity to the point that the

verification effort consumes about half of the design development cost and can reach

80% of the design time. Moreover, the current state of the market, where products are

expected to be finished in aggressively short time periods, adds to the importance of

solving the verification bottlenecks and using trending methodologies that accelerate

the verification process [5].

The target of a verification team is to ensure the device under verification (DUV) is

functional given its environment interacts with it properly. The rise of reusable

designs or intellectual properties (IP) paved the way for the verification intellectual

properties (VIPs) which may include both simulation-based verification testbenches

and formal verification materials. During the development of a VIP, two problems

arise: the short time available for verification limits the extended usage of

simulation-based testbenches, and the lack of formal tool scalability limits the

replacement of simulation by formal methods. Therefore, a hybrid system using both

techniques will ensure hitting the verification target more efficiently. The

simulation-based verification can be further enhanced by using data analytics to

generate optimized tests, and the formal verification is reserved for certain features

and use cases that are difficult to cover using simulation [5].

Traditional functional verification methods become inefficient in meeting the

time-to-market goals with satisfiable coverage closure because of the increase in

functional specification of modem hardware designs. Hence, finding new techniques

that minimize the development time while maintaining verification requirements is

crucial. Machine learning (ML) models proved that they can be used in automating

major tasks of the development process while letting engineers concentrate on making

20

the testbench more robust by adding more coverage points and so on. Some

verification areas such as stimulus constraining, test generation, coverage collection,

bug detection, and localization show noticeable improvements while they are

developed with ML models [6]. For example, deploying an artificial neural network

(ANN) in test generation shows a 24.5× speed up in functionally verifying a dual-core

RISC processor specification [7]. Another example shows attempts to deploy ML

models such as Markov models and inductive logic programming to reach a faster

coverage convergence rate [8]. These examples and more show the potential usage of

ML models in enhancing functional verification.

Formal methods are a collection of techniques to analyze a description of a digital

system (either native code or a model) as a mathematical object. [9] reports the

existing tools that utilize formal verification for digital systems. while [10] and [11]

explore the use of formal verification in embedded systems and IoT. The studies

conclude that formal verification should be considered in these fields and that further

systems need to utilize it alongside dynamic verification.

3.2 UVM in Modern Verification

Universal Verification Methodology (UVM) is becoming an industry standard that

different tools and simulators support due to its reliability, reusability, and flexibility.

It’s a Verification Framework based on SystemVerilog created by Accellera. UVM is

“simulation-oriented” so it can be used alongside other assertion-based

methodologies. In Qamar et. al, 27 papers published between 2017-2019 were

analyzed to summarize the latest advancements and utilizations of UVM [12]. In these

papers, UVM was found to be used in various domains including Analog And Digital

circuit design, Computer System Architecture & IoT, Encryption and Cryptography,

and even electro-mechanical systems. Some of these papers used the framework with

slight modifications such as fault injections while others used the framework without

extensions. Various tools and languages were used with UVM including C/C++,

SystemVerilog, Verilog, and VHDL. The paper also mentions the benefits of using

UVM in these systems which included being standard, portable, reusable, flexible,

and including functional and code coverage. The study concludes that UVM has

21

significantly improved phasing mechanism and provides advanced features which

give it an edge over OVM.

The adoption of UVM among the top-tier EDA companies also adds to its favor. The

largest two EDA companies, Cadence and Synopsys, offer comprehensive VIPs for

DDR5-based systems. These VIPs are based on SystemVerilog and UVM as shown in

[13], [14], and [15]. These VIPs are also endorsed by the memory manufacturing

giants, such as Micron [14], adding to them more credibility. Furthermore,

state-of-the-art EDA tools (such as Synopsys VCS, Cadence Xelium, and Mentor

Questasim) support the use of UVM. These tools occupy most of the EDA market

indicating that indeed UVM is becoming the de-facto library used in digital design

verification.

3.3 Conclusion

The points presented above support our design choice in this work. A UVM-based

verification environment for the digital datapath of a PHY that is built for DDR5

DRAM was developed. Also, the testbench is supplemented with the use of

SystemVerilog Assertions. The whole VIP could be easily adjusted and reused for

verifying different DDR5 PHY designs.

22

Chapter 4

The Digital Verification Process

This chapter introduces the verification challenges, constraints, and how to track

progress. Also, the tasks of this process are explained along with the technologies

used.

4.1 Challenges of Verification

Nowadays, ASICs and FPGAs are in the order of multi-million gates, and their

description can easily take hundreds of thousands of HDL lines. The DV engineers

are required to ensure that the design implementation performs as intended in the

specifications, and flag bugs when the implementation acts differently. To detect these

bugs, complex simulations are run on the design. However, the task is not that simple

as there are main challenges, the size explosion of the state space and detecting the

incorrect behavior [16].

4.1.1 The State-Space Explosion

A typical design contains thousands of flip flops, latches, combinational logic, and

RAM arrays. All are used to control the behavior of the circuit. The chip inputs are

used to manipulate the internal state by changing the values stored in the flip flops,

latches, and RAM arrays. At any specified time, the chip is in one of the huge

numbers of possible states. Plus, the next state can be any of these possible states

depending on the inputs and current state, so to verify the chip exhaustively, the DV

engineer needs to check that all possible current states along with all input

combinations provide the correct output and correct next state [16].

The reachable state space of the digital designs has an exponential nature with the

number of state bits which makes it one of the core verification challenges. This

state-space explosion is independent of the verification methodology used. Also, the

exponential complexity exists in both dimensions, time and memory space [16].

23

To mitigate this challenge, a divide and conquer methodology is followed so that the

design is broken down into smaller, more manageable sub-components. Once the

sub-components are verified, they are stitched back together. Also, another mitigation

mechanism is defining the illegal states of the design based on the specifications.

Illegal states reduce the number of states that need to be verified. However, this

solution is not always possible because the illegal state cannot be ignored in certain

designs [16].

4.1.2 Detecting Incorrect Behavior

Another challenge is detecting the violations in the design implementation. With all

the possible states and transitions, the DV must be able to decide whether the design

is acting correctly or not. The solution to this challenge is validating the logic at the

transaction level so that the focus is shifted to the behavior of the design [16].

Briefly, the verification challenges come down to

● driving the input and state transitions scenarios

● flagging the incorrect behavior of the design implementation

To attack these challenges, digital verification engineers use plenty of tools and

technologies that increase the level of abstraction and automation and enable

parallelism. These technologies are discussed in sections 4.4 – 4.7 [16].

4.2 Verification Constraints

The verification team manages the process by balancing the triple constraints: (1)

schedule, (2) cost, and (3) quality [16].

4.2.1 Schedule

The success of electronic products depends heavily on showing up in the marketplace

at the right time as a huge amount of revenue goes to the product coming first in the

market, so more than any other industry, delays in introducing products to the market

can be deadly [16].

24

4.2.2 Cost

Companies aim to maximize profit from their hardware products. One key mechanism

is to minimize the costs of development and manufacturing. Roughly, 40-50% of

project resources are used for functional verification. This is evident from the chart in

figure 2 which shows the costs for different parts of the product development process.

To reduce the development costs, the productivity of functional verification must

increase. Another reason for improving productivity is that every year, the complexity

of the designs being verified grows higher than the rate of productivity growth, so

there is a gap between what needs to be verified and what is getting verified [16],

[17].

Figure 2. Verification cost as technology node shrinks [17].

Also, as shown in figure 3, the cost of undetected bugs grows over time. If a bug is

detected during verification, its cost is just modifying the HDL. On the other hand, a

bug detected during testing after fabrication can cost hundreds of thousands of dollars

due to the added time-to-market and refabrication. Finally, detecting a bug by the

customer is the most costly because, in addition to the warranty or replacement costs,

it affects the company's reputation.

25

Figure 3. Cost of undetected bugs over time [16].

4.2.3 Quality

Electronics consumers expect the products to have high quality, so if a company

introduces a product with low quality, it can be devastating to the company’s

reputation. Another aspect is that components failure loads warranty costs on the

company [16].

The verification process affects all these constraints. Chips are fabricated sooner if the

fabrication team can detect the bugs fastly and efficiently. Because it is on the critical

path of the project, it is convenient to track the verification productivity. It is

measuered in terms of the quality of the bugs and time. As shown in figure 4, the

more steep the curve of bugs number with respect to time, fewer costs and schedule

time is required. The other factor measured, the quality of bugs, is a qualitative one.

The more difficult and complex the scenario required to detect a bug, the higher

quality is the bug. As time passes, the average complexity of the bugs should grow

[16].

Figure 4. productivity with respect to schedule and cost [16].

26

4.3 Verification Tasks

As discussed previously, the verification process is time-consuming and involves

many tasks. These tasks are grouped into phases carried out in a loop throughout the

time of the process. Figure 5 shows this functional verification cycle. The first phase

in the loop is the development phase. It involves developing the verification plan,

testbench architecture and test cases, and creating the environment. The second phase

is the simulation. Next, the debugging phase is performed at the transaction level

using a reference model and at the signal level using assertions. The last phase is

collecting all types of coverage which are code, functional, and assertions coverage.

This coverage is used as a feedback for the development stage [17].

Figure 5. Typical verification process loop [17].

4.4 Digital Verification Technologies

To overcome the challenges of verification and increase the productivity of the DV

engineers, Automation is one important mechanism that allows autonomous

completion of tasks with predictable results. It allows parallelizing the effort which

reduces the overall verification time. However, not all processes can be automated

due to the variety of protocols, functions, and interfaces that need to be verified, so

various tools and technologies have been developed to automate many parts of the

verification process [18].

The field of digital verification is exhaustive in its breadth and depth. It requires

knowledge of many technologies and methodologies. These technologies are

including but are not limited to SystemVerilog, UVM, SystemVerilog Assertions

27

(SVA), SystemVerilog Functional Coverage (SFC), Constrained Random Verification

(CRV), Clock Domain Crossing (CDC), Network on Chip (NoC) verification,

low-power verification, static formal verification, and HW/SW co-verification. An

EDA tool includes many of these technologies. The job of the DV engineer is to use

the essential technologies so that no significant bugs are missed. These subsections

present some of the verification technologies [17].

4.5 Coverage-Driven Verification

Coverage is the term used to describe measuring the progress towards a complete

design verification. As the simulation progresses, the coverage tool collects

information, then after post-processing, a coverage report is generated. This report is

used to identify the coverage holes, so tests are created or modified to fill the holes.

The coverage feedback process will be repeated until a satisfactory coverage level is

reached. There are two types of coverage: code coverage and functional coverage.

They are two different metrics [19].

Figure 6. Coverage verification methodology [19].

4.5.1 Code Coverage

Code coverage measures the coverage of the design structure such as branches,

expressions, state transitions, etc. It is collected automatically by the tool used, i.e.,

not specified by the user. The code coverage report reflects how much of the design

code has been exercised by the tests. However, 100% code coverage does not mean

that the design verification is complete because it does not measure how much of the

verification plan has been exercised, so if the implementation is missing a feature, the

28

code coverage will not catch it. This is why the second type of coverage is needed

[19].

4.5.2 Functional Coverage

Functional coverage is specified by the user based on the design specifications. It

reflects how much of the design intent has been exercised. In other words, it is used to

check that the testbench has covered all corner cases, key design features, and

possible failure modes as described in the specifications. However, gathering data for

functional coverage may increase the simulation time and memory space, so the data

used for the analysis and improving the tests should be the only data measured.

Similar to code coverage, achieving 100% functional coverage does not mean that the

design verification is complete because if the code coverage is low, this means that

the testbench is not exercising the entire design, so more design features and corner

cases need to be added [19].

Based on the previous discussion, it is clear that the verification goal is achieving both

high functional and code coverage. Figure 7 shows the coverage comparison that

should be continuously performed, so either the design or the testbench is modified to

achieve good coverage [19].

Figure 7. Coverage comparison [19].

4.5.3 Bug rate

Along with the coverage metrics, the bug rate should be checked continuously. Over

the project life, how many bugs are found each week should be measured, so when

the bug rate drops, then different approaches to create corner cases should be used.

29

The bug rate depends on many factors such as new design changes, project phases,

and recently integrated blocks. Unexpected changes in the bug rate signal a possible

problem [19].

4.5.4 Coverage Components of SystemVerilog

As shown in figure 8, the functional coverage uses coverpoints and covergroups to

specify the function needed to be covered. They allow measuring transition and cross

coverage. These components are mainly used at the transaction level in the subscriber.

Another component is the “cover” statement associated with the assertions. This

component is mainly used at the pin level. Every property that uses an “assert”

statement should also use a “cover” statement. An “assert” statement checks the

behavior of the design, and a “cover” statement checks if the property got excercised,

so both statements complement each other [17].

Figure 8. functional coverage methodology [17].

4.6 Simulation-Based vs Formal Verification

Simulation-based verification traverses the reachable state space of the DUT, and at

each state, checkers and assertions test whether the current state is legal and whether

the output results are correct as shown in figure 9. The main advantage of the

simulation-based verification is that as the size of the DUT increases, the decrease in

the simulation speed and increase in the model size are linear. However, this approach

30

has a severe limitation that the state space size does not allow exhaustive verification;

The simulation-based verification checks the design in a case-by-case mannar with no

guarantee that the design behaves correctly in the unchecked states, so in essence,

simulations can only show the existence of bugs but can never show their absence. On

the other hand, formal verification provides stronger verification for the DUT or at

least part of it. It checks the properties for all the DUT states as it processes the DUT

model and attempts to prove mathematically the validity of a propery or give a

counterexample. Although the formal verification algorithms run freely over the state

space, the checking is done exhaustively, so due to the challenge of state space

explosion and limited resources, it is not used at the full SoC level. To solve this

problem, certain blocks are specified for formal verification per run. This technique is

called case splitting. Also, some constraints can be applied to the inputs and

sequences as shown in figure 10 [16].

Figure 9. Path of one simulation through the reachable state space of a DUT [16].

Figure 10. practical limitations on formal verification (runtime resources) [16].

31

4.7 Assertion Based Verification

Most of today’s testbenches use coverage-driven constraints random verification

mindset along with Transaction-Level Modeling (TLM) in order to avoid dealing with

signals and increase the level of abstraction to facilitate functional verification tasks.

This can be achieved using UVM_driver and UVM_monitor which convert from

transaction level to pin level and vice versa respectively. TLM also makes it easy to

compare two transactions one from monitor and the other from a reference mode.

However, we still need to probe the signals themselves, assert the timing dependence

between them, make sure that the driver is driving the signals properly and assert the

correctness of its behavior. Assertions can be created using System Verilog Assertion

(SVA) and can be divided into two categories: immediate assertions and concurrent

assertions.

4.7.1 Immediate assertion

Immediate assertions check whether or not an expression is evaluated true when the

statement is executed. The procedural code of the testbench can check the value of

certain signals and show error messages if they are not as expected. The following

example from System Verilog For Verification illustrates the idea clearly:

arbif.cb.request <= 2'b01;
repeat (2) @arbif.cb;
if (arbif.cb.grant != 2'b01)

$display("Error, grant != 2'b01");

In this example, the bus request is asserted, hence, the grant signal must be asserted

two clock cycles after the assertion of the request signal or an error message will

appear. A better and more compact way to do this is by using the assert keyword as

shown below:

arbif.cb.request <= 2'b01;
repeat (2) @arbif.cb;
a1: assert (arbif.cb.grant == 2'b01);

Note that the logic is reversed since assert means the signal behaves as expected. On

the other hand, you should give a meaningful name for the assertion in order to speed

32

up debugging process instead of using a1. Moreover, else statement may be used after

the assert statement if you want to omit the default message and use your own

message.

4.7.2 Concurrent assertions

On the other hand, there are concurrent assertions that run continuously throughout

the simulation time and check the signals for the entire simulation. They are written

inside a module that will be instantiated later in the testbench. Concurrent assertions

are continuous in essence so, they cannot be written inside a procedural statement like

initial or always block. Moreover, a sampling clock must be specified inside the

assertion statement. Another example from the previous book is used here to clarify

the idea:

interface arb_if(input bit clk);
logic [1:0] grant, request;
bit rst;

property request_2state;
@(posedge clk) disable iff (rst)

$isunknown(request) == 0; // Make sure no Z or X found
endproperty

assert_request_2state: assert property (request_2state);

In this example, the desired behavior is written inside a property statement (request

signal is not Z or X except at the reset condition). Then, the property is asserted using

assert property keyword. Moreover, assertions can be put inside the interface to check

the correctness of the signal against the standards used. This use case is one of the

most powerful advantages of assertions.

33

Chapter 5

The Universal Verification Methodology

5.1 Overview

The Universal Verification Methodology (UVM) is an open-source standard

methodology used by verification engineers to develop testbenches for design units.

There were different verification methodologies that preceded the UVM, such as

Open Verification Methodology (OVM) which is developed by Mentor Graphics,

Universal Reuse Methodology (URM) from Cadence, and Synopsys also developed

its own Verification Methodology Manual (VMM). These methodologies are based on

System Verilog hardware verification language (HVL) [17].

The UVM was developed by Accellera based on the OVM [20]. Since then, the UVM

has been adopted by all EDA companies which makes it “universal” and used

extensively in the field of IC design verification. In 2014, the UVM was standardized

by IEEE, project number 1800.2 [4]. The figure 11 below shows the development of

verification methodologies over the years.

Figure 11. UVM development history [21]

UVM’s main goal is to develop reusable, robust, and configurable testbenches. It is,

essentially, a class library that exploits the features of object-oriented programming

(OOP), such as inheritance and polymorphism. Also, it provides a broad spectrum of

utilities, making it a perfect tool to implement almost any structure for a testbench.

34

5.2 UVM Testbench Architecture

UVM TB hierarchy is depicted, in a generic form, in the figure below. It shows that a

testbench module instantiates the DUT, interfaces, and the UVM tests, in which each

of the test classes, in turn, has an instance of the whole UVM environment. The

communication between the UVM components is based on the TLM, which provides

means of communication methods for receiving/sending transactions between UVM

components [20].

Figure 12. UVM Testbench Architecture [20]

A test bench can include more than an environment, for a SoC verification as an

example, where each block in a SoC can have its own environment. Also, an

35

environment can have multiple agents as each agent is responsible for an interface

stimulus and sampling using the UVM driver and monitor (employing TLM). Each

one of these components is illustrated in the subsequent sections.

5.3 UVM Class Hierarchy

Accelera’s UVM user guide illustrates the hierarchy of the UVM base classes as

depicted in the figure below.

Figure 13. UVM Class Hierarchy [20]

The uvm_object is the parent of all UVM classes each child/layer extended or added

to the hierarchy inherits its parent’s functionality and adds new functionalities. The

uvm_component class is the base class of the testbench components, it inherits the

uvm_object and adds the phasing functionality, thereby, the testbench components are

built, connected, and configured properly.

5.4 UVM Test

The UVM Test class is a top-level component class, it instantiates and configures the

UVM environment. Its purpose is to apply the sequences and test scenarios onto the

DUT through the UVM environment. This is done by invoking the sequences of

36

transactions defined by UVM sequence base class. Typically, a base test class is

created extending the uvm_test class. It includes all environment configurations. It is

then extended further to implement specific test cases and run selected sequences

[17].

5.5 UVM Environment

The UVM Environment base class typically instantiates other components like UVM

Agents, Scoreboards, and Subscribers. Its purpose is to implement and configure

verification IP components, facilitate transaction communication between them, and

also to boost reusability. The agents are connected to the scoreboard and the

subscriber through a TLM analysis port for broadcasting transactions. The test can

configure the UVM environment default configuration to achieve a specific

verification goal [17].

5.6 UVM Agent

UVM Agent is an essential part of the UVM environment. It is the component that

interacts directly with the DUT. It includes UVM Driver and Monitor which are

responsible for the conversion from the transaction level to pin-level activities and

vice versa. It also includes a UVM sequencer, which regulates and arbitrates

sequences flow to the driver. Typically, each agent in an environment is responsible

for one interface for driving and monitoring [20]

Figure 14. UVM Agent [20]

37

An agent can be active or passive, wherein the active mode it has the utility to

generate a stimulus to the DUT through the driver. On the other hand, in the passive

mode, the driver and the sequencer are disabled and there is only a monitor operation

[20].

5.7 UVM Sequence Items

At the basic level, a sequence item, or transaction, represents the abstraction of signals

that are used to communicate with the DUT. Sequence items are the basis on which

different sequences will be created. Things that influence sequence item content

include the information required by the driver to complete a pin-level transaction and

the ease with which stimulus content can be generated (often with randomization in

mind) [22].

5.8 UVM Sequencers & Sequences

The sequencer is the component that manages the delivery of stimuli, thereby

providing transactions to a driver. Tests containing complex sequences are facilitated

by using standard UVM sequencers with predefined arbitration functions. A

sequencer can be viewed as an arbiter at its most basic level. It controls who contacts

the driver; this is equivalent to who contacts the interface [22].

One or more sequence items, which are sent to a driver afterward, are represented by

a sequence. A collection of sequences can be used in constrained-random testing to

allow for a level of randomization beyond that achievable by randomizing the

transactions only. Sequences can be used to represent successive or parallel,

dependent or independent stimuli on one or multiple interfaces. UVM provides

extensive support for sequence definition and application [22].

5.9 UVM Driver

The UVM Driver is responsible for converting the abstracted high-level

transactions/sequence items coming from the UVM sequencer into lower-level

pin-level activity driven onto the DUT. The sequencer communicates with the driver

38

through a TLM handshake mechanism, to make sure that the received transaction is

consumed by the driver and it is time to get a new one from the sequencer. Moreover,

there are some essential methods defined in UVM Driver and are used to

communicate transactions with the sequencer [17]:

● get_next_item(): This method is used to get sequence_item (REQ) from the

sequencer and it blocks until the REQ item is available.

● try_next_item(): This is similar to the previous method but it is

non-blocking. It returns null if no sequence items are available.

● item_done(): This is a non-blocking method that completes the driver-

sequencer handshake, called after get_next_item(). Also, it returns the

response sequence item (RSP) that is observed by the driver back to the

sequencer and it turns to the sequence class. This is needed when the sequence

generation (in the sequence class) is dependent on the response of the DUT.

Figure 15. UVM Driver flow of execution [22]

39

5.10 UVM Monitor

A monitor is a component class that connects to the DUT via a virtual interface to

observe the DUT’s response to stimuli. The monitor’s job is to collect the pin-level

activity from the interface and construct appropriate transactions that are at a higher

level of abstraction. Normally, the monitor is passive and does not apply stimuli to the

DUT in any way; this is essential to accurately and reliably broadcast the DUT

behavior to the analysis components of the testbench without intervention (i.e.,

scoreboard and subscriber). The monitor must contain knowledge about the

specification that the DUT implements so that it recognizes certain patterns and then

collects them in a meaningful transaction; this also includes the knowledge of when to

sample signals, when not to sample, and when a transaction is complete and can be

broadcasted. Normally, the run phase of the monitor will contain a loop; on each

iteration of this loop, a transaction is created and broadcasted to the scoreboard and

subscriber through the analysis port [22].

5.11 UVM Scoreboard and Reference Model

The scoreboard and reference model constitute the analysis section of a testbench.

They determine whether the DUT behavior is as predicted by the design specification,

assuring that the design implemented the specifications as intended. Monitors

observing the DUT's input ports broadcast the constructed transactions to the

scoreboard and reference model [22].

An automatic technique to check the result when random stimulation is fed into the

DUT is needed as an alternative to manual checking. Thus, the reference model is a

verification component and is considered a "golden predictor" of the DUT behavior.

The same input stimuli that are sent to the DUT are applied to the reference model; it

then generates the expected response that is correct by definition. A reference model

will generate predicted output, which is compared to the actual DUT output by the

scoreboard to determine if the DUT passed or failed. Typically, reference models are

developed at an abstract level and can be written in high-level languages like C, C++,

Python, or SystemC [22].

40

Scoreboards are UVM components that receive transactions sent by a monitor and

compare to see if the design is working as it should. There are two ways of comparing

the expected and actual transactions depending on the DUT: in-order and out-of-order.

The in-order comparison anticipates that the expected and actual transactions will

appear in the same order; the transactions’ arrival is independent, but they arrive in

order. The out-of-order comparison does not assume that transactions will appear on

the expected and actual sides in order. Therefore, unmatched transactions must be

kept until a corresponding transaction shows up in the opposite stream. In addition a

way of matching corresponding expected and actual transactions must be

implemented. The evaluation result is used by the scoreboard to report and record

failures. In most cases, successful evaluations are not reported or they are allowed

only while debugging, but they can be documented for later summary reports. On the

other hand, error messages are typically always operational throughout the testing

endeavor [22].

5.12 UVM Subscriber

A subscriber is typically a component that receives transactions through an analysis

port. For the basic example of a subscriber, a UVM base class is provided. For more

complex subscribers that receive transactions from multiple analysis ports, various

macros and classes can be used. By that definition, the majority of analytical

components are subscribers. To perform analysis transaction processing, the

uvm_subscriber component class encapsulates a uvm_analysis_export and its related

virtual write method. Collecting coverage information is paramount to measuring the

progress of the verification process. The UVM subscriber class can be used to build a

coverage collector. This class samples the transactions observed and broadcasted by

the monitor and links them to functional coverage groups that are defined within it

[22].

5.13 Resource Database

UVM has a resource database that contains any piece of information that can be

shared between UVM components and objects. This database can be accessed using

41

uvm_config_db. Two methods can be used for that purpose: the set and get method.

uvm_config_db::set method is used to put information into the database while the

uvm_config_db::get method is used to retrieve the information from the database. The

uvm_config_db is a type-parametrized class that accepts any type of parameters such

as a class, a uvm_object, a built-in type like a byte, bit, or a virtual interface. As

mentioned before, a resource database can be used to share information among UVM

components, however, it has two typical use cases: the first is to pass the virtual

interface from the DUT domain to the test while the second is the pass the

configuration objects through the testbench hierarchy.

The set method:

The general declaration of any set method is

void uvm_config_db #(type T = int)::set(uvm_component cntxt ,
string inst_name , string field_name , T value);

Where:

● T is the resource type.

● Cntxt and inst_name are used to locate the needed resource within the

database.

● Field_name is the resource name.

● Value: is the value that needed to be stored in the database

The get method

For the get method there is a general declaration too which is

bit uvm_config_db #(type T = int)::get(uvm_component cntxt ,
string inst_name , string field_name , ref T value);

Where:

● T is the resource type.

42

● Cntxt and inst_name are used to locate the needed resource within the

database.

● Field_name is the resource name.

● Value is the value that needed to be stored in the database.

The return type of the get method is “bit” in order to check whether the data is

retrieved or not [22].

5.14 TLM

Transaction level Modeling TLM is used for connecting environment components

with each other. UVM library is equipped with TLM library that contains analysis

port, analysis export, imp port, and imp export. These elements are essential for

sending and receiving transactions from one component to the other. The use of TLM

facilitates the verification task by letting the designer concentrate on debugging the

transaction itself rather than getting immersed with each signal in the DUT. UVM

TLM consists of TLM1, TLM2, Sequencer_Port, and Analysis:

Figure 16. UVM TLM types [23]

● TLM1: it provides blocking and non-blocking transaction-level interfaces that

are passed by value.

● TLM2: it provides sockets with blocking and non-blocking transaction-level

interfaces.

● Sequencer_Port: it’s a pull/push port

43

● Analysis: it’s used for the non-blocking broadcast of the transactions between

UVM components.

Blocking means that the methods will not return until the transaction has been sent or

received successfully while non-blocking means that the methods will convey the

transaction without consuming simulation time [23].

5.15 UVM Factory

In UVM, the factory provides a way of overriding components and objects,

on-demand, without manually changing the testbench code. The features of the UVM

factory add to the flexibility and reusability of the testbench. This “overriding”

happens by changing the object/component class, during its construction, by another

class that is derived from the original. Overriding using the factory can be done either

by instance name or by class type (which changes all instances within the scope of

this override). For the override to be successful, the derived class must be extended

from the original class; the factory utilizes polymorphism to override the original

class and keep the whole testbench functional without changing other classes of the

environment. To use the UVM factory, three steps are systematically done:

registration, construction, and creation. To register a component or object in the UVM

factory, the registration macros must be added to the class definition. These macros

are `uvm_object_utils for objects, and `uvm_component_utils for components. Also,

the class definition must include a default constructor method so that the factory calls

it while creating the class. The last thing is creation; components and objects that are

registered in the factory are produced by a “create” method instead of calling “new”.

This is where the factory does its work before returning the required class (i.e., the

original or a derived one). Components are created in the build phase of the higher

component in the testbench hierarchy. On the other hand, objects are created when

needed during the build or the run phase [22].

5.16 UVM Phases
The UVM phases make the testbench flow systematic by dividing the simulation into

three main parts: build phases, runtime phases, and cleanup phases. There are virtual

44

methods in the uvm_component class definition that corresponds to different UVM

phases. The testbench developer overrides these methods appropriately in each

component (e.g., the overridden phasing methods in the environment class will

typically differ from the driver class) [22].

The flow of the testbench starts with the build phases, which are functions (consume

no simulation time). The build phases are: the build, connect, and end_of_elaboration

phases. The build phase is used for constructing the components, usually using the

factory to configure the construction per need, making the testbench hierarchy in a

top-down way. The connect phase, which works in a bottom-up fashion, is used to

handle TLM ports/exports connections. The end_of_elaboration phase can be used as

a final way to make modifications, but it is usually not necessary [22].

Following the build phases are the run-time phases which are used for stimulus

application and DUT response monitoring and evaluation. They start with the

start_of_simulation phase which is followed by the run phase and the other phases

(from pre_reset to post_shutdown phase) which execute in parallel with the run phase.

The start_of_simulation can be used for displaying information about the testbench

such as its hierarchy; it executes within components in a bottom-up way. The run

phase, typically essential for transactors (driver, monitor), is a task where stimuli are

generated and DUT response is monitored [22].

The last part of the phasing is the cleanup phases. These phases are implemented as

functions and are composed of: extract, check, report, and final phase. They are used

for processing and presenting the output of the testbench (information generated by

the scoreboard and subscriber) [22].

45

Chapter 6

The DDR5 PHY

6.1 Overview of the DRAM system and how it works

DRAM, an acronym for Dynamic Random Access Memory, is the main memory for

our PCs. It’s an external module by definition hence, additional care should be given

to implementation effects such as clocking and synchronization, signal integrity,

packing, and Pins. A DRAM cell consists of a single transistor and capacitor. It’s

called dynamic because the capacitor is leaky and must be refreshed periodically.

DRAM chip consists of arrays of DRAM cells where each cell can be accessed by a

specific row address and column address. DRAM chips can be characterized by their

organization for example there are x2, x4, x8, x16, and x32 organizations. The

number that follows “x” represents the number of arrays; which means the number of

read/write bits for a single read/write command. Moreover, DRAM ships consist of a

number of banks where the bank represents a set of memory arrays that operate

independently of other sets. The main usage of banks was to double or quadruple

DRAM bandwidth without needing to increase the bandwidth of the device itself.

This can be done by using the concept of interleaving; if a single bank needs 10ns to

transmit the data, 2 banks will need only 5ns. DRAM manufacturers further extend

the level of parallelism by connecting multiple DIMMs to the memory controller

where each DIMM consists of one or more ranks; a rank is a group of DRAM chips

that operate in unison. This technique of abstraction further increases the bandwidth

and makes it possible to pipeline the access process. On the other hand, DRAM buses

must satisfy JEDEC JESD79-5A standards hence, they should have data, control,

address, and chip select. The address bus is responsible for delivering the row and

column addresses to the DRAM; nowadays width of the address bus is 15 bits.

Control signals consist of data strobes, enable signals and clocks. While these signals

are connected to all DRAM chips, there is a signal called chip select that has a width

equal to the number of DRAM ranks. The purpose of this signal is to select the

intended rank that’s responsible for handling the commands sent. The internal

46

memory structure consists of rows and columns where the intersection between a row

and a column represents a unit cell.

The microprocessor connects to DRAM chips through a memory controller block and

a physical layer block; these blocks must communicate with each other with

well-known communication protocols like JEDEC JESD79-5A and DFI (explained

later). The transaction life cycle between the microprocessor and a DRAM chip

consists of several steps: first, the transaction is being sent from the microprocessor to

the memory controller (it may be delayed) in a queue. Second, the transaction is

translated to DRAM language by the controller. Then, the command is sent to the

DRAM itself, and according to the command type, its interaction with the DRAM will

vary. Let’s try to decompose a read command in order to fully understand how

DRAM operates. As discussed before, the intersection between a bit line and a word

line represents a DRAM cell that’s controlled with a transistor which is a switch. In

order to increase DRAM response, all bit lines must be charged to half of the supply

by the sense amplifier. When the word line goes high that’s the switch is turned on,

and the capacitor starts to change the voltage on the bit line slightly. Accordingly, the

sense amplifier senses this slight change and brings the bit line to either one or zero

depending on the stored capacitor voltage level. This process also charges the

capacitor again that’s why the read operation is a non-destructive operation. With the

aid of the figure below, the read process can be better explained in detail.

Figure 17. Accessing protocol of DRAM columns and rows [24]

47

At the very beginning of the process (assuming the bit line is already precharged to

half of the supply voltage), the memory controller sends an activate command which

specifies the chip, the bank group, the bank, and the row from which the

microprocessor needs to fetch the data. As a result of the previous command, the

DRAM sends the entire row that may consist of thousands of bits to the sense

amplifier. This takes us to the last step which is the read command itself. This

command specifies the column from which the data will be fetched. The number of

output data depends on whether x2, x4, or x8 DRAM device is used as shown in the

figure below

Figure 18. Logical organization of wide data-out DRAMs[24]

One of the most critical problems that DRAM manufacturers face is charge leakage.

When the transistor is open there is a non-zero current value that leaks from the

transistor making the capacitor loses its charge. One of the solutions that handle this

problem is periodic refresh; the memory controller ensures that the leaky cell is being

read and written before it totally loses its content. [24]

6.1.1 DRAM architecture

The memory controller contains several channels where each channel has a

command/address bus that’s 64-bit wide in default. We can connect only one DRAM

module to a single channel. The single rank consists of several devices to satisfy the

bus width. For example, we need a rank that has 8 chips with a “x8” configuration to

make the output 64-bit wide. All DRAM devices inside a single rank work in lockstep

that’s they cannot be addressed separately. At this moment, we can talk about DRAM

48

generations and flavors and how each generation tries to increase the data rate without

corrupting the data.

6.1.2 DRAM standards: Regular DDR

Synchronous DRAM (SDRAM) starts with single data rate (SDR) architectures in

which IO clock frequency is the same as the internal DRAM frequency. On the other

hand, double data rate architectures are then introduced to data rate independent of

internal clocks. DDR as the name implies transfers the data on both the rising edge

and the falling edge of the clock. Memory designers have enabled this architecture by

introducing prefetching design methodology in which multiple data words are

prefetched for a single read. The concept of DDR and prefetching for DDR1, DDR2,

and DDR3 is better explained using the below figure:

Figure 19. DDR internal and external clock frequency [25]

As explained before, for SDR, IO clock frequency is equal to that of internal DRAM

frequency which is 100-150 MHz, however, DDR is sending the data on the rising

and falling edge of the IO clock so it requires a prefetch buffer which size is twice of

the data word. Regarding DDR2, the prefetch buffer size is 4 times the word size

hence, we need IO clock frequency that’s double the internal DRAM clock. For,

DDR3, the same concept is applied, the IO clock frequency is guardable of the

internal clock while buffer size is 8 times the word size.

49

DDR4 uses another concept to avoid the traditional doubling of prefetch buffer and

the IO clock frequency which will transfer 16 times 64 bits that’s the double basic unit

of data used in processor caches. The traditional technique will waste a lot of energy

and time if the second data unit isn’t needed. Instead, DDR4 used the bank grouping

concept as explained in detail in the following figure

Figure 20. Bank grouping in DDR4 [25]

Instead of using a 16n buffer, DRAM manufacturers have decided to introduce

multiple groups of banks with each group having an 8n buffer size with a multiplexer

to select the right group. IO clock is further increased to 8 times if the memory

requests are interleaved that’s bank groups are accessed sequentially.

DDR5 uses another technique that’s different from what is used in DDR4 which is

channel splitting. In this technique, the 64bit bus is divided into two independent

32bit buses accordingly, we can increase the prefetching to 16n which is 64 bytes in

reality. This technique allows further doubling of the IO clock frequency to

2133-3200 MHz. On the other hand, increasing the IO clock comes with its own

drawbacks such as data integrity, power consumption, and noise performance. These

drawbacks can be mitigated by using on-die termination to enhance matching between

DRAM and the outside world, using differential clocking to enhance signal integrity,

and finally, DRAM generations are integrated closely with the processor. [25]

50

The following table summarizes the comparison between SDR and all DDR

generations

Figure 21. Summarizing the comparison between SDR and DDR generations [25]

6.2 General Circuit architecture and components of

the PHY

The PHY acts, in a sense, as a bridge between the inherently analog DRAM and the

inherently digital memory controller. Also, it is typically the case that the memory

controller and the DRAM interfaces operate at different frequencies. For the PHY to

do its job of translating the commands from the memory controller language to the

DRAM language and delivering data between the two sides, it must include digital

and analog circuits. According to [26], the general analog blocks of the PHY may

include the following:

● Transmitter and receiver circuits: for high-speed data movement from and to

the DRAM chip

● Clock domain crossing circuits: to handle working with two interfaces of

different frequencies.

● Clock oscillator, clock dividers, Phase-Locked Loop, Delay Locked Loop: to

produce and maintain the different clocks used by the different clock domains.

● Differential serializer: to handle the conversion from DDR to SDR.

51

On the other hand, the digital blocks include the following:

● Serializer/deserializers: to handle the different frequency ratio operation which

leads to different bus widths.

● Command/Data datapath: to handle commands and data (FIFOs, Muxes, …)

● Embedded microcontroller: for firmware-based training in multi-standard

PHYs.

Although the whole PHY, both Analog and Digital, can be modeled and simulated

using VerilogA and SystemVerilog together, our work focuses on verifying the digital

datapath only of the PHY.

6.3 DUT Properties as described in the DFI Standard

The DFI standard categorizes different signals and their corresponding timing

parameters and functionality into different interface groups. Certain signals are only

applicable to specific DRAM types and some are optional. The corresponding

parameters must be used by the implemented DFI signals. Compliance in Signal

widths, interconnect timing, timing parameters, frequency ratio, and functionality

must be guaranteed to ensure correct operation between the MC and the PHY. It is

noted that the DFI specification does not specify absolute latencies or a strict range of

values that must be handled. Fixed values, maximum values, and constants dependent

on other system settings are the different parameters types for DFI timing [2].

There are three defined clock domains: the control clock domain, the command clock

domain, and the data clock domain. These clock domains use the same frequency in a

matched frequency system. The system is classified as a frequency ratio system if the

memory clock is higher than the MC by a factor of 2 or 4. The control clock domain

of a frequency ratio system with a single memory clock, which is the case for DDR5,

works at the DFI clock frequency, while the command and data clock domains operate

at the higher clock ratio; this is defined as the DFI PHY clock frequency. Each clock

domain's timing parameters are also defined in relation to its clock signal. The DFI

clock is the MC clock whereas the DFI PHY Clock is the DRAM’s clock [2].

The DFI interfaces used by the DUT and their corresponding signals are as follows:

● Status Interface: dfi_freq_ratio

52

● Command Interface: dfi_reset_n, dfi_cs, dfi_address

● Read Data Interface: dfi_rddata, dfi_rddata_en, dfi_rddata_valid

The DFI read and write data bus width is twice that of the DRAM data bus in a

matched frequency system. To allow the MC and PHY to transfer all of the

DRAM-required data in a single DFI clock cycle in a frequency ratio system, the read

and data bus will be widened proportionally to the frequency ratio; i.e., the width is

multiplied by a factor of 2 in a 1:2 frequency ratio system. A single DFI command is

issued per DFI clock in a matched frequency system, which is mapped to a single

memory clock of the DRAM command. A DFI command is issued per phase in a

frequency ratio system, where the number of command phases is equal to the clock

ratio [2].

Apart from the general overall description stated above, the command and read

interfaces are discussed in more detail below. First, the transmission of signals

required to drive the address and command signals to the memory devices is

controlled by the command interface. The signals are meant to be sent to the memory

devices in such a way that the timing relationship between the signals is maintained as

driven by the MC on the DFI interface. The tctrl delay timing parameter specifies the

delay added between the DFI and DRAM interfaces; it is essentially the command

translation delay, which must be consistent across signals of the command interface.

The command interface buses/signals are duplicated into phase-specific signals which

define the signal value for each phase of the DFI PHY clock in frequency ratio

systems. A command sent on any of the phases must be interpreted correctly by the

PHY. Furthermore, the dfi_address bus must be mapped (one to one) to the CA bus of

the DDR5 DRAM; both should have the same width and the bit ordering. For the chip

select (dfi_cs) signal, its polarity should follow the polarity of the corresponding

memory signal (CS_n). All the timing parameters (specific to the signals used by the

DUT) must be followed as described in Table 9 in the DFI standard [2].

The read interface is responsible for the data capture across the DFI interface. It

handles the read transaction as follows; after exactly trddata_en cycles from issuing a

read command on the command interface, the MC asserts the dfi_rddata_en signal to

point out to the PHY that a read operation is underway in the memory. The duration

of asserting the dfi_rddata_en signal reflects the number of contiguous cycles

53

expected for the read data on the dfi_rddata bus. Within tphy_rdlat cycles from

asserting the dfi_rddata_en signal, the valid data transfer starts from the PHY to the

MC. The PHY asserts the dfi_rddata_valid signal during the valid data transfer on the

dfi_rddata bus. The dfi_rddata_valid assertion clocks have a one-to-one

correspondence with dfi_rddata_en assertion clocks. The width of the dfi_rddata_en

and dfi_rddata_valid signals equal the number of PHY data slices as there is a

one-to-one correspondence between these signals and data slices. The timing

parameters of the read interface are described in Table 15 in the DFI standard [2].

6.4 DUT properties as described in the JEDEC

The JEDEC JESD79-5A standard mainly describes the specs of the DRAM itself. We

are only concerned with the sections that describe the DRAM’s input commands and

output data.

6.4.1 Mode Register Definition: MRR & MRW

Mode registers are used by the dram to store some configurations that affect the

DRAM's operation. These registers should have default values set in the reset and

initialization procedure. The values of the registers can be read using the MRR

command which reads the values stored inside the mode register and outputs them on

the data bus. To change the values of the registers an MRW command needs to be

issued. the command itself would include the values to be written on the CA bus [3].

6.4.2 USED Mode Registers

There are 256 mode registers some of which are writable and others are read-only[3].

However, we are only concerned with MR0, MR8, MR40, and MR50. These are the

registers that include the configuration for burst length, preamble pattern, postamble

patterns, DQS offset, and CRC enable. These are the reconfigurations that would

affect the operation of our DUT.

6.4.3 Command Truth Table & 2-Cycle Command Cancel

The JEDEC JESD79-5A standard also specifies all the possible commands and their

address encoding. The commands we used were RD, MRW, MRR, DES, PREab, and

54

ACT. Only the PREab is a single-cycle command; all other commands are two-cycle

commands [3].

Two-cycle commands require the CS_n to be low for the first cycle and high for the

second cycle. If the second cycle is low the command is canceled or is the non-target

rank for ODT which means the command shouldn’t be executed in this rank [3].

6.4.4 Burst Length, Type, and Order

Burst length configuration can be changed in MR0. There are 4 different burst lengths

BL16, BC8 OTF, BL32, and BL32 OTF. However, only the first three were

implemented in the DUT. Burst length defines the length of data in a read operation.

BL32 reads require another Dummy read operation to be sent exactly 8 cycles after.

6.4.5 Programmable Preamble & Postamble

Preamble and postamble configuration options are in MR8. A preamble is a pattern

that appears on the DQS signal indicating the beginning of a data burst. and a

postamble is a pattern indicating the end of a data burst.

6.4.6 Interamble

When two data bursts are near enough (back-to-back reads) there could be not enough

space in between the two bursts for a full preamble and postamble patterns. In this

case, the post amble is prioritized and the next burst could start with no preamble or a

partial one.

6.4.7 Read Operation

Read operation retrieves data from the dram array. The read command includes the

column to read from and there is an option on whether to use the default burst length

or the burst length specified in the mode register.

6.5 DUT properties that are not part of the standards

The DFI standard states the following: “The DFI protocol does not encompass all of

the features of the MC or the PHY, nor does the protocol put any restrictions on how

the MC or the PHY interface to other aspects of the system” [2]. Therefore, any

design can possess features that are not outlined in the DFI standard. Among those

55

features is an input enable signal that must be asserted before the PHY can operate,

and an input CRC_enable signal (phycrc_mode_i) that should be asserted if CRC is

implemented by the PHY and be de-asserted otherwise. An extra output signal

indicates the validity of the driven values on the CA bus (CA_VALID_DA_o).

Another notable difference between the standard and the DUT is the use of the

dfi_freq_ratio signal. In the standard, it is used in the initialization and

frequency-change protocols during which it indicates a certain frequency ratio;

however, the signal conveys the same message to the DUT without following the

protocols outlined in the DFI standard.

Figure 22. Black-box diagram of the DDR5 PHY DUT

56

Chapter 7

Project Design

7.1 Project purpose and constraints

The project purpose is to verify a DDR5 PHY design following the full digital

verification flow of

● feature extraction:

This step involves extracting the features specified in the JEDEC JESD79-5A

and DFI standards, so in the subsequent steps, the design is verified to support

them correctly.

● Verification plan:

For each feature extracted, the following is specified:

○ Test generation plan: to describe how this feature would be tested

○ Checking plan: identifying what needs to be checked with respect to

the reference model developed.

○ Assertion plan: identifying the timing parameters between the signals

that must be preserved.

○ Coverage plan: defines the cover bins and groups that this feature

would hit when tested. It abstracts the feature into the coverage plan to

easily monitor if this feature is tested or not when random testing is

used.

Noting that it is not obligatory to fill all plans for each feature; only the

relevant plans for that feature are required.

● Test plan:

57

In this step, the test scenarios and constraints are specified to ensure that all

features are tested.

● Testbench development:

During this phase, the testbench and test scenarios codes are written with

reference to the verification and test plan.

Project constraints

Due to the complexity of the design and the high cost of fixing the bugs after design,

the verification process is extremely time-consuming, so the first project constraint is

time. In our case, the team is constrained to finish the verification process by the end

of the academic year.

As the goal of the verification is to build confidence that the design implementation

functions as intended in the specifications, the second constraint is to achieve high

functional and code coverage (> 95%).

The third constraint is using the different industry-standard tools and techniques

correctly during the verification process such as checkers, assertions, and coverage

collection.

7.2 Project technical specifications

For each step in the digital verification flow, there are specifications to ensure that the

following steps are done correctly and without any missing information. These

specifications are as follows:

● For the features extraction: all the PHY features specified in the JEDEC

JESD79-5A and DFI standards should be included along with the

implementation-specific specifications.

● For the verification plan: all the extracted features should be addressed

correctly using checkers, assertions, and coverage.

● For the test plan: the test scenarios should be sufficient to achieve high

functional and code coverage.

58

● For the testbench development: the codes should follow the OOP principles

and UVM best practices for reusability and code performance.

● For the bug report: it should be clear and a way to reproduce the bug must be

accurately given.

● For the overall verification result: the level of confidence in the design

working features should be high, and the outlined bugs are actually flaws in

the design, not the testbench.

7.3 Design alternatives and justification

There are many alternatives to verify the design; these alternatives differ in

performance during different stages and differ with respect to important parameters

such as scalability, reusability, flexibility, and ease of maintenance. Considering

testing methodologies, there are two options: directed testing and random testing. The

main difference between the two methodologies is that in direct testing, tests are

written for the bugs expected to be in the design while random testing can find

unexpected bugs in the design. The figure below shows the coverage of each testing

methodology over total design space and features [19].

Figure 23. random vs direct testing coverage [19]

Regarding random testing, the automatically generated stimuli require developing a

reference model to automatically predict the results. This additional infrastructure

takes a huge amount of time during the testbench development while the directed

testing requires little infrastructure. After developing the testbench, directed testing

59

provides immediate, steady progress but with slow progress while random testing is

much faster to achieve 100% coverage. The figure below illustrates these two

differences [19].

Figure 24. random vs direct testing progress over time [19]

Another two alternatives appear when considering the scalability and reusability of

the testbench. The two alternatives are building Systemverilog testbench or UVM

testbench. In a SystemVerilog testbench, all classes are built manually from scratch

while a base class library (BCL) is used in a UVM testbench. This UVM testbench

has many advantages over the SystemVerilog testbench such as separating tests from

testbenches, simplifying the configuration of objects, modularity, and reusability.

An alternative to SystemVerilog altogether is cocotb, which is a testbench

environment that implements the concepts found in UVM, but it is written in Python.

Although Python promises ease of code development, it is not as well-established as

UVM. Furthermore, UVM has the advantage of being written in the same language as

the design, which makes it easier to debug the testbench and design together.

7.4 Description of the selected design

Our selected testbench would mainly depend on employing the coverage-driven

random testing methodology to rapidly achieve high coverage. As the ability to

achieve coverage diminishes over time, directed testing would be used to achieve

100% coverage by hitting the holes left by random tests. The figure below shows the

coverage-driven constrained random verification methodology used [19].

60

Figure 25. coverage convergence flow [19]

For the testbench code development, a UVM testbench would be built to exploit its

many advantages that were mentioned before. In addition, a SystemVerilog assertions

module is built to implement signal-level checkers that are described in the standard

but are not captured in the transaction-level checkers in the UVM scoreboard.

7.5 Block diagram and functions of the subsystems

Figure 26. testbench architecture for the DDR5 PHY

The figure above shows the block diagram of the selected testbench. In it, there are

two interfaces: DFI and JEDEC, and there is an agent for each interface. Depending

on which interface is being tested in a specific test case, the configuration object

61

https://lucid.app/documents/edit/fdd2c5c4-4fd3-4202-8370-c47931243d40/0?callback=close&name=docs&callback_type=back&v=1964&s=595.3

would be used to specify the parameters needed by the environment to act according

to the standards. The following is a brief description of each class:

1- Sequence item: maps the pin-level signal into a higher level of abstraction. It

encapsulates the information needed for the stimulus and response on the DFI and

JEDEC interfaces.

2- Sequence: Defines the sequence of generating the sequence_items. Different

sequence classes are built for both interfaces implementing different scenarios.

3- Sequencer: Deliver the sequence_item generated in sequence to the driver.

4- DRAM Driver: Drives the sequence_item from the sequencer to the DUT’s

JEDEC interface at the pin level.

5- MC Driver: Drives the sequence_item from the sequencer to the DUT’s DFI

interface at the pin level.

6- MC Monitor: Monitors the pin-level activity of the DUT’s DFI interface and

converts it to a packet-level activity.

7- DRAM Monitor: Monitors the pin-level activity of the DUT’s JEDEC interface

and converts it to a packet-level activity.

8- DRAM Agent: Contains the sequencer, driver, and monitor related to the JEDEC

interface.

9- MC Agent: Contains the sequencer, driver, and monitor related to the DFI

interface.

10- Scoreboard: Compares the outputs received from the monitor with the expected

values.

11- Coverage collector: defines and measures the functional coverage.

12- Environment: Contains the agents, coverage collector, and scoreboard.

13- Test: contains the sequences of the test case and environment.

14- Clock generator: generates the clock.

62

15- Configuration: specifies the attributes of the classes such as the burst length of

read operations that are done by the DRAM driver

16- DDR Assertions module: contains the SVA properties and assert and cover

statements for the DFI and JEDEC signals.

17-Top module: connects the testbench, DUT, and assertions module.

7.6 Verification Plan

The verification plan specifies what must be verified in a hardware design, as well as

the assertions and coverage criteria that must be established and met in order to

progress to the next step in the design flow.

The verification plan consists of four important aspects:

● Design requirements and features.

● Stimulus generation.

● Coverage measurements.

● Response checking and assertion

Design requirements and features

This document contains DFI and JEDEC design requirements along with the

associated scope/interface, the feature name, associated signals, feature description,

and the feature page in the standard. A snippet from our verification plan is shown in

the below figure:

Figure 27. A snippet of design requirement and feature section of the verification plan

63

Coverage Measurement

The verification scopes are given in the coverage measurement part of the verification

plan. It is the most important section because it lets the verification designers know

how much functionality the testbench covers. It also gives us information about

what’s remaining by means of coverage analysis. This section describes the functional

coverage and what must be done to fully cover all DUT functionality. A snippet from

the coverage plan is shown in the below figure:

Figure 28. Snippet of coverage measurement section of verification plan

Stimulus generation:

The stimulus generation section is in charge of generating the input test vector needed

to completely exercise the DUV and display all of its possible behaviors. This entails

not only creating valid test vectors to demonstrate that the device is functioning as

planned, but also creating faulty test vectors to force the device into unexpected

situations. The goal of stimulus creation is to provide test vectors that allow for a high

level of coverage. A snippet from the code can be is shown in the below figure:

Figure 29. A snippet of stimulus generation section of verification plan

64

Response checking:

The response checking section is responsible for making sure that the DUT responses

meet the correct behavior according to standard specification. This can be done by an

approach called reference model check. A snippet from the response checking and

assertions is shown in the below figure:

Figure 30. Snippet of response checking section of verification plan

65

Chapter 8

Project Execution

In this chapter, a thorough explanation of the testbench components is presented with

proper figures and code snippets for illustration. As for the DDR5 PHY, it has two

different interfaces; DFI and JEDEC, that interact with the Memory Controller and

the DRAM respectively. The purpose of the verification environment is to properly

stimulate the DUT interfaces, monitor its behavior, check for erroneous behavior and

collect coverage information.

Exploiting the concepts of OOP like inheritance and polymorphism ensures the

verification components' reusability and configurability, thereby, reducing the amount

of effort needed to create a whole new testbench. In order to make tb scope available

to the build process, a package “tb_pkg.sv” is created to include all tb classes and

enum declarations.

8.1 Top Module

The top-level module “top_testbench.sv” is responsible for the integration of the

DUT with the testbench architecture classes. It instantiates the DUT, ddr_assertions

module and the interfaces then connect them properly. It uses uvm_config_db to

register the interfaces into the config database as virtual interfaces which are used by

the drivers and the monitors in the environment. Additionally, the top module calls

run_test()method to run the UVM test via +UVM_TESTNAME command line

option.

The top module is responsible for importing the uvm and tb packages as well as

generating the required dut clocks: dfi_clk_i, dfi_phy_clk_i. It resolves their

values in compilation time depending on the frequency ratio defined.

module top_testbench;
import uvm_pkg::*;
import tb_pkg::*;

...
parameter DFI_CLK_PERIOD = 800;

66

`ifdef ratio_1_to_1
parameter PHY_CLK_PERIOD = DFI_CLK_PERIOD;

`elsif ratio_1_to_2
parameter PHY_CLK_PERIOD = DFI_CLK_PERIOD/2;

`elsif ratio_1_to_4
parameter PHY_CLK_PERIOD = DFI_CLK_PERIOD/4;

...
always #(DFI_CLK_PERIOD/2) dfi_clk_i = ~dfi_clk_i;
always #(PHY_CLK_PERIOD/2) dfi_phy_clk_i = ~dfi_phy_clk_i

...

endmodule : top_testbench

8.2 Interfaces

As mentioned earlier, the interfaces are registered as virtual interfaces in the config

database. This is because the virtual interfaces are pointers to the actual ones and can

be used with the OOP/dynamic nature of UVM. This means that any UVM

component that has access to the virtual interface (e.g. driver/monitor) can create a

handle for it and have access to the static interface signals.

The DUT has two standard interfaces with different signals and clock domains;

therefore, two interface blocks were implemented, namely, dfi_intf.sv & jedec_intf.sv;

they declare all the signals defined by the DUT and basically by the DFI & JEDEC

JESD79-5A standards and they have dfi_clk, dfi_phy_clk respectively as inputs.

Furthermore, each interface contains a clocking block to regulate applying stimuli to

the DUT and sampling the DUT’s response in a consistent way across the

environment while avoiding race conditions.

interface dfi_intf(input logic dfi_clk);

logic reset_n_i;
logic [1:0] dfi_freq_ratio_i;
logic [13:0] dfi_address_p0;

...

clocking cb_D @(posedge dfi_clk);
//Drive on negedge -- Sample at #1step
default input #1step output negedge;
input dfi_rddata_w0,dfi_rddata_w1, ...;
output reset_n_i, dfi_freq_ratio_i, dfi_address_p0, ...;

endclocking
endinterface

interface jedec_intf(input logic dfi_phy_clk);
logic [13:0] CA_DA_o;

67

logic DQS_AD_i;
...

clocking cb_J @(posedge dfi_phy_clk);
default input #1step output negedge;
input CA_DA_o, ...;
output DQ_AD_i, ...;

endclocking
endinterface

The guidelines mentioned in [27] were followed to ensure a robust testbench clocking

scheme. Generally, there are three things that differ in how they are handled using the

clocking block: applying the DUT stimulus, sampling the DUT inputs (applied by the

driver), and sampling the DUT outputs (its response). First, the DUT stimuli should

be applied on the negative edge. This avoids the activity at the positive edge and

makes debugging using waveforms easier. Second, the DUT input signals are sampled

at the positive edge because the monitor should sample exactly what is seen by the

DUT. Third, the DUT’s output is sampled when all activity in the current time step is

finished. This avoids the positive edge, where outputs change, and the negative, where

inputs change, producing consistent results. This is done by the SystemVerilog 1step

delay in the clocking block. An illustration of the used driving and sampling scheme

is shown below.

Figure 31. Driving and Sampling Scheme

8.3 Tests

A base test class “base_test.sv” is extended from uvm_test which is a top_level

UVM component class. The base test instantiates the environment class, thus, the

whole testbench components are involved in a container called environment and it can

be configured or tweaked for each test. In other words, we no longer need to copy,

68

edit or connect the verification components in each test, but instead, the environment

class takes care of all of it.

The base test, also, prints test topology, it runs the reset and the base sequences.

Thus, new tests extending the base test can build targeted scenarios, and specific test

cases and start different sequences.

Figure 32. Different testcases inherited from base_test

As shown in figure 32, there are four independent tests inherited from the base test

class, namely, ddr_sanity_test, rand_test, rand_test_corners, and the b2b (back to

back) test, and each one of them fulfills different test scenarios. They are discussed in

section 8.15.

8.4 Environment

The environment class “env.sv” constitutes the main architecture of the uvm

testbench. It instantiates the agents (MC & DRAM), the scoreboard, and the

subscriber. It uses the analysis port/imp/export of the TLM to connect these

components together. The analysis_port of the mc_agent and the dram_agent are

connected to the analysis_imp of both the scoreboard and the subscriber. These

connections enable the monitors in both agents to broadcast their sampled transactions

to the scoreboard (check for errors) and the subscriber (collect coverage).

69

https://lucid.app/documents/edit/d7fb2ea3-fb46-429b-8e04-e45b6f4affd6/0?callback=close&name=docs&callback_type=back&v=614&s=536

Figure 33. The env.sv class and sub-components. connections

8.5 Agents

There is an agent for each interface group; one for DFI (mc_agent) and another agent

for the JEDEC (dram_agent). Each agent has its own driver (mc_driver,

dram_driver), monitor (mc_monitor, dram_monitor) and sequencer

(mc_sequencer, dram_sequencer). The agents are responsible for connecting the

drivers’ seq_item_port to the seq_item_imp of the sequencers. They also connect

the monitors’ analysis_port to the agents’ analysis_port.

class mc_agent extends uvm_agent;
...

function void connect_phase(uvm_phase phase);
super.connect_phase(phase);
//Connect driver port to sequencer imp/export
mc_driver1.seq_item_port.connect(mc_sequencer1.mc_seq_item_imp);

//Connect monitor analysis port to agent analysis port
mc_monitor1.mc_analysis_port.connect(mc_analysis_port);

endfunction
...

endclass : mc_agent

70

https://lucid.app/documents/edit/30846464-77f2-4316-af7e-d8e986a3f3e6/0?callback=close&name=docs&callback_type=back&v=190&s=536

Figure 34. MC/DRAM Agent components and connections

8.6 Sequence Item

In order to generate stimulus to the DUT and receive its responses, an object class

called ddr_sequence_item is created as an abstracted transaction level model. This is

because the data flows within the uvm testbench components in the form of

sequence_items or transactions. The class ddr_sequence_item extends the

uvm_seq_item class (a uvm_object class), thus inheriting uvm_object methods, like

print(), clone(), …etc. This class acts as a placeholder for data property members

by which the driver/monitor can stimulate/interpret the pin_level activities. The

ddr_seq_item data fields represent:

● Control information, such as, dfi_freq_ratio, reset_n_i, en_i.

● Payload information, such as, CMD, data.

● Configuration information, such as, BL_mod, AP, OP, read_pre_amble.

● Analysis information, such as, MR, dfi_rddata_queue, is_data_only.

Notice that, sequence items are incorporated in both request and response

transactions. All data fields/variables used for request/stimulus to the DUT are

declared as rand or randc variables, which is necessary for randomized transaction

stimulus generation. On the other hand, the analysis data fields, i.e. response data

71

https://lucid.app/documents/edit/17f0b77a-17ea-410c-a844-7f8810411e1d/0?callback=close&name=docs&callback_type=back&v=687&s=532

fields, obviously are not allowed to be random variables because they hold DUT

responses.

The ddr_sequence_item defines constraints to the random variables to ensure the

values of the transaction are within the legal range or desired bounds. These

constraints can be extended, but not overwritten/violated, when randomized with

in-line constraints (in sequence classes) to help generate specific sequences.

class ddr_sequence_item extends uvm_sequence_item;
`uvm_object_utils(ddr_sequence_item)
//==================== Data abstraction =====================//
rand bit [2*device_width-1:0] data ; //data
byte MR [50:0] ; //MRs

...
//==================== dfi_address/CA abstraction ===========//
rand command_t CMD;
randc bit [1:0] BA; //Bank Address
randc bit [2:0] BG; //Bank Group
randc bit [3:0] CID;
randc bit [17:0] ROW; //Row Address

...
//==//
// Constraints //
//==//
constraint c_MRA {MRA inside {8'h00, 8'h08, 8'h32};}
constraint c_command_cancel {command_cancel dist {0:/95, 1:/5};}

...

endclass : ddr_sequence_item

8.7 Sequences/Sequencers

The sequences are object classes derived from the uvm_sequence class. Their main

purpose is to generate sequence_item objects or start other sequences and send them

to the driver through the sequencer component. Conversely, when the DUT generates

a response, the driver creates a response sequence item and passes it back to the the

same sequence object, again through the sequencer. A base sequence (base_seq) is

created extending uvm_sequence class with transaction type ddr_seq_item.In this

work, the base sequence contains empty virtual body methods which are overwritten

in other children sequences.

72

Figure 35. The base_seq inherits uvm_seq, and it is the parent of all other sequences

`include "base_seq.sv"
`include "reset_seq.sv"
`include "ddr_sanity_seq.sv"
`include "ACT_seq.sv"
`include "RD_seq.sv"
`include "MRW_seq.sv"
`include "MRR_seq.sv"
`include "PREab_seq.sv"
`include "DES_seq.sv"
`include "dram_resp_seq.sv"
`include "rand_seq.sv"
`include "rand_seq_corners.sv"
`include "b2b_seq.sv"

A Snippet from sequence_lib.sv file listing all sequences

The base sequence is essential is a particular set of features or configurations need to

be inherited in the extending sequences. In our case, we just need to define common

data types that are used to build the other random sequences.

The fact that sequences and sequence items are object classes means that they can be

randomized and easily manipulated in order to derive meaningful test scenarios. The

only difference between a sequence and a sequence item is that the sequence has body

methods (i.e. pre_body, body, post_body tasks) which are used to create and

execute sequence items or/and other sequences objects.

A typical sequence is executed by the run phase of a test targeting a particular

sequencer. The sequencer is responsible for sending the sequence_items/transactions

inside the sequence body task to the driver.There are two sequencers in this

testbench, mc_sequencer and dram_sequencer, one for each agent and they are

73

connected to the corresponding driver by a TLM port in a one-to-one handshake

mechanism.

class base_test extends uvm_test;
virtual task run_phase(uvm_phase phase);

reset_seq_inst = reset_seq::type_id::create("reset_seq_inst");
base_seq_inst = base_seq::type_id::create("base_seq_inst");

super.run_phase(phase);
phase.raise_objection(this);

reset_seq_inst.start(env1.mc_agent1.mc_sequencer1);
base_seq_inst.start(env1.mc_agent1.mc_sequencer1);

phase.drop_objection(this);
endtask

endclass : base_test;

For example, the base test creates and starts the reset_seq and the base_seq,

passing the handle of the mc_sequencer as an argument to the start task. By calling

reset sequence start() method, the test executes the pre_body, body and

post_body sequence tasks in that order. In the code snippet below, the pre_body task

creates a ddr_seq_item object called item1, and in turn it is passed as an augment to

the start_item and finish_item methods in the body task.

class reset_seq extends base_seq;
`uvm_object_utils(reset_seq)
task pre_body();

item1 = ddr_sequence_item::type_id::create ("item1");
endtask
task body();

start_item (item1);
item1.reset_n_i = 0;
item1.en_i = 0;

finish_item (item1);

start_item (item1);
item1.reset_n_i = 1;
item1.en_i = 1;

finish_item (item1);
endtask

endclass : reset_seq

To sum up, we want to send two transactions (as shown in the above code snippet) to

the mc_driver through the mc_sequencer. In the reset sequence case we don’t need

randomization, the transactions are very simple, the first one activates the reset signal

(active low) and the consecutive one deactivates it. Thus if the driver requests a

transaction from the sequencer every clock cycle, this sequence will be translated to a

74

reset signal asserted low for a clock cycle to perform DUT reset. There are other

sequences that perform curated test scenarios explained in section 8.15.

8.8 MC Driver

The MC (Memory Controller) Driver is responsible for converting the dfi transactions

/sequence_items, coming from the sequencer, into pin-level activities at the dfi

through the dfi virtual interface “dfi_vif”. MC Driver is an abstract way to mimic

the behavior of memory controller stimulus. For example, if the driver receives a

READ command transaction, it will perform the stimulus protocol in which the driver

controls the dfi_address bus, dfi_cs and dfi_rddata_en with proper stimulus,

frequency ratio/phasing and timing according to the DFI & JEDEC JESD79-5A

standards. Thus, the DUT receives the pin-level activity of a read command.

The mc_driver extends uvm_driver class, a uvm component. The driver receives

transactions from the mc_sequencer which is accomplished through the special

driver-sequencer one-to-one TLM handshake mechanism, see section 5.9. In the

pre_reset phase, the driver set the initial values to the signals, such that, all input

signals to the interface has a known initial value at the beginning of the simulation. In

the run phase [Fig. 37], a forever loop calls the API methods get_next_item() to

request a new transaction from the sequencer and item_done() to indicate that the

transaction is consumed and the driver is ready to get a new one if available.

Typically, the driver core logic is executed between calling of these two methods, a

task/function or a group of tasks/functions are called to execute the protocol of

converting the transaction into pin-level activity driven to the dut. In the case of MC

Driver, task drive_dfi()is the main task and it calls other tasks within itself.

class mc_driver extends uvm_driver#(ddr_sequence_item);
`uvm_component_utils(mc_driver)
static logic [13:0] CMD_queue [$];
static logic [Physical_Rank_No-1:0] CS_queue [$];

static logic rddata_en_queue [$];

...

task run_phase(uvm_phase phase);
super.run_phase(phase);
forever begin

seq_item_port.get_next_item(dfi_item1);

75

drive_dfi();
seq_item_port.item_done();

end
endtask
//===//
// MC Tasks Prototypes //
//===//
extern task drive_dfi ();
extern task num_of_words();
extern task decode_cmd();
extern task ACT_cmd ();
extern task RD_cmd ();
extern task MRW_cmd ();
extern task MRR_cmd ();
extern task DES_cmd ();
extern task PREab_CMD ();

endclass : mc_driver

As shown in the code snippet above, there are nine implemented tasks inside the mc
driver in which drive_dfi() is the main task. num_of_words() task deals with the
burst length setting, indicating how many cycles the read data enable signal should
remain asserted high for a RD (read) or MRR cmd. The other seven deal with
commands transaction-to-signal level realization (ACT_cmd, RD_cmd, ... etc). The
following code snippets show a glance at how the driver interpret the received
transactions and extract useful information. For example, the Burst length
configuration is acquired from an MRW transaction (MR0, OP[1:0]), this is used to
determine the number of data words later on when a read cmd is received. The no of
words is saved in a static int variable called n_words, and then used to fill in the
rddata_en_queue information inside drive_dfi() task.
task mc_driver::num_of_words();

if ((dfi_item1.CMD == MRW) && (dfi_item1.MRA == 0) &&
(dfi_item1.command_cancel != 1)) begin

case (dfi_item1.OP[1:0])
'b00 : dfi_item1.num_of_words=BL16;
'b01 : dfi_item1.num_of_words=BC8_OTF;
...

endcase
end
if ((dfi_item1.rddata_en) && (dfi_item1.command_cancel != 1)) begin

if (dfi_item1.CMD == RD) begin
...

case (dfi_item1.num_of_words)
//Return (0.5*BL) words (2*Device size)

BL16 : n_words = n_words + 8;
BC8_OTF : n_words = n_words + 4;
...

endcase
...

endtask : num_of_words

76

task mc_driver::decode_cmd();
case (dfi_item1.CMD)

ACT : begin
ACT_cmd();

end
RD : begin

RD_cmd();
end

...
endcase

endtask : decode_cmd

task automatic mc_driver::RD_cmd (); //READ command_encoding (2-cycle cmd)
CMD0 = {

dfi_item1.CID[2:0],
dfi_item1.BG[2:0],
dfi_item1.BA[1:0],

dfi_item1.BL_mod, //Bl_mod bit
5'b11101

};
CMD1 = {

dfi_item1.CID[3],
2'b00,
dfi_item1.AP, //Auto precHARGE Active
...

};
else begin

CS0 = 0;
CS1 = 1;

end

endtask : RD_cmd

task automatic mc_driver::PREab_CMD (); // Precharge All command_encoding
CMD0 = { // (1-cycle cmd)

dfi_item1.CID[2:0],
5'b00000,
...

};
CS0 = 0;

endtask : PREab_CMD

As for commands transaction to pin-livel conversion, the driver uses decode_cmd()

to decide which of the cmd encoding tasks to execute and perform the proper

command encoding according to the JEDEC JESD79-5A standard. As shown in the

code snippets above, there are two types of commands; two-cycle commands (like

read, MRW, MRR, ACT) and one-cycle command (like prechargeAll). They save the

encoding information in a placeholder static logic variable called CMD0 for first cycle

command address information, and CMD1 for the second cycle if the command is a

77

2-cycle one. The next step in the drive_dfi task is to append these command cycle(s)

information to a static logic queue called CMD_queue. The same thing goes for

cs_queue. The following figure shows a flow chart illustrating the drive_dfi()task

and how it works.

Figure 36. A Flow Chart Diagram illustrating the drive_dfi () task

Figure 37. The driver’s run phase illustration

78

https://lucid.app/documents/edit/6d6f6ff4-cf23-4d37-8be4-a109f2723c59/0?callback=close&name=docs&callback_type=back&v=1192&s=552
https://lucid.app/documents/edit/5e9915d6-a112-4472-95ec-4d9fa2b3d591/0?callback=close&name=docs&callback_type=back&v=1001&s=588

8.9 MC Monitor

The role of the MC monitor is to monitor the signals on the DFI interface whether the

signal is driven by the driver or is an output of the PHY DUT then read these signals

and translate them to a higher level transaction that is then sent to the scoreboard and

the subscriber for further analysis. Due to the nature of the monitor - explained in

section 6.4 - two separate parallel threads were made to monitor commands and data

separately.

8.9.1 Command Thread

The command thread monitored the phases of dfi_address and dfi_cs which are driven

by the MC driver. the thread figures out the type of the command, whether or not it’s

canceled and decodes the address into a sequence item, and writes it. For MRW

command the thread sends the BL, RL, postamble, and preamble patterns data stored

into the mode registers. Furthermore, for MRR and RD commands the thread also

keeps track of the BL of each data packet in order which can vary from the one stored

in the mode register when doing an MRR or setting BL_mode bit to 0 during an RD

command. The Command thread ignores DES commands and the Dummy RD

command in BL32 mode.

8.9.2 Data Thread

The data thread monitors phases of rddata and rddata_valid signals coming from the

PHY. It calculates words for each data transaction based on the BL, counts valid data

bits up to these data words then writes the transaction.

8.9.3 Data Rotation

As mentioned in the DFI standard when operating the PHY at 1:2 or 1:4 frequency

ratio, each data transition has to start at the phase after the one on which the last data

transition ended regardless of the space between the two data packets. The data thread

has to keep a pointer that keeps track of which phase it should start reading from.

79

8.9.4 Communication between the Two Threads

Since the command thread needs to send the BL of each data transaction to the data

thread, a mailbox is used as a buffer to communicate the transaction BL between the

two threads properly.

Figure 38. MC monitor communication and threads

8.10 DRAM Driver

The DRAM in the memory systems is a slave agent in its interaction with the memory

controller through the DDR PHY. The memory controller, the master agent, is

responsible for initiating the communication with the DRAM, the communication is

based on commands sent to the DRAM by the MC [24]. These commands could be

written, read, activate, precharge, …etc, and the DRAM ought to fulfill these

commands and respond properly according to the JEDEC JESD79-5A standard. The

response may be in the form of reading data, MRR, change the configuration in MRs

through MRW …etc. Thus, in order to build a driver to drive the stimulus-response of

the DRAM on the JEDEC interface, the driver has to perform a reactive stimulus [28].

The dram_driver extends uvm_driver class. There are 2 threads run in parallel in

the run phase as depicted in figure 39. The first thread is used for translating the

pin-level activity at the JEDEC interface into a transaction level (translation()

task), the thread then fills out the values of the written mode registers through

80

fill_mode_regiser() task. The other thread is responsible for parsing the mode

registers and interpreting the saved settings in order to provide proper data stimulus

on the JEDEC interface of the DUT, then the thread calls drive() task.

Figure 39. DRAM Driver run phase

The drive() task takes the translated and then parsed sequence item as an input

(jedec_seq_item_1) and outputs the response sequence item (dut_rsp). Firstly, the

task clones the translated/parsed jedec_seq_item_1 into the response item dut_rsp

and then drives the DQS signal and the data bus to the DUT. The output dut_rsp is

then passed as an argument to the item_done() as shown in figure 39. Accordingly,

the DRAM sequencer sends the dut_rsp item back to the related sequence class

(dram_resp_seq), which in turn adjusts the transaction to meet the settings received

in the dut_rsp item (see section 8.10.1 for more details on the dram_resp_seq). This

methodology is called the reactive stimulus driving technique mentioned in [28]. A

snippet of the drive() task is shown below.

81

https://lucid.app/documents/edit/544d144c-f84b-498f-8c16-031184e32fd5/0?callback=close&name=docs&callback_type=back&v=605&s=595.3

task dram_driver::drive(input ddr_sequence_item jedec_seq_item_1, output
ddr_sequence_item dut_rsp);

if(!$cast(dut_rsp,jedec_seq_item_1.clone()))
dut_rsp = jedec_seq_item_1;

jedec_driver_vif.cb_J.DQS_AD_i <= jedec_seq_item_1.dqs;
jedec_driver_vif.cb_J.DQ_AD_i <= jedec_seq_item_1.data;

endtask

8.10.1 DRAM Response Sequence

The dram_resp_seq is closely related to the DRAM driver. It receives the DUT

response on the JEDEC interface and sends the proper DRAM response back to the

driver. The response sequence implements seven tasks to perform the logic of DRAM

response to any command, namely, DRAM_resp, fill_data_q, fill_dqs_pre_q,

fill_dqs_post_q, fill_dqs_inter_q, calc_rd_gap, drive_MRR.The DRAM_resp

task is the main task that calls the others. As shown below in the flow chart, two

queues (DATA, DQS) are filled according to the DUT commands and settings, and

then the transaction is created regularly by popping from the queues.

Figure 40. : Simplified Flow Chart showing the DRAM_resp task flow

82

https://lucid.app/documents/edit/dd6bbf86-7c98-41e2-896e-bef29f6d1183/0?callback=close&name=docs&callback_type=back&v=650&s=595.3

8.11 DRAM Monitor

The goal of the monitor is the opposite of the driver. It observes the pin-level

activities at the interface and converts them into the transaction level. The transactions

constructed by the monitor are then sent to the scoreboard and subscriber for analysis.

The PHY block has two interfaces; One interface defined by the DFI protocol is

between the PHY and memory controller. The other interface defined by the JEDEC

is between the PHY and DRAM. The DRAM monitor class is concerned with the

JEDEC interface. The JEDEC interface’s signals are as follows:

Pin Type
(With
respect to
the PHY)

Function

CA [13:0] output Sends the command and address to the DRAM.

CS output An active-low signal used for rank selection and is also part of
the command code; It masks the command when its value is
high.

DQS input It is a data valid flag

DQ input is the data bus for the RD and MRR data

Also, the JEDEC interface uses the DFI PHY clock.

8.11.1 Using Two Threads In The Run Phase

The monitor retrieves the transactions for the pin-level activities. In the case of a RD

or MRR, the essence of a single transaction is the command observed at the CA pins

and the data observed at the DQ pins. Due to the simplicity of this task, the first

thought about implementing the run phase of the DRAM monitor involved using only

one thread. However. the concept of one thread proved to be problematic when

considering the scenario of issuing a second RD or MRR command before the data of

the first RD or MRR, respectively, is received completely. Figure 41 illustrates the

timing diagram of the scenario. The reason behind the problem is that while the thread

is in progress collecting the data of the first transaction, another command of a new

transaction should be collected, too.

83

Figure 41. Two consecutive RDs.

Based on that, two threads were used, one for managing the commands and addresses

from the CA pins and the other thread for collecting the data from the DQ pins, so for

a single RD or MRR transaction, there are two sequence items sent to the scoreboard

and subscriber. The first transaction contains the information observed at the CA pins

from the command thread, and the second transaction contains the information

observed at the DQ pins from the data thread.

8.11.2 Command Thread Implementation

The goal of the command thread is to observe the commands and addresses using the

pins of CA and CS. It is implemented using a casex statement with CA [4:0] as the

expression. These five bits of CA are used to determine the type of command

according to Table 30 in section 4.1 of the JEDEC. Based on the command type, other

information is being collected such as row, column, CID, auto-precharge flag (AP),

burst length mode flag (BL_mod), and operands (OP).

8.11.3 Data Thread Implementation

The goal of the data thread is to collect the data of the RD and MRR commands from

the pins of DQ with the help of the DQS. For compiling the valid data, a particular

pattern must be detected before the valid data is received. This pattern is called a

preamble. Also, it is required to detect another pattern called a postamble after

receiving the valid data. The preamble and postamble patterns are programmable in

DDR5 devices. Writing a code to detect these types of patterns is fairly simple.

However, as specified in section 4.5 in the JEDEC, the memory controller shall not

add any command gaps to satisfy the preamble and postamble settings, so in many

cases, the difference between two consecutive RD or MRR commands is less than the

sum of the postamble and preamble. In such cases, the postamble takes precedence

over the preamble generating a pattern called the interamble. The difficulty in

84

detecting the interamble is due to the fact that the shape of this pattern depends on the

preamble and postamble settings, burst length, and the time difference between the

two consecutive commands. Figure 42 shows an example of the possible interamble

patterns when the difference between two consecutive RD or MRR is BL/2 + 2.

Figure 42. Interamble patterns with commands gap = BL/2 +2.

To avoid this difficulty, detecting the valid data is done by differentiating between two

different cases based on the timing of the second RD or MRR command on the CA

bus with respect to obtaining the data of the first RD or MRR completely on the DQ

bus. To gain some perspective on why there is a need to differentiate between them,

The task used for collecting the data runs in a forever loop, so at the end of each loop,

it determines how the data of the next cycle, i.e., command, should be collected by

setting the values of some flags local to the DRAM monitor class.

As shown in figure 43, case 1 represents when the second RD or MRR command is

issued after the data of the first RD or MRR, respectively, is obtained completely. In

this case, after collecting the data of the first read (represented by the vertical, red line

in the figure), the data task sets the flags for using the preamble pattern detector

because the difference between the two commands is bigger than the sum of the

preamble and postamble, so there will be no interamble.

Figure 44 shows the second case in which the second RD or MMR is issued while

collecting the data of the first RD or MRR, respectively, is still in progress. The

number of clock cycles difference between two RDs or MRRs that induces interamble

depends on the preamble and postamble settings, but at worst, the interamble emerges

if the clock cycles difference is less than or equal BL/2 + 4 as shown in section 4.5.1

in the JEDEC. Noting that BL/2 + 4 is a subset of the current case, there is no need for

85

detecting the interamble to know when the valid data begins. In this case, the data task

sets the flags for using the number of clock cycles between the two RDs or MRRs.

Figure 43. Case 1: 2nd RD is issued after the data of 1st RD is obtained completely.

Figure 44. Case 2: 2nd RD is issued before the data of 1st RD is obtained completely.

Based on the previous discussion, using postamble for detecting the end of the valid

data is problematic due to the many possible variations in the interamble pattern.

Also, the use of clock cycles difference between consecutive RDs or MRRs

eliminated the need for detecting the interamble. However, another aspect that needs

handling to collect the data correctly is deciding when the valid data of the current RD

or MRR transaction ends. It has been done using the burst length. The value of the

burst length depends on many parameters. For the RD command, The burst length

value could be according to the value stored in MR0 if CA[5] (BL*) is low.

Otherwise, the burst length is BL16. For the MRR command, the burst length is

always BL16 independent of the MR0.

8.11.4 Pattern Detector Implementation

As shown previously, pattern detection is an integral part of the monitoring at the

JEDEC interface. To illustrate its implementation, the 000010 pattern will be used as

an example. This pattern corresponds to the case when OP [1:0] in MR0 = 3’b011.

Figure 45 shows the state transitions diagram of the pattern detector. As it does not

correspond to a hardware block, a software implementation was exploited. The code

snippet below shows its implementation in which if statements are used to check for

the next state, continue statements are used to jump to the next iteration if the

86

expected bit is not received, and a break statement is used to end the loop and

continue to the next part of the code. Furthermore, the DQS is driven to zero during

its idle state, so in effect, the sub-pattern starting with the first one is the part that

needs to be detected. This is handled using an overlap flag to skip the part of the

pattern detected during the idle state of the DQS.

Figure 45. State Transitions Diagram of The Pattern Detector.

3'b011: begin
if (overlap_flag_3tCK === 0) begin

if (jedec_monitor_vif.DQS_AD_i !== 0) continue;
@(posedge jedec_monitor_vif.dfi_phy_clk);
if (jedec_monitor_vif.DQS_AD_i !== 0) continue;
@(posedge jedec_monitor_vif.dfi_phy_clk);
if (jedec_monitor_vif.DQS_AD_i !== 0) continue;
@(posedge jedec_monitor_vif.dfi_phy_clk);
if (jedec_monitor_vif.DQS_AD_i !== 0) continue;
@(posedge jedec_monitor_vif.dfi_phy_clk);

end
if (jedec_monitor_vif.DQS_AD_i !== 1) begin

overlap_flag_3tCK = 1;
continue;

end
@(posedge jedec_monitor_vif.dfi_phy_clk);
if (jedec_monitor_vif.DQS_AD_i !== 0) continue;
break;
end

8.11.5 Communication Between The Two Threads

The operation of the data thread depends heavily on information sent from the

command thread. This is realized using mailboxes and static local variables in the

DRAM monitor class. In the data thread implementation, it has been mentioned that

87

the data task uses the number of cycles between two RDs or MRRs; it is calculated in

the command thread and then stored in a mailbox to maintain the order. Also, during

MRW, the values of the burst length, preamble, and postamble are stored in static

variables, so they can be used during data collection.

One final note regarding the DRAM monitor is that the DQS offset was not used. This

is specific to the current design implementation because the DQS used is always the

default which is zero clock cycles.

8.12 Scoreboard and Reference Model
As previously explained, the general goal of the scoreboard is to report whether the

output of the DUT is correct as it is measured according to the expected output.

Typically, this is done by sending the input, which is the same that was sent to the

DUT, to a reference model that behaves in perfect accordance with the specification

that is described in the standards. Afterward, the output of the reference model is sent

to the scoreboard representing the “expected output”; then, the scoreboard compares

the received output with the expected output.

In our case, there were two interfaces with different signals, frequencies, and

protocols. This means that there are two different types of inputs and a corresponding

two types of outputs. Furthermore, the input of one interface appears as output at the

other interface and vice versa. Therefore, the scoreboard had to deal with four types of

transactions: the DFI input and output, and the JEDEC input and output. For our

DUT, the DFI input is a command and the DFI output is RD or MRR data whereas the

JEDEC input is the RD or MRR data and the JEDEC output is the translated

command.

That dictated sending the input transactions to the scoreboard to pass them to the

reference model before obtaining the expected output which is then compared to the

received output. Moreover, because each input was followed by its corresponding

output, we chose to implement the in-order comparison; i.e., once an input arrives at

the scoreboard, the expected output is instantly computed by the reference model,

then the scoreboard waits for the corresponding DUT’s output.

Another structural element of the scoreboard is the use of queues. This was necessary

because the rate of input transactions is different from the rate of output even though

88

there was a one-to-one mapping between the input and output queues elements and

the comparison was done in order. There were two options regarding this point: use

regular SystemVerilog queues or TLM FIFOs. The advantages of using TLM FIFOs

are that the integration between the functionality of the TLM communication and

queue operation with semaphores is done automatically by UVM. The comparison

should wait until the transactions come from the monitors; this was also embedded in

the TLM FIFO methods since its original implementation uses the concept of a

mailbox. However, using TLM FIFOs dictated that each monitor have two analysis

ports corresponding to 4 TLM FIFOs inside the scoreboard. On the other hand, using

queues dictates being able to tell the difference between an input and output

transaction inside the write function, and it required handling the synchronization of

calling the comparison functions manually as we had to make sure that the queues are

not empty. Another notable issue is the need to properly store the transaction in the

queue by creating a new handle each time the write function is called and doing

proper copying (deep copy) of the incoming transaction because it included queues

itself; all of this manual labor is encapsulated in the use of TLM FIFOs. However,

using queues needed only two analysis ports and implementations in addition to the

flexibility of out-of-order comparison which was a possibility at the beginning of the

project before the environment design became well-defined and stable. Therefore, we

eventually modified the transaction to make the input and output distinct to be able to

leverage the flexibility of queues to be ready for future changes even though the TLM

FIFO had much functionality already built-in.

The sections of the scoreboard that are different from the normal component and thus

need explanation are as follows:

● Two analysis implementations: one for each agent

● Four queues of DDR sequence items: one for the input and one for the output

of each interface.

● The run phase: having two threads, one for each interface.

● Two write functions: one for each agent

● Two comparison functions: one for each interface

● Reference model functions: three functions to handle the inputs of both

interfaces.

89

First, the two analysis implementations are connected to the analysis ports of the two

agents. The corresponding write functions are called by the monitors when either an

input or output transaction is sampled from one of the interfaces. When a transaction

arrives in the write function within the scoreboard, it first copies it inside a local

transaction. Then, it checks the type of the transaction (input or output) to push it into

the corresponding queue. Then, the write function raises one of two flags to signal

that either a new input or output, from one of the interfaces, is ready in its

corresponding queue. When both the input (stimulus) and the output (response) flags

are raised, the appropriate thread in the run phase task will call the appropriate

comparison function. Consequently, the comparison function will first pop one input

transaction from the appropriate (according to the interface) queue and pass it to

reference model methods which will return the “expected output”. Then, the

comparison function will pop an output transaction from the appropriate queue which

is the “received output” from the DUT. At last, the two transactions are compared; if

they are not equivalent, an error will be reported. The stated sequence of events is

illustrated in the following diagram. The diagram shows the command translation

check, but the data translation is similar to it.

Figure 46. Flowchart Demonstrating Command Translation Check

90

The reference model is composed of two main functions that call other functions: the

first takes a DFI input transaction and produces a JEDEC output transaction, and the

second one takes a JEDEC input transaction and produces a DFI output transaction.

Since the DUT behavior involves little computation (e.g., arithmetic operations), the

reference model is simple and the verification of a lot of the functionality is done by

assertions. There was a decision to determine the structure of the scoreboard in the

beginning: make the reference model as a separate component or integrate it with the

scoreboards. Separating the reference model is better for reusability and generally a

better practice which keeps the different functionality of different environment

components separated. However, we settled at the end on integrating the reference

model in the scoreboards because of its simplicity. The two options are shown in the

figure below.

Figure 47. The Classes Architecture Alternatives

8.13 Subscriber

As the subscriber receives broadcasted transactions, it is mainly used to implement

functional coverage. Functional coverage identifies the design requirements, so it

measures the coverage of the design intent. Structurally, the implementation of the

functional coverage is divided into two parts: JEDEC functional coverage and DFI

functional coverage. The content of both parts is based on the design requirements as

specified in the verification plan. The functional coverage features in SystemVerilog

91

are extremely powerful for translating the design requirements into code. However, if

care is not taken, coverage can be collected for bins of no importance or meaning.

Cross-coverage can easily generate a huge number of unwanted bins which is

expensive in terms of simulation time and memory. The following part illustrates the

implementation process to avoid this problem. Two cover groups were created, one

for the JEDEC coverage and another for the DFI part.

8.13.1 Cover Points

Firstly, the relevant data members of the sequence item related to each interface were

listed in their corresponding cover group. They were listed as cover points with their

weights set to zero because they are only sampled to be used in the cross statements,

and the total coverage is calculated based on the cover points and cross-coverage, so

they should be excluded. The code snippet below shows the implementation of two

cover points which are for the command and burst length data members. Also, the

figure shows the different ways of defining the cover-point bins. They can be defined

explicitly as in CMD_cp, generated automatically as in burst_length_cp, or excluded

using ignore_bins as in OP_BL_cp.

CMD_cp: coverpoint jedec_sequence_item_coverage.CMD {
type_option.weight = 0;
bins MRR = {MRR};
bins MRW = {MRW};
bins ACT = {ACT};
bins RD = {RD};}

burst_length_cp: coverpoint jedec_sequence_item_coverage.burst_length {
type_option.weight = 0;}

OP_BL_cp: coverpoint jedec_sequence_item_coverage.OP[1:0] {
type_option.weight = 0;

ignore_bins exclude_BL32_OTF = {3};}

8.13.2 Cross coverage

“Cross” is the main feature used for translating the design intent into functional

coverage; This is the part where code coverage completely fails to detect. “cross”

performs cross product between two or more cover points within the same cover

group or variables. It measures the coverage of all bin combinations associated with

these cover points or variables, so the cross-coverage produces a large number of bins

92

because, unlike the cover point, it generates all possible cross bins automatically even

if the required bins are defined explicitly. To disable generating cross bins

automatically, ignore_bins is used as shown in the code snippet below. For further

restrictions on the bin creation, the “with” clause is used for bin filtering. Moreover,

illegal_bins can be used as checkers that the given scenarios must not happen.

Otherwise, a run-time error will be generated. illegal_bins has a higher priority than

ignore_bins.

For cross-coverage, Bins exclusion is implemented using “binsof” to specify the cover

point and “intersect” to select the set of values so that a single ignore_bins statement

sweeps out multiple bins. The excluded bins are the complement of the included bins,

so after the included bins are extracted from the verification plan, the excluded bins

are obtained using De Morgan's law.

JEDEC_DR_4_cross: cross CMD_cp, actual_burst_length_cp, burst_length_cp {
type_option.comment = "Coverage model for features JEDEC_DR_4";
illegal_bins ill = binsof(CMD_cp.MRR) with (actual_burst_length_cp !=

BL16);
ignore_bins excluded_JEDEC_DR_4_bins = !binsof(CMD_cp.MRR);

}

Another important SV construct is “iff” which defines a condition to disable the

coverage for a cover point or bin. This construct was used to disable coverage for

some bins when the corresponding commands are canceled so that meaningful

coverage is collected.

8.13.3 Transition coverage

Defining the transition coverage is tricker than the other coverage types because in

our case, the commands that represent real functions such as the ACT, MRR, and RD

commands are separated by DES commands, so the required transition coverage is for

non-consecutive sampling points. Moreover, the number of DES commands

separating two commands is variable and indefinite. There is no syntax for transition

bins of indefinite repetition. Another problem is that canceled commands must not be

considered part of the sequence and must not break the active sequence evaluation. To

overcome these problems, firstly, the DES commands are not sent to the subscriber as

93

they are of no importance to the coverage, and also, an if statement for the command

cancel flag is implemented on the sampling event itself, not on the cover point or bin.

Based on these two operations, only the commands representing real functions are

sampled. The code snippet below shows part of the transition coverage for the JEDEC

interface.

JEDEC_DR_7_and_10_cp: coverpoint jedec_sequence_item_coverage.CMD {
type_option.comment = "Coverage model for features JEDEC_DR_7_and_10";

bins JEDEC_DR_7 = (MRR => MRR => MRW),
(MRR => MRR => ACT);

bins JEDEC_DR_10 = (MRW => MRW => MRR),
(MRW => MRW => ACT);}

endgroup : JEDEC_transitions

8.13.4 Coverage Options

The coverage options allow controlling the behavior and calculation of cover points,

crosses, and cover groups. Options can be defined for all the cover points inside a

cover group by placing them in the cover group, or for finer control, they can be

placed inside a single cover point. Examples of the options are weight, goal, and

auto_bin_max. Also, the comment coverage option which adds comments to the

coverage reports is extremely important for easier analysis of the coverage.

8.13.5 Write Functions Implementation

Subscriber should provide an implementation to the write function of the analysis

port. However, the subscriber of our testbench is connected to two analysis ports, so

for a class to support multiple inputs, `uvm_analysis_imp_decl is used, then two write

functions are implemented, one for the JEDEC interface and another for the DFI. The

goal of these functions is to receive the broadcasted transactions for collecting

coverage, but the implementation of the monitors introduces some complexity in the

subscriber. The subscriber receives two types of transactions based on their content.

The first type is a command transaction which contains the address and command

information and is collected by the command thread in the monitor. The second type

is a data transaction which contains the data information of a command and is

collected by the data thread in the monitor. The subscriber needs to construct a

transaction containing the complete information because the cross coverage measures

94

https://verificationacademy.com/verification-methodology-reference/uvm/src/macros/uvm_tlm_defines.svh

values of cover points and variables happening at the same time. Based on that, the

implementation of the write functions handle two cases. The first case is when the

received command invokes data burst in the DQ bus such as MRR and RD. As shown

in figure 48, the received command transaction is pushed into a queue until its data

transaction is received. After that, the command transaction is popped up and merged

with the data transaction to construct a complete transaction, then the coverage

sampling event is triggered in the run phase. The second case is when the subscriber

receives a command that does not invoke data in the DQ bus such as ACT and MRW

commands. In this case, the transaction is already complete, so the coverage sampling

event is triggered immediately.

Figure 48. constructing a complete transaction before the coverage sampling.

8.14 DDR Assertions Module

The checkers that are derived from the JEDEC JESD79-5A and DFI standards, in the

verification plan, and involve timing parameters or sequences of events were

implemented using the SystemVerilog Assertions (SVA) language. The structure of

the module includes sections for the properties and assertions as follows: JEDEC, DFI

95

1 to 1 ratio, DFI 1 to 2 ratio, and DFI 1 to 4 ratio. Each section is guarded by a

conditional compilation macro (`ifdef) to enable the appropriate assertions for the

chosen frequency ratio of the simulation and also for debugging purposes.

Some of the assertions were straightforward to implement using the delay (##n),

range (##[n,m]), repetitions ([*n]), and implication (|-> or |=>) operators while others

required special work to properly and accurately describe the assertion as written in

the verification plan; those trickier assertions will be explained in more detail.

The first example is assertions that involve a DUT input and DUT output signals. The

problem is that the stimulus is applied on the negative edge whereas the DUT drives

its output on the positive edge. This produces a discrepancy of one cycle between the

expected time that the assertion passes/fails and the actual time because the assertions

sample signals in the preponed region. Therefore, the stimulus signal is sampled in the

same cycle that it is driven in, whereas the DUT output signal is sampled in the

subsequent cycle that it is driven in. So, if the stimulus signal is an antecedent and the

output signal is the consequent, then the one cycle will be added to the timing

between them. If it is the other way around, one cycle will be subtracted from the

timing between them.

Another example is a design requirement stating that the number of clock cycles

dfi_rddata_en is HIGH must be equal to dfi_rddata_valid. To do this, the assertion

had to count the number of cycles within which the two signals were asserted and

compare them. A first trial at the assertion attempted to OR two sequences that count

the cycles during which a signal is HIGH. The first one deals with the dfi_rddata_en

signal as it comes before the dfi_rddata_valid signal. This first sequence should count

the number of cycles for dfi_rddata_en (N1), then pass that variable to the second

ORed sequence which will count the number for dfi_rddata_valid (N2) then

terminates by either passing or failing. Given that the dfi_rddata_valid signal will

come at a later time, this dictates that the first sequence must “artificially” fail after

calculating N1 (by inserting ##1 0 at the end of the sequence) so that the assertion

waits for the second ORed sequence to calculate N2 and compare it to N1 before the

final passing or failure. However, a more intuitive alternative is to use implication.

But counting itself utilized implication to avoid the assertions failing on every cycle

96

the dfi_rddata_en and dfi_rddata_valid are not asserted. Therefore we resorted to

defining two sequences, one for calculating N1 and another for N2, that are used like

this: Sequence1 |-> Sequence2. Then, a comparison between N1 and N2 is done after

a delay operator ##0. Lastly, the delay operator (##0) was used instead of the

implication (|->) in the counting sequence because the implication operator is illegal

inside SVA sequences; this was successfully implemented without the assertion

failing every cycle because the property itself that used the counting sequence had an

implication operator between the two sequences. A code snippet to illustrate the

methodology is shown below.

sequence count(count, Signal);
($rose(Signal), count=0) ##0 first_match((Signal[=1],

count=count+1)[*1:$] ##1 $fell(Signal));
endsequence: count

property Equal_Count;
int count_1; int count_2;
@(posedge clk) disable iff (!reset)
count(count_1,Signal_1) |-> ##[1:n] count(count_2, Signal_2) ##0

count_1==count_2;
endproperty: Equal_Count

The third challenging category of assertions is those using dynamically changing

variables in delay operators. There are properties that depend on parameters that can

be changed by MRW commands. These variables are stored in the UVM resource

database by the agents and sent to the top testbench to be accessed by the assertions

module. The problem is that dynamically changing delays are not permissible in SVA.

Hence, a workaround was needed, and there are two ways to accomplish this. First,

use a property that implements the dynamic delay as shown in the code excerpt

below:

first, we store the delay in an int variable v then we subtract 1 from that variable till it

is less than or equal to zero which is checked using first_match system task. Lastly,

we use the dynamic_delay sequence inside the property to serve as a delay between

two sequences.

sequence dynamic_delay(delay);
int v;

97

(1, v=delay) ##0 first_match((1, v=v-1'b1) [*0:$] ##1 v<=0);
endsequence: dynamic_delay
property Changing_Delay;

@(posedge clk) disable iff (!reset)
Antecedent |-> dynamic_delay(delay) ##0 Consequent;

endproperty: Changing_Delay

The second method is using an automatic task that is called from within the property.

The general idea is to keep the antecedent as is and make the consequent `TRUE

which will always pass. However, the rest of the assertion functionality is done inside

the task which is called representing the sequence match action. Both the passing and

failing conditions and messages are implemented inside the task which can legally

operate on dynamically changing variables. The drawback of this way of

implementing variable delays in assertions is that the assertion always passes on the

waveform of an assertions debugger. Debugging such an assertion is done using the

run log which will show the passing or failing messages. It is notable that if the task

has an output (e.g., declared as “bit result”) that is a local variable in the property, it

could be used as the pass/fail criteria by using “##0 result” after the task call;

however, it is illegal for a task called from an SVA property to have outputs.

Therefore, this second method is easier to construct but more difficult to debug. A

code snippet demonstrating the general use case is shown below.

task automatic Consequent_Task(input int delay);
//Code

endtask
property Changing_Delay;

@(posedge clk) disable iff (!reset)
Antecedent |-> (`TRUE, Consequent_Task(delay));

endproperty: Changing_Delay

Assertions that check variable patterns of signals required merging both methods of

dealing with dynamically changing variables. The time between the antecedent and

the pattern (consequent) was, again, stored in the resource DB and can change; thus,

the first method is preferably used to handle this delay parameter. But to be able to

detect multiple patterns, ORed sequences are used where each pattern is represented

by an ORed sequence so that if it fails, the assertion will wait for other patterns that

might still succeed. An alternative to the ORed sequences is calling a task from the

sequence match action which has the flexibility to detect multiple complex sequences.

98

Another advantage of using a task is that upon failure, customized error messages can

be generated at the exact instant the pattern failed whereas the ORed sequences

approach may fail to detect a pattern A, but will keep waiting to see if another pattern

B will succeed. Therefore, the task approach was chosen. The code snippet below

demonstrates both approaches.

//First Approach
property Mixed_Property;

@(posedge clk) disable iff (!reset)
Antecedent |-> dynamic_delay(delay) ##0 (Consequent_1 or

Consequent_2 or ...);
endproperty: Mixed_Property

//Second Approach
property Mixed_Property;

@(posedge clk) disable iff (!reset)
Antecedent |-> dynamic_delay(delay) ##0 (1, Consequent_Task());

endproperty: Mixed_Property

Lastly, one of the problems that came out during simulation is excessive memory

usage. This has two reasons: assertions that have an antecedent that is level triggered

making the assertion start a new thread every cycle after the rising edge of the

antecedent condition, or assertions that an open-ended range (e.g., [*1:$]). The first

situation is easily fixed by using the $rose() system function to start only one thread

when the antecedent first goes HIGH; this of course assumes that the intention of the

assertion is not affected by this modification. The second situation is more difficult to

circumvent because in a realistic random test, successive antecedent firings can occur

before any consequent is asserted which can open so many threads that will eat up the

memory quite rapidly. The first, and best, way is to reconstruct the assertion to check

the same feature in a different way. It is even better to even think about how the same

feature can be checked at a higher level of abstraction in the scoreboard, for example,

which would alleviate the burden of checking because it will be converted from

pin-level (cycle-by-cycle) checking to transaction-level checking. As an example

from our implementation, we tried to make sure that a precharge command must not

follow an activate command directly. So, we tried to make a property describing this

scenario and then assert this property. The problem that occurred was excessive

memory usage. Accordingly, a more diligent way is introduced to solve this problem

which is to implement the assertion as a checker in the scoreboard. We stored the

99

previous command and compared it with the subsequent one and check whether a

precharge command follows an activate command or not.

If there is no way to reconstruct the assertion or move it to the scoreboard, a way of

suppressing the assertion when the number of open threads reaches a certain threshold

may be employed. This can be done by calling a function from the action block of the

property’s antecedent; this function would increment a counter that keeps track of the

number of open threads of this property, and it will decrement the counter when a

thread closes. When the counter reaches the appropriate threshold, the assertion is

either forced to pass by ORing the consequent with a sequence that passes when the

counter is above the limit. Another similar way is to put this sequence after the

antecedent so that it won’t be detected unless the counter is below the threshold. The

code snippet below demonstrates the latter approach.

int k=0;
function count_m(bit add);

if(add)
k = k+1;

else
k = k-1;

endfunction
property Memory_Intensive ;

@(posedge clk) disable iff (!reset)
(Antecedent, count_m(1)) ##0 (k<=N) |-> ##[0:$] (Consequent, count_m(0));

endproperty: Memory_Intensive

8.15 Testcase Library

There are four test classes extending the base test class, each one of them incorporates

specific sequences that fulfills certain purposes. The tests are ddr_sanity_test.sv,

rand_test.sv, rand_test_corners.sv, b2b_test.sv. The run phases of each test

class run the run phase of the base class (which includes base, reset sequence) through

the super method, after that the tests raise objection and they don’t drop it until all

sequences called in the run phase are consumed. See the code snippet below for

illustration.

class #_test extends base_test;
...

task run_phase(uvm_phase phase);
super.run_phase(phase);

phase.raise_objection(this);

100

...
phase.drop_objection(this);

endtask

endclass

Notice that, each sequence can have access to one driver at a time. A single driver

cannot run multiple sequences at the same time. However, if it happens that multiple

sequences want to access the same driver, the sequencer comes to action and does an

arbitration process to grant the access to whatever sequence relative to an arbitration

mode, but this is not the case in this work.

8.15.1 Sanity Test

The ddr_sanity_test performs a sanity check to the DUT, it starts the

ddr_sanity_seq on the mc_sequencer. Also, it runs the dram_resp_seq on the

dram_sequencer in a parallel thread. The sanity test is a direct test that performs

multiple command transaction with specific settings.

8.15.1.1 Sanity Sequence

The ddr_sanity_seq implements six tasks; five tasks each of which performs a

command transaction and the sixth is for test termination. While the sequence of

transactions is determined by the sequence of tasks calling in the body task as shown

below in the snippet.

class ddr_sanity_seq extends base_seq;
...

task body();
ACT_cmd(.iscanceled(0), .delay(8), .CMD_prev(CMD), .CMD(CMD));

read_cmd(.BL_mod(0), .AP(1), .C10(1), .iscanceled(0), .delay(8), ...
...
terminate(.delay(8));

endtask

extern task MRW_cmd(byte MRA, bit [7:0] OP, int delay, bit iscanceled, ...
extern task read_cmd(bit BL_mod, bit AP, bit C10, bit iscanceled ...
extern task PREab_cmd(bit AP, int delay, command_t CMD_prev, output command_t CMD);
extern task ACT_cmd(bit iscanceled, int delay, command_t CMD_prev, output command_t CMD);
extern task MRR_cmd(byte MRA, int delay, bit iscanceled, ...
extern task terminate(int delay);

endclass : ddr_sanity_seq

101

8.15.1.2 Simulation of the Sanity test

The figure below shows a portion of the sanity test waveform. It depicts an ACT then

read commands and a precharge. The data is driven with proper dqs then captured

correctly by the DUT. This test is run at matched frequency ratio.

Figure 49. A portion from the sanity test waveform (Matched Freq. ratio)

The figure below shows the same portion of the test but in 1:2 frequency ratio.

Figure 50. A portion from the sanity test waveform (1:2 Freq. ratio)

102

8.15.2 Random Test

The rand_test uses the randomization utilities offered by UVM, its purpose is to

increase the coverage collection and hit as many scenarios as possible. It utilized a

random sequence class called rand_seq sent to MC driver through MC sequencer. A

no_of_transfers variable is used to define the number of transactions in the test run

as shown in the code snippet below.

class rand_test extends base_test;
...

task run_phase(uvm_phase phase);
super.run_phase(phase);

phase.raise_objection(this);
no_of_transfers = 300;

...

fork
begin

repeat (no_of_transfers) begin

rand_seq_inst.start(env1.mc_agent1.mc_sequencer1);
end

DES_seq_inst.start(env1.mc_agent1.mc_sequencer1);
end
resp_seq.start(env1.dram_agent1.dram_sequencer1);

join
phase.drop_objection(this);

endtask

endclass : rand_test;

8.15.2.1 Random Sequence

The rand_seq arbitrates randomly between different commands sequences

(MRW_seq, MRR_seq, ACT_seq, RD_seq, PREab_seq) applying the constraints

defined in the ddr_sequence_item class. According to the JEDEC JESD79-5A

standard, there are some constraints on the latency between each command and any

other command, also, there are constraints defining the eligibility of issuing

commands. For example, it is not allowed to issue MRW or MRR commands if a page

is open (i.e. after ACT cmd) [3].

8.15.2 Random Corners Test

The rand_test_corners is used to perform more specific random test scenarios to

achieve high coverage. It is similar to the rand_test except for it utilized sequences

103

(MRW_seq_corners, MRR_seq_corners, ACT_seq_corners, RD_seq_corners,

PREab_seq_corners)

8.15.3 Back-to-back Test

The b2b_test is a direct test implemented to hit all interamble scenarios. It utilizes

b2b_seq sequence class. The b2b_seq sequence class is similar to the sanity

sequence, the difference is that it implements three layers of for loops. Looping on

different preamble, postamble settings, and different delays between b2b reads.

8.16 Using EDA Tools
The basic tools that are needed for the verification task are a text editor for writing

code, an RTL simulator that supports UVM, coverage, SVA, waveform debugging,

and a file version control system. The text editor that was used is Visual Studio Code

which includes a terminal and a native interface to the version control tool which is

Git; this allowed the cross-platform development of code as we needed to work on

Windows and Linux. The main simulator that was used is Synopsys VCS, which has a

built-in UVM 1.2 library, along with its graphical user interface that is called DVE for

debugging.

To automate and configure the process of compilation, running, coverage collection &

merging, a shell script was used. When the script is invoked from the command line,

different arguments that are related to VCS, DVE, UVM, and our code can be passed.

The script is constructed into sections as the following:

● Tool-related variables: used for choosing log verbosity, simulation timeout, …

● Paths-related variables: used for passing the relevant folder and file paths to

the simulator

● Environment definitions variables: used for `ifdef .. `endif guards

● Switches sections: used to receive the options and arguments that are used

when invoking the script

● Handling the passed options: used for deciding how to compile, run, and

report depending on the passed options and arguments

● Help section: used to explain the script capabilities for a user

The main three commands that were invoked are:

104

● vcs: for compilation

● ./simv: for running

● urg: for coverage reports creation and merging

The following two tables explain the usage of script switches and every compile, run,

and report option that was used in the script.

Table 1. Script Switches

Switch Usage

-help Print help/usage

-verbos_debug Set UVM_VERBOSITY to UVM_DEBUG

-verbos_hi Set UVM_VERBOSITY to UVM_HIGH

-gui Open DVE for running and debugging

-cln_bld Clean the work area before building

-cov_en Enable code coverage generation

-comp_only Compile only, Do not run the simulation

-timeout time in ns for UVM timeout

-ratio Decide the frequency ratio used throughout the simulation

-assert_en Define flag to bind and use ddr assertions

-extra Extra simulator arguments

Table 2. Compile, Run, and Report Option

Option (type) Usage

-sverilog (compile) switch to the SystemVerilog mode

-timescale (compile) specification of the timescale for the source files

-ntb_opts uvm-1.2 (compile) specify UVM library

-debug_acc+all (compile) addition debug capability

+define (compile) Defines a text macro

+libext+.sv+ (compile) specify the file name extension of the files VCS will search for

+incdir (compile) Specifies directories containing files specified with ‘include

top.sv (compile) Specify top module

-q (compile) Quiet mode; suppresses messages

105

-l (compile & run) Specifying a Log File

-cm (compile) Specifies elaborating for the specified types of coverage

-cm_hier (compile) Specify the modules and files to be excluded from coverage

-gui (run) Open graphical user interface

+UVM_TESTNAME= (run) Specify UVM test to be run

+UVM_TIMEOUT= (run) Specify UVM simulation time-out

+ntb_random_seed= (run) Specify randomization seed for the simulator

-cm_dir (run) Specify directory to store coverage database after running

-dir (report) Specify directory to fetch/merge coverage database for reporting

To collect coverage for a certain test and frequency ratio, the script will save the

coverage database in a folder that is distinguished by the test name, frequency ratio,

and the seed that was used. Therefore, the script can be used to run a certain test with

multiple seeds and the coverage databases will be merged to produce a complete

report with non-overlapping coverage data. Since the meaningful code coverage is

that of the RTL only, the cm_hier file was used to exclude the UVM package,

interfaces and assertions modules, and environment classes from the coverage report.

For debugging purposes, DVE waveform viewer and the assertions pane were

utilized. The assertions window was particularly useful because it shows unattempted

and incomplete assertions which helps to infer how to modify/create tests to cover all

assertions.

Normally, different simulators behave differently in matters such as randomization.

However, a notable point about using the clocking block in the monitor is that the

implementation differed between VCS and the Mentor Graphics Questasim simulator.

The difference arose when a signal (data) was to be sampled after detecting the enable

signal. Since both signals were outputs of the DUT, the sampling of them utilized the

“1step” keyword to make sure the monitor samples output signals when the DUT is

not changing them anymore. There was a 1 cycle discrepancy between VCS and

Questa which made one of them miss the first data word and the other miss the last

one. Ultimately, we modified the condition that initiated the monitor sampling of data

to have the same behavior in both simulators and avoid simulator-specific errors. The

106

behavior is depicted in the simulation below which was done on EDA Playground; the

code is similar in essence to the situation in the MC monitor. The design is a simple

up/down counter that outputs a “Valid” signal when its count output (Q) is enabled.

As seen below, the data is pushed in a queue using the Valid signal as a condition. It is

shown that VCS captures only up till the 8th count, whereas Questa captures the 9th

count. Code snippet from a demonstrative testbench and the output of both simulators

is shown below.

initial
begin
fork
begin
CB1.Enable <= 1;
CB1.UpDn <= 1;
delay();
Running <= 0;

end
begin
forever
begin
if(CB1.Valid) begin
Data_Q.push_back(CB1.Q);

end
@(CB1);

end
end

join_any
$display("The data queue is: %p", Data_Q);

end

VCS Output:
The data queue is: '{1, 2, 3, 4, 5, 6, 7, 8}
Questasim Output:
The data queue is: '{1, 2, 3, 4, 5, 6, 7, 8, 9}

Link to playground: https://www.edaplayground.com/x/s7Ra

Figure 51. Waveform of the demonstrative testbench

107

https://www.edaplayground.com/x/s7Ra

8.17 Standards Usage in Project Execution
As previously stated, there are four standards that were part of this project. The SV

and UVM standards were used during code development (syntax, classes, macros,

…). Furthermore, the DFI and JEDEC JESD79-5A standards were used for feature

extraction and verification plan development as they represent the design intent.

Those standards served as the starting point from where the design and verification

teams started their work and they are the returning destination whenever a “bug” is

found to judge the validity of the bug.

108

Chapter 9

Results

9.1 Initial Coverage Report and Steps to improve it.

The coverage report is an output of simulation that shows how much of the Design

was covered by the test that ran. Coverage reports of all the tests that we ran can be

combined into one report that represents the coverage of all the tests. There are

mainly two types of coverage in the report: code coverage and group coverage.

9.1.1 code coverage

Code coverage is automatically generated by the simulator. The simulator tries to

figure out how much of the code is covered by the test. Code coverage includes Line

coverage which shows whether each line of code was executed, condition coverage

which measures the proportion of conditions within each decision expression that

have been evaluated to both true and false, toggle coverage which shows whether

each bit of a variable has gone through all transitions, FSM coverage which covers all

FSM states and all possible transitions from one state to another, branch coverage

which evaluates the branches that have been set to both true and false in testing, and

assertion coverage which shows the percentage of the covered assertions during

testing.

9.1.2 group coverage

Group coverage is a report of cover points that the verification team has written as

part of their plan to cover certain features of the design.

9.1.3 initial coverage reports

After running some random tests and sanity tests at different ratios a coverage report

was generated to analyze the coverage state and figure out how to improve the

coverage report results.

109

Figure 52. initial code coverage report Results

Figure 53. initial group coverage report Results

9.1.4 suggested tests and improvements

The coverage report was analyzed and each cover hole was identified and a

suggestion of how to deal with it was set.

Table 3. Initial coverage report analysis

Cover Hole Description Location Suggested
Improvement

CRC enable The CRC enable feature was not
planned to be covered in the
Verification plan as it was not

CountCalc, FIFO,
CA_Manager,
DataManager,

to be included
in future work

110

planned to be implemented by the
design team.

DDR5_PHY,
Deserializer_V1
Top modules

Preamble
patterns

some preamble patterns are still
not covered

FSM_setting,
ControlUnit,
pattern_detector
modules

more random
tests

Interample

patterns

some interamble patterns are still

not covered

FSM_setting,

ControlUnit,

pattern_detector,

DataManager,

modules

running more
random tests or
directed back to
back read tests

Reset and
enable bits

Reset and enable signals are only
triggered at the begging of the
tests which causes some states not
to be covered and some toggling
holes for the reset and enable bits
in multiple modules

EdgeDetectorFSM
, pattern_detector,
GapCounter,
generic_FSM,
CA_Manager,
DataManager,
Serializer_V1,
Deserializer_V1
Top modules

Directed test
for reset and
enable in the
middle of the
simulation in
different states.

FIFO data
when empty
and when full

a FIFO is used to store read
commands and read them when
data arrives. the case when the
FIFO is full (more reads without
data) and when the FIFO is empty
(data without read) are not
covered

FIFO module future work

Uncovered
states in
generic_FSM

when reading a preamble pattern,
only valid preamble patterns are
covered (could be an unreachable
state).

generic_FSM
module

future work

CA toggling not all CA bits are toggling CA_Manager
module

out of scope
(should be
excluded)

rd_data_en
gap counter

wide enough distance between the
rd_data_en pulses to trigger
overflow bit in the counter

DataManager
module

future work

111

frequency
ratio bits
toggling and
default value

The bits for frequency ratio are
covered but are not toggling
because frequency ratio is set
before the simulation starts.
frequency ratio change protocol is
not supported in DUT.

DDR5_PHY, Top,
Serializer_V1,
Deserializer_V1
modules

out of scope

(should be

excluded)

DDR_assertio
ns

bit toggling coverage should be

excluded from assertions module

ddr_assertions
module

should be

excluded

BL toggling BL has specific values ValidCounter,
Serializer_V1
modules

should be

excluded

command
transitions

code for collecting coverage need

to be rewritten

JEDEC_transition
s, DFI_transitions
groups

need to be

reviewed

Deselect
command

deselect command is not covered

as it is not sent to the subscriber

DFI_coverage,
JEDEC_coverage
groups

should be

excluded

MR40 DQS offset mode register change

is out of design scope

DFI_coverage,

JEDEC_coverage

groups

out of scope

(should be

excluded)

BL32_OTF BL32_OTF burst length option is

out of design scope

DFI_coverage

group

out of scope

(should be

excluded)

Row corners upper corner of Rows is not

covered

DFI_coverage

group

directed test

constraining

the random test

to be at row

and column

corners

Column
corners

lower corner of columns is not DFI_coverage directed test

112

covered group constraining

the random test

to be at row

and column

corners

interamble
patterns

some interamble patterns are not

covered

JEDEC_coverage

group

running more

random tests or

directed back to

back read tests

9.2 Final coverage report

9.2.1 Applied tests and improvements

The initial coverage report was analyzed and some steps were taken to improve it.

First, another test was added to cover the rows and columns' corners. Then more

random tests were run. Finally, we were able to exclude irrelevant coverage points

from covergroups. However, we were not able to use exclusion files to exclude

coverpoints in code coverage from the coverage report because we neither had a

license for Verdi nor a license for using an exclusion file. So, we were limited to

preventing coverage collection from a whole file or a certain type of group coverage

in a file which we used to exclude all code coverage types except assertions from the

ddr_assertions module and excluding the CRC_valid file for example.

Figure 54. License Error that shows up when exclusion file is used

113

9.2.2 The final coverage report

The final coverage report was produced after running the sanity test 50 times for each

frequency ratio, the random test 200 times for each ratio, and the random corners test

400 times for the 1:1 ratio and 50 times for the two other ratios.

Figure 55. final code coverage report Results summary

Figure 56. final code coverage report Results

114

Figure 57. final group coverage report Results

9.2.3 Improved cover points

Table 4. Coverage points Current state

Cover Hole Current state

CRC enable Future work

Preamble patterns covered with more tests

Interample patterns covered with more tests

Reset and enable

bits

Directed test for reset and enable in the middle of the simulation

in different states is included in future work.

FIFO data when

empty and when full

covered with more tests

Uncovered states in

generic_FSM

future work

CA toggling out of scope (should be excluded)

rd_data_en gap

counter

future work

frequency ratio bits

toggling and default

out of scope (should be excluded)

115

value

DDR_assertions excluded

BL toggling should be excluded

command transitions The transition coverage is collected by evaluating an expression

as a cover point, and this expression was firstly implementing

the complement of the required logic. Therefore, the coverage

was zero although all cases were hit. so the transitions are

actually covered.

Deselect command excluded

MR40 excluded

BL32_OTF excluded

Row corners covered by the corners test

Column corners covered by the corners test

interamble patterns covered by more tests

9.2.4 Future coverage work

For the coverage report to be completely closed the license error needs to be fixed by

installing the required license to be able to exclude the coverpoints that need to be

excluded. Furthermore, a direct test is required to cover the enable and reset

coverpoints. However, the need for a direct back-to-back read test is removed since

the coverage holes that required them were covered by running more random tests.

More testing for invalid inputs to observe DUT behavior and close coverage holes

could be done in the future.

116

9.3 Bugs list

Some bugs were found during the environment development. Others were discovered

while debugging the Environment with the sanity test. But most bugs were discovered

while running the random test. We present below a sheet of these bugs, their

description, a visual photo if available, steps to reproduce it, expected outcome vs

actual outcome, and finally the current state of the bug. The design team had access to

this sheet and had bugs to every new bug added. We received updated RTL from the

design team with the bugs fixed as long as we were still debugging the environment.

Later, we stopped receiving new RTL to collect the coverage and finalize the project

so some bugs remained open. Table 5 shows the discovered bugs, their description,

visual proof if available, and their current state.

Table 5. List of discovered bugs

Bug
ID

Description Visual
Steps to
reproduce

Expected vs
actual results

State

1
CA bus bit ordering (CA[0:13] not
CA[13:0])

fig. 58 Send any
Command

CA [13:0] Closed

2
rddata_valid signal is not synced with data
when negedge driving

fig. 59 Closed

3
reading at preamble setting 00001010 (PRE
4) doesn't return proper data

fig. 60
reading at
preamble setting
00001010

Closed

4 No proper data rotation fig. 61 read with 1 to 2
or 1 to 4

Open

5
DUT don't consider the BL_mode bit in the
read command

-

read with default
BL (BL mode ==
1) at any Bl
setting should
produce BL16

should be able to
change BL on the
fly

Open

6 Faulty dut if MR0 is not initialized, All MR - read without Invalid

117

should be in an initial state on reset setting MR0

7
DQS is on full cycle, should be toggling each
half cycle

- read CMD

should be
toggling each
half cycle thus it
doesn't introduce
interamble delays

Open

8
tctrl_delay is not consistent across frequency
ratios

fig. 62
Send any
command

Command should
arrive at the
DRAM interface
after tctrl_delay
DFI clock cycles

Open

9
MRR is following BL settings in MR0 which
is a bug as MRR has default BL16

fig. 63 MRR with non
default BL

MRR should
always have BL
16

Closed

10
CS is LOW while reset, it should be high by
default at reset

fig. 64 reset
CS should not
toggle with reset
but remains HIgh

Closed

11
The CS goes from high to LOW (one cycle)
after reset without a command on the DFI
interface

fig. 65
Assert Reset ->
Deassert Reset ->
Wait for 2 cycles

CS_n should not
be driven LOW
unless the dfi_cs
was driven

Closed

12
Bl 32 reads alternate in actual returned BL
between 16 and 32

fig. 66
MRW BL32 ->
RD -> RD -> RD
-> RD

All reads in
BL32 should
return BL 32

Open

13
No data returned (at DFI, i.e. rddata_valid is
not asserted) if the preamble settings is
changed from 2 or 4 to any other setting

fig. 67
MRW PRE2 or 4
>> MRW PRE 1,
3 >> read / MRR

Expected read
data valid
asserted on all
cases of
preambles

Open

14 Postamble settings are taken from OP[7]
instead of OP[6] in MR8

-
MRW (MR8)
Postamble = 1
(OP[6] = 1)

Postamble
settings should
be taken from
OP[6] in MR8

Closed

118

Figure 58. Bug 1

Figure 59. Bug 2

119

Figure 60. Bug 3

Figure 61a. Bug 4 (Previous Read Data)

Figure 61b. Bug 4

120

Figure 62a. Bug 8

Figure 62b. Bug 8

Figure 62c. Bug 8

Figure 63. Bug 9

121

Figure 64. Bug 10

Figure 65. Bug 11

Figure 66. Bug 12

122

Figure 67a. Bug 13

Figure 67b. Bug 13

123

Chapter 10

Cost Analysis

The work done in this project can be monetized as a verification IP that is used by

designers working on DDR5 PHYs either as the sole product or as part of a system or

SoC. Because the VIP consists of only code, the cost of development is mainly two

things: the engineering effort and the cost of the EDA tools that were used during

development. There are no parts of the products of this project that are

manufacturable; thus, there are no concerns about the negative environmental impact

or health and safety.

Because the cost of the EDA tools is fairly a constant, what makes the price of a VIP

change is the following:

● How old is the code? Does it support the latest version of an engineering

standard?

● How complex is the testbench? (depends on the standards/DUT)

● Does it utilize the latest verification methodologies and languages?

● What is the extent of reuse that the IP can provide?

All the factors mentioned above will affect the financial utility of the VIP. We believe

that the work done in this project addresses all these points well:

● The testbench supports the latest JEDEC JESD79-5A and DFI standards for

DDR5 PHYs.

● The testbench supports the complex operation described by the two standards.

● The testbench is written in SV and uses UVM in addition to SVA which is the

de-facto methodology.

● The testbench is highly reusable as it adheres to the concepts of UVM and

OOP.

124

Chapter 11

Conclusion and Future work

In this work, verification of the digital datapath of a DDR5 PHY was done. The flow

started with extracting the features from the JEDEC JESD79-5A and DFI standards,

which describe the two interfaces and functionality of the PHY. Consequently, a

verification plan and test plan were developed to guide the verification effort. Then, a

SystemVerilog UVM environment was developed with a supporting SVA module as a

reusable testbench for the DDR5 PHY. Since the coverage-driven verification

methodology was chosen, the testing continued until a satisfactory code and

functional coverage results were obtained. Further work includes adding testing

capabilities for more PHY functionalities as described in the JEDEC JESD79-5A and

DFI standards in addition to developing a formal verification component of the

testbench to make our testing more efficient and comprehensive.

125

References

[1]“DRAM market anticipated to surpass USD 221.67 billion by 2030, with a CAGR

of 9.2% - report by Market Research Future (MRFR),” GlobeNewswire News Room,

09-May-2022. [Online]. Available:

https://www.globenewswire.com/en/news-release/2022/05/09/2438836/0/en/DRAM-

Market-Anticipated-to-Surpass-USD-221-67-Billion-by-2030-with-a-CAGR-of-9-2-R

eport-by-Market-Research-Future-MRFR.html#:~:text=According%20to%20a%20co

mprehensive%20research,rate%20of%209.2%25%20by%202030. [Accessed:

17-Jun-2022].

[2] DFI DDR PHY Interface, 5.1, Cadence Design Systems, Inc., MAY 21, 2021

[3] DDR5 SDRAM, JESD79-5A, JEDEC SOLID STATE TECHNOLOGY

ASSOCIATION, U.S.A., October 2021

[4] "IEEE Standard for Universal Verification Methodology Language Reference

Manual." Available: 10.1109/ieeestd.2020.9195920 [Accessed 18 June 2022].

[5] W. Chen, S. Ray, J. Bhadra, M. Abadir and L. Wang, "Challenges and Trends in

Modern SoC Design Verification", IEEE Design & Test, vol. 34, no. 5, pp. 7-22, 2017.

Available: 10.1109/mdat.2017.2735383.

[6] Wagner, I.; Bertacco, V.; Austin, T. StressTest: An automatic approach to test

generation via activity monitors. In Proceedings of the 42nd Design Automation

Conference, Anaheim, CA, USA, 13–17 June 2005; pp. 783–788.

[7] Wang, F.; Zhu, H.; Popli, P.; Xiao, Y.; Bodgan, P.; Nazarian, S. Accelerating

Coverage Directed Test Generation for Functional Verification: A Neural

Network-Based Framework. In Proceedings of the Great Lakes Symposium on VLSI,

ACM, New York, NY, USA, 23–25 May 2018; pp. 207–212

[8] Hughes, W.; Srinivasan, S.; Suvarna, R.; Kulkarni, M. Optimizing Design

Verification using Machine Learning: Doing better than Random. In Proceedings of

126

the Design and Verification Conference (DVCON-Europe), Virtual Conference,

26–27 October 2021.

[9] R. Punnoose, R. Armstrong, M. Wong and M. Jackson, "Survey of Existing Tools

for Formal Verification.", 2014. Available: 10.2172/1166644 [Accessed 22 February

2022].

[10] A. Souri and M. Norouzi, "A State-of-the-Art Survey on Formal Verification of

the Internet of Things Applications", Journal of Service Science Research, vol. 11, no.

1, pp. 47-67, 2019. Available: 10.1007/s12927-019-0003-8.

[11] M. Loghi, T. Margaria, G. Pravadelli and B. Steffen, "Dynamic and Formal

Verification of Embedded Systems: A Comparative Survey", International Journal of

Parallel Programming, vol. 33, no. 6, pp. 585-611, 2005. Available:

10.1007/s10766-005-8911-2.

[12] S. Qamar, W. Butt, M. Anwar, F. Azam and M. Khan, "A Comprehensive

Investigation of Universal Verification Methodology (UVM) Standard for Design

Verification", Proceedings of the 2020 9th International Conference on Software and

Computer Applications, 2020. Available: 10.1145/3384544.3384547 [Accessed 22

February 2022].

[13] “DDR5,” Cadence. [Online]. Available:

https://www.cadence.com/en_US/home/tools/system-design-and-verification/verificat

ion-ip/simulation-vip/memory-models/dram/ddr5.html. [Accessed: 18-Jun-2022].

[14] “VC verification IP for DDR5,” Synopsys. [Online]. Available:

https://www.synopsys.com/verification/verification-ip/memory/ddr5.html. [Accessed:

18-Jun-2022].

[15] “VC verification IP for DFI,” Synopsys. [Online]. Available:

https://www.synopsys.com/verification/verification-ip/memory/dfi-verification-ip.htm

l. [Accessed: 18-Jun-2022].

127

[16] B. Wile, J. Goss and W. Roesner, Comprehensive functional verification the

complete industry cycle, 1st ed. Amsterdam: Elsevier/Morgan Kaufmann, 2005, pp.

8-446.

[17] A. Mehta, ASIC/SoC Functional Design Verification: A Comprehensive Guide to

Technologies and Methodologies, 1st ed. Springer Cham, 2018, pp. 1-148.

[18] J. Bergeron, Writing testbenches using SystemVerilog, 3rd ed. New York:

Springer Science+Business Media, 2006, pp. 1-21.

[19] C. Spear, System Verilog for Verification. Springer US, 2008.

[20] Universal Verification Methodology (UVM) 1.2 User’s Guide. Accellera Systems

Initiative, 2022.

[21] M. Chen, “Brief introduction to verification methodology,” DEV Community,

13-Feb-2022. [Online]. Available:

https://dev.to/angelia/brief-introduction-to-verification-methodology-4lik. [Accessed:

18-Jun-2022].

[22] n.d. Universal Verification Methodology UVM Cookbook. [ebook] Siemens

Digital Industries Software. Available at:

<https://verificationacademy.com/cookbook/uvm> [Accessed 17 June 2022].

[23]"UVM TLM - Verification Guide", Verification Guide, 2022. [Online]. Available:

https://verificationguide.com/uvm/uvm-t lm/. [Accessed: 18- Jun- 2022].

[24] B. Jacob, S. Ng and D. Wang, Memory systems. Burlington, MA: Morgan

Kaufmann Publishers, 2010.

[25]"The history and future of DRAM architectures in different application domains –

an analysis | imec", Imec-int.com, 2022. [Online]. Available:

https://www.imec-int.com/en/imec-magazine/imec-magazine-june-2020/the-history-a

nd-future-of-dram-architectures-in-different-application-domains-an-analysis.

[Accessed: 18- Jun- 2022].

128

https://verificationguide.com/uvm/uvm-t

[26] Saxena, K., 2022. Next Generation Memory Interfaces. [online] p.17. Available

at: <https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-115.html>

[Accessed 17 June 2022].

[27] C. Cummings, “Applying Stimulus & Sampling Outputs ‐ UVM

Verification Testing Techniques,” 2016. [Online]. Available:

http://www.sunburst-design.com/papers/CummingsSNUG2016AUS_VerificationTimi

ngTesting.pdf. [Accessed: 17-Jun-2022].

[28] C. Cummings, H. Chambers and S. D'Onofrio, UVM Reactive Stimulus

Techniques. San Jose, CA, 2020.

129

Appendices

GitHub Repo Link -

https://github.com/Intel-Insiders/ddr_gp.git

Verification Plan Link -

https://docs.google.com/spreadsheets/u/1/d/1K_4bOjD0W13mHrpJjebvUnYoPyZlF7

W5J3NFmwm0BEU/edit#gid=930111970

130

https://github.com/Intel-Insiders/ddr_gp.git
https://docs.google.com/spreadsheets/u/1/d/1K_4bOjD0W13mHrpJjebvUnYoPyZlF7W5J3NFmwm0BEU/edit#gid=930111970
https://docs.google.com/spreadsheets/u/1/d/1K_4bOjD0W13mHrpJjebvUnYoPyZlF7W5J3NFmwm0BEU/edit#gid=930111970

