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Abstract 
 

Most of the speed bumps in Egypt are not being constructed and maintained according to 

the public safety guidelines. These bumps may cause car crashes or accidents, severe 

discomfort to the driver and even causing loss of direction control which is leading to 

fatalities although speed bumps are constructed to force drivers reduce car speed to avoid 

accidents 

 

Therefore, in this project, we propose a method that can help drivers in detecting the 

speed bump, estimating distance to speed bump and serving as a part of the advanced 

driver assistance systems (ADAS) for autonomous vehicle. 

 A small device "Raspberry Pi" is using to analyze the images and scenes with the help of 

the camera, which moves the images to the Raspberry Pi. Then, the process of analysis 

begins through long complex algorithms known as the deep neural network algorithms. 

This network analyzes the images to extract most important characteristics of the objects. 

When ensuring that the characteristics match the mathematical equations programmed in 

the language of the Python, the bump is detected finally and inform the driver about an 

upcoming unmarked and marked speed hump /bump in real time; two simple algorithms 

are used to estimate the approximate distance between the vehicle and the bump 

categorize it in ranges which helps the driver to control the vehicle speeds to be at safer 

limits in order to not cause any kind of discomfort to the passengers as well as damage to 

the vehicle ; and a simple Android application phone is used to sense position of bump 

when car is passing above then send the location of the bumps to server to collect 

database bumps which help drivers in next time passing bump by sending indicator of 

bump location on an offline Google maps.
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1.1 Overview 

The aim of project bump detection is to help the drivers to avid the risks of bumps , protect 

vehicles from damages and reduce road accidents with a system that detect the bump at a certain 

distance and using server to set a database of all bumps in Egypt. 

 

 

1.2 List of Abbreviation 
 

 

Abbreviation Full Meaning 

GPS Global Positioning System 

TF Tensor flow 

ssd Single shot detector 

CNN Convolution neural network 

  

API Application Programming Interface 

  

  VCEH  Vertical component extraction heuristics 

   BI  Bumping index 

                                                    Table 1: List of Abbreviation 

 

 

1.3 Project Motivation 
 

There are many speed bumps in the streets and roads of Egypt, the commonly observed and we 

rarely observe are rumble strips are shown in fig.1. 

Quality and metrology organizations have set several conditions for creating speed bumps:                                                                                                                                         

1.the area where the bumps are to be placed is chosen due to the large number of traffic accidents 

and in places where there are children and a lot of pedestrians.                                                                                  

2. Bumps are placed on roads whose speed is less than 60km/h.                                                                          

3. They should be placed on lit roads.                                                                                                                                   

4. They should be designed with length of 6.6m and a height ranging between 5.7 and 10cm. 
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 Unmarked speed bump 

 
          Rumble strips 

  
 Marked speed bump 

 

                                                                    Fig1.speed bumps 

 

 

 

Statistics indicate that 40% of road accidents in Egypt occur due to random bumps which doesn‟t 

match specifications, and that 50 people fall as victims of road accidents for every 100 

kilometers covered by cars in Egypt, and the reason is due to dangerous curves and random 

bumps. 

 

 

year 2017 2018 

Deaths number 1929 1560 

Injured number 7217 9563 

 

                                  Table 2. deaths and injured number in 2017&2018. 

                                source: central agency for public mobilization and statistics. 

 

Part from crashes and deaths, there are many problems which public face during their day-to-day 

commute due to travel through roads having non-standardized speed bumps. These are given as 

follows: 

 

• Causing damage to vehicles. 

• Causing discomfort and back injury to drivers and passengers.  

• Causing vibration when vehicles navigate them and send shockwaves through the ground. 

• Causing accidents. 
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1.4 Project Aims 
 

The main objective of the project is to design and implement a smart system to 
detect bump location and alert driver. 
 

     Connect the camera with a Raspberry Pi.  
Programing the Raspberry Pi using Python language, its powerful for 

processing. Process and analyze the camera records using Raspberry Pi 

in real time.  
      Detect bumps in front of the vehicle. 

      Estimate location between vehicle and bump. 

      Define best location of bump using GPS sensor of mobile phone 

     Create database bump location on server 

     Create a simple Android Application to send location of bumps  
Design and build an alarm system to notify the user about the upcoming 

bumps.  
 

1.5 Project idea and Importance 
 
We propose a method that detects and informs the driver about the speed bump in real 

time using deep learning technique and vibration approach technique and gives the 

distance the vehicle is away from it. 

With this driver or autonomous mode of the vehicle can control the vehicle speeds to be 

at safer limits in order to not cause any kind of discomfort to the passengers as well as 

damage. 

 
1.6 Literature Review 

 
According to literature there are three used techniques to detect bumps:  
 

3-Dreconstruction based method:                                                                                                                                              
Utilizes 3D laser /LiDar scanning that provides accurate 3D point clouds to measure  
elevation on the asphalt pavement, it offers outstanding performance with high accuracy 
of measurement compared to the other two approaches. However, it is not widely use due 
to its high cost and narrow range of detection. 
 
Vibration-based method:  

 It uses gradient variation from accelerometer data, this method have been employed for 

uneven road surface detection due to its low cost and relatively simple detection 

algorithms. Nevertheless, the detection path for vibration-based method is only limited to 

the path of the car‟s wheels. Furthermore, false detection may occur when the car pass 

over other objects present on the road. 
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Vision-based methods: 

They are appropriate for their accuracy as well as relatively wide area detection for 

pothole and speed bumps at low cost. However it cannot be used under bad illumination 

or no light conditions. 

 
 
 

1.7 Scheduling table: 
 

activities Months  

1 2 3 4 5 6 7 8 9 10 11 12 

Bump detection             

segmentation             

Distance estimation             

mapping             

                                                                   Table 3: Scheduling table 

 

1.8 block diagram: 

the system gets the road information using monocular camera and smart phone sensors 

(accelerometer sensor and GPS receiver sensor). 

 based on image from camera vision we detect the speed bumps and estimate the distance 

between the vehicle and the bump then print out to the driver on the LCD that there is a 

bump with the estimated distance meters away. while the accelerometer senses the 

variance in acceleration so we can determine the location of the bump then upload this 

location via WI-FI to cloud server. 

server will send back the exact location on google maps after processing the sent data.  

 

preprocessing data block:  

In the training phase the block preprocess on the collected dataset (data clean, data 

augmentations, data annotation ,..etc)to train the U-Net model. 

In the operating phase the block get the input from camera sample it into 10 fps to send it 

frame by frame to the bump detection block. 

 

bump detection module:  

determines if the current frame contains a bump or not if bump detected the image and 

the generated mask send to the distance estimation module. 

 

distance estimation module: 

runs two different algorithms to estimate the distance from the bump then averages the 

outputs from the two algorithms to improve the accuracy. 
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obtain the vehicle velocity and sends the estimated distance and velocity to the mapping 

block sends the estimated distance to the decision block.  

 

mapping bump location module: 

gets the input from smart phone sensors analyzes it if the bump is detected sends its 

location to the server via wi-fi to mine road bumps and assigns it to google maps. 

deals with the input from distance estimation object.    

 

the system functions as shown block diagram 
 

 

                             

 

 

                                                      fig 2: system block diagram 
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2.1 Introduction 

Computer vision is an interdisciplinary field that deals with how computers can be made 

for gaining high-level understanding from digital images or videos. From the perspective 

of engineering, it seeks to automate tasks that the human visual system can do.  Computer 

vision is concerned with the automatic extraction, analysis and understanding of useful 

information from a single image or a sequence of images. It involves the development of 

a theoretical and algorithmic basis to achieve automatic visual understanding. 

One of the primary goals of computer vision is the understanding of visual scenes. Scene 

understanding involves numerous tasks including localizing the objects in 2D and 3D, 

determining the objects‟ and scene‟s attributes, characterizing relationships between 

objects and providing a semantic description of the scene.  

 

2.2 Tensor Flow 

Tensor Flow is an open source software library for high performance numerical 

computation. Its flexible architecture allows easy deployment of computation across a 

variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to 

mobile and edge devices. Originally developed by researchers and engineers from the 

Google Brain team within Google‟s AI organization, it comes with strong support for 

machine learning and deep learning and the flexible numerical computation core is used 

across many other scientific domains. 

 

2.3 Why Tensor Flow 

Python API 

Portability: deploy computation to one or more CPUs or GPUs in a desktop, server, 

or mobile device with a single API. 

Flexibility: from Raspberry Pi, Android, Windows, IOS, Linux to server farms.  

Auto-differentiation (no more taking derivatives by hand) 

Large community (> 10,000 commits and > 3000 TF-related repos in 1 year). 

Awesome projects powerful using Tensor Flow.  
 

2.4 Neural Network 

Neural Network commonly referred to as “Neural Networks” has been motivated right 

from its inception by the recognition that the human brain computes in an entirely 

different way from the conventional digital computer. The brain is a highly complex, 

nonlinear, and parallel computer (information -processing system). It has the capability 

to organize its structural constituents, known as neurons, so as to perform certain 

computations (e.g., pattern recognition, perception, and motor control) many times faster 

than the fastest digital computer in existence today. Consider, for example, human 

vision, which is an information -processing task. It is the function of the visual system to 

provide a representation of the environment around us and more important, to supply the 

information we need to interact with the environment. To be specific, the brain routinely 

accomplishes perceptual recognition tasks (e.g., recognizing) [. 

Neural Networks help us cluster and classify. You can think of them as a clustering and 

classification layer on top of the data you store and manage. They help to group 

unlabeled data according to similarities among the example inputs, and they classify data 
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when they have a labeled dataset to train on. (Neural networks can also extract features 

that are fed to other algorithms for clustering and classification, so you can think of deep 

neural networks as components of larger machine-learning applications involving 

algorithms for reinforcement learning, classification and regression.) 

The Convolutional Neural Networks (CNNs), an important and powerful kind of learning 

architecture widely diffused especially for Computer Vision applications. They currently 
represent state of the art algorithm for image classification tasks and constitute the main 

architecture used in Deep Learning. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Convolutional Neural Networks (CNN).  
 
 

 
 
 
 

2.5 Object detection with Tensor Flow 

we will walk through all the steps for building a custom object classification model using 

Tensor Flow‟s API: 

 

 2.5.1 Gathering a data set: 
 
  The data set is about 7000 images (5000 images containing bumps and  

   2000 images with no bumps.  

   The data can be divided as: 
   There were 500 images of speed bump found available Mendeley Data. 

 

 We have collected around 1800 mages of bump across various locations in 

and around the institution campus during various time of the day to 

capture dataset with variety of viewing and illumination conditions. 

 Another team collected data of bumps we used around 2500 images 

 There are 2000 images for un bumped. 
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2.5.2 Creating bounding boxes:
 

In order to train our object detection model, for each image we will need the 

image‟s width, height, and each class with their respective xmin, xmax, ymin, and 

ymax bounding box. Simply put, our bounding box is the frame that captures 

exactly where our class is in the image. 

Creating these labels can be a huge ordeal, but thankfully there are programs that 

help create bounding boxes. LabelImg is an excellent open source free software that 

makes the labeling process much easier. It will save individual xml labels for each 

image, which we will convert into a csv table for training. 

https://github.com/tzutalin/labelImg
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2.5.3 Install the object detection API:
 

Before getting started, we have to clone and install the object detection API into our Get 

Hub repository. Installing the object detection API is extremely simple; you just need to 
clone the Tensor Flow Models directory and add some things to your Python path. 

 

2.5.4 Convert labels to The Tensor Flow Record format: 

When training models with Tensor Flow using Tensor Flow Record, files help 

optimize your data feed. We can generate a Tensor Flow Record file using code 

adapted from this raccoon detector. 

 

 

2.6 Detection Models 
 

2.6.1 Single Shot Detector SSD: 

The single shot name was developed because SSD is a single-stage detector. It doesn‟t 

follow the RCNN approach of having two separate stages for each of regions proposal 

and detections. The SSD approach is based on a feed-forward convolutional network that 

produces a fixed-size collection of bounding boxes and scores for the presence of object 

class instances in those boxes, followed by a non-maximum suppression step to produce 

the final detections. 

The architecture of the SSD model is composed of three main 

parts: 

1. Base network to extract feature maps - a standard pretrained network used for 

high quality image classification and truncated before any classification layers. In 

their paper, C. Szegedy et al. used VGG16 network. Other networks like VGG19 

and ResNet can be used and should produce good results. 

2. Extra feature layers - a series of convolution filters are added after the base 

network. These layers decrease in size progressively to allow predictions of 

detections at multiple scales. 

3. Non-maximum suppression - to eliminate overlapping boxes and keep only one 

box for each object detected. 

https://www.tensorflow.org/programmers_guide/datasets
https://github.com/datitran/raccoon_dataset/blob/master/generate_tfrecord.py
https://github.com/datitran/raccoon_dataset/blob/master/generate_tfrecord.py
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Figure 4: Single Shot Detector SSD. 

 
 
 

2.6.2 RCNN (Region Proposal + CNN) 

The Region-based Convolutional Network method (RCNN) achieves excellent object 

detection accuracy by using a deep ConvNet to classify object proposals. R-CNN. 

Use selective search to come up with regional proposal First object detection method 

using CNN 

 

 
 
 
 
 
 
 
 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                    Figure 5: RCNN.  
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2.6.3 Fast RCNN 

Faster RCNN is the follow on to Fast RCNN and RCNN. Faster RCNN starts with a CNN adds 

a Region Proposal Network (RPN) to create proposals (bounding boxes) from the features 

given by the CNN. Then ROI pooling and a classifier is used to classify and score each 

bounding box .Once a Fast R-CNN network is fine-tuned, detection amounts to little more than 

running a forward pass (assuming object proposals are pre-computed). The network takes as 

input an image and a list of R object proposals to score. 

     Share convolution layers for proposals from the same image Faster and More accurate    than 

RCNN.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Fast RCNN.  
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2.6.4 Faster RCNN 

The architecture of Faster R-CNN can be described by two main 

networks:  

1. Region Proposal Network (RPN) - selective search is replaced by a ConvNet that to 

propose regions of interest (RoI) from the last feature maps of the feature extractor to be 

considered for investigations. RPN has two outputs; the “objectness score” (object or no 

object) and the box location 

2. Fast R-CNN - consists of the typical components of Fast R-CNN: 

 a. Base network for Feature extractor: a typical pre-trained CNN model to extract                                                                 

features from the input image 

 b. ROI pooling layer: to extract fixed-size regions of interest. 

  c. Output layer: contains 2 fully-connected layers:  

1) a softmax classifier to output the class probability, and 

 2) a bounding-box regression CNN to the bounding box predictions. 

 

 

                  
Figure 2: Faster RCNN.                                                                                                                 
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2.7 Choose a model:
 

1) Instead of generating the regions of interest and classifying the regions separately, SSD does it 

simultaneously, in a “single shot”. 

2) It is faster in inference with not much reduction with respect to mean average precision (mAP) 

tested on COCO dataset. 

3) SSD detection model has better accuracy. 

 

2.8 Train & Results: 

 Model was trained with CoCo dataset that detect 80 different objects 

Froze layers and change last.  

 

train_config:  

       batch_size: 16  

      rms_prop_optimizer:  

 

       learning_rate:  

        exponential_decay_learning_rate 

                 { 

          initial_learning_rate: 0.0001 

          decay_steps: 800720 

          decay_factor: 0.95 

                 } 

classification_loss { weighted cross enteropy } 

 

Model has large over fitting, test loss is 3 and the train loss is 2.5 

 

the reasons of that are:  

1)our data isn't variant and few. 

2)much layers in network. 

fine tuning: 

1)Dropout keeping parameters (0.9-0.6) 

2)Reducing learning rate ((10)^(-4) _(10)^(-6)). 

3)Frozen layers  

 

But we fail to improve the test loss which the main reason is our data isn't variant and few .Hence 

we tried to accomplish the detection with another deep learning technique using segmentation 

model one of the advantage of  segmentation model over ssd-mobilenet v2 model it classify the 

input image pixel-wise into two classes the foreground class (speed bump) and the rest of image 

into the background class which facilitates the bump feature extracting and we chose a model that 

doesn't need large number of data. 

the segmentation model acquired a promising results and fitted the criteria of real time application 

so let's dive into it. 
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2.9   Segmentation 

based on a method that  detects the upcoming bump by using a deep learning algorithm called U-

Net[1], which is a deep CNN architecture for semantic pixel-wise segmentation. The trained 

model will give segmented output from the monocular camera feed placed in front of the vehicle. 

U-Net architecture  

 
                                                   fig 8:U-Net architecture 

 

 The U-Net architecture is built upon the Fully Convolutional Network and modified in a way that 

it yields better segmentation. it consists of a contracting path to capture context and a symmetric 

expanding path that enables precise localization. it works with very few training images and yields 

more precise segmentations. 

The main idea in fully convolutional network is to supplement a usual contracting network by 

successive layers, where pooling operators are replaced by upsampling operators. Hence, these 

layers increase the resolution of the output. In order to localize, high resolution features from the 

contracting path are combined with the upsampled output. A successive convolution layer can 

then learn to assemble a more precise output based on this information. One important 

modification in U-Net architecture is that in the upsampling part it has also a large number of 

feature channels, which allow the network to propagate context information to higher resolution 

layers. As a consequence, the expansive path is more or less symmetric to the contracting path, 

and yields a u-shaped architecture. The network does not have any fully connected layers and only 

uses the valid part of each convolution, i.e., the segmentation map only contains the pixels, for 

which the full context is available in the input image. This strategy allows the seamless 

segmentation of arbitrarily large  

images by an overlap-tile strategy. To predict the pixels in the border region of the image, the 

missing context is extrapolated by mirroring the input image. This tiling strategy is important to 

apply the network to large images, since otherwise the resolution would be limited by the GPU 

memory. 

 



17 
 

 

 

 

 

 

Model 

U-Net architecture is separated in 3 parts: 

 

 The contracting/downsampling path 

 Bottleneck 

 The expanding/up sampling path 

Contracting/down sampling path 

The contracting path is composed of 4 blocks. Each block is composed of 

 3x3 Convolution Layer + activation function (with batch normalization) 

 3x3 Convolution Layer + activation function (with batch normalization) 

 2x2 Max Pooling 

Note that the number of feature maps doubles at each pooling, starting with 64 feature maps for 

the first block, 128 for the second, and so on. The purpose of this contracting path is to capture the 

context of the input image in order to be able to do segmentation. This coarse contextual 

information will then be transfered to the upsampling path by means of skip connections. 

we replaced this part with Efficientnet-b3[2] as a backbone network which we will introduce it in 

short. 

Bottleneck 

This part of the network is between the contracting and expanding paths. The bottleneck is built 

from simply 2 convolutional layers (with batch normalization), with dropout. 

Expanding/upsampling path 

The expanding path is also composed of 4 blocks. Each of these blocks is composed of 

 Deconvolution layer with stride 2 

 Concatenation with the corresponding cropped feature map from the contracting path 

 3x3 Convolution layer + activation function (with batch normalization) 

 3x3 Convolution layer + activation function (with batch normalization) 

The purpose of this expanding path is to enable precise localization combined with contextual 

information from the contracting path. 

Advantages 

 The U-Net combines the location information from the down sampling path with the 

contextual information in the up sampling path to finally obtain a general information 

combining localization and context, which is necessary to predict a good segmentation 

map. 

 No dense layer, so images of different sizes can be used as input (since the only parameters 

to learn on convolution layers are the kernel, and the size of the kernel is independent from 

input image‟ size). 

 The use of massive data augmentation is important in case of our limited dataset. 
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Backbone network 

    CNNs are commonly developed at a fixed resource cost, and then scaled up in order to achieve 

better accuracy when more resources are made available. For example, ResNet can be scaled up 

from ResNet-18 to ResNet-200 by increasing the number of layers. The conventional practice for 

model scaling is to arbitrarily increase the CNN depth or width, or to use larger input image 

resolution for training and evaluation. While these methods do improve accuracy, they usually 

require tedious manual tuning, and still often yield suboptimal performance, Hence in efficientnet 

they found a more principled method to scale up a CNN to obtain better accuracy and efficiency. 

they proposed a novel model scaling method that uses a simple yet highly effective compound 

coefficient to scale up CNNs in a more structured manner. Unlike conventional approaches that 

arbitrarily scale network dimensions, such as width, depth and resolution, this method uniformly 

scales each dimension with a fixed set of scaling coefficients. Powered by this novel scaling 

method and recent progress on Auto Machine Learning .The first step in the compound scaling 

method is to perform a grid search to find the relationship between different scaling dimensions of 

the baseline network under a fixed resource constraint (e.g., 2x more FLOPS).This determines the 

appropriate scaling coefficient for each of the dimensions then apply those coefficients to scale up 

the baseline network to the desired target model size or computational budget. 

 

 

 
                                         fig 9: Comparison of different scaling methods 

 

Efficientnet-b3 choosing criteria: 

 It is suitable for real time application due to smaller numbers of parameters (12 M) and the 

number of FLOPS required (1.8 B) yet it yields a good accuracy. 

Transfer learning 

Transfer learning[3] is the idea of overcoming the isolated learning paradigm and utilizing 

knowledge acquired for one task to solve related ones. there is two different approaches to achieve 

this task 

 

 Fine Tuning Pre-trained Models 

 Pre-trained Models as Feature Extractors 

 

http://www.arxiv.org/abs/1512.03385
http://ai.googleblog.com/2018/08/mnasnet-towards-automating-design-of.html
https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search
https://en.wikipedia.org/wiki/FLOPS
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Pre-trained Models as Feature Extractors 

 

Deep learning systems and models are layered architectures that learn different features at 

different layers (hierarchical representations of layered features). These layers are then finally 

connected to a last layer (usually a fully connected layer, in the case of supervised learning) to get 

the final output. This layered architecture allows us to utilize a pre-trained network (such as 

Inception V3 or VGG) without its final layer as a fixed feature extractor for other tasks. 

The key idea here is to just leverage the pre-trained model’s weighted layers to extract features 

but not to update the weights of the model’s layers during training with new data for the new task. 

This is one of the most widely utilized methods of performing transfer learning using deep neural 

networks. 

 

Fine Tuning Pretrained Models 

This is a more involved technique, where we do not just replace the final layer (for 

classification/regression), but we also selectively retrain some of the previous layers. Deep neural 

networks are highly configurable architectures with various hyperparameters. the initial layers 

have been seen to capture generic features, while the later ones focus more on the specific task at 

hand. 

Using this insight, we may freeze (fix weights) certain layers while retraining, or fine-tune the rest 

of them to suit our needs. In this case, we utilize the knowledge in terms of the overall architecture 

of the network and use its states as the starting point for our retraining step. This, in turn, helps us 

achieve better performance with less training time. 

In our project, we chose the U-Net Pre-trained Models on cam-vid dataset as Feature Extractor as 

cam-vid dataset (an outdoor collected dataset contains 11 classes such as road, building, cars, 

poles etc) is a quite similar to our dataset .also to avoid overfitting. 

 

Data augmentation 

we applied multiple methods of data augmentation in order to increase our training data and to 

increase the system robustness.    

Horizontal flip augmentations: 

Reversing the entire rows and columns of an image pixels in horizontally 

1-Shift augmentation: 

Shifting the entire pixels of an image from one position to another position is called as shift 

augmentation  

We have two types of shift augmentation. 

Horizontal shift augmentation and Vertical shift augmentation 

 2- padding: 

 In padding, the image is padded with a given   value on all sides. 
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 3- Random Crop 

we create a random subset of an original image. This helps our model generalize better because 

the object of interest we want our models to learn are not always wholly visible in the image or the 

same scale in our training data. 

Hyperparameters choosing 

We trained the model using: 

 Learning rate =0.0001 (has been chose a relative small value to avoid the overfitting) 

 Adam optimizer 

 F1-score metric 

 IOU-score metric 

 Combined focal and dice loss functions with same ratio  

 40 epoch 

Adam-optimizer 

 

 The method computes individual adaptive learning rates for different parameters from 

estimates of first and second moments of the gradients. 

 

Adam-optimizer advantages: 

 Adam is a replacement optimization algorithm for stochastic gradient descent for training 

deep learning models. 

 Adam combines the best properties of the AdaGrad and RMSProp algorithms to provide an 

optimization algorithm that can handle sparse gradients on noisy problems. 

 Adam is relatively easy to configure where the default configuration parameters do well on 

most problems. 

 

Loss functions: 

As there is an imbalance between the foreground class (bump class) and the background we 

intended to use dice loss 

 The dice coefficient is a measure of overlap of the predicted mask and the ground truth  

 it only considers the segmentation class and not the background class. The pixels are 

classified as True Positive (TP), False Negative (FN) and False Positive (FP). 
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it outputs a score in the range [0,1] where 1 is a perfect overlap. Thus, (1-DSC) can be used as a 

loss function 

 Pros: Easy solution to class imbalance without having to manually optimize any 

parameters 

Cons: Potential for gradient explosion (this is easily manageable using batch normalization and 

ReLUs) , and generally slower to train than Binary cross entropy. 

F1-score 

F1-score is a metric which takes into account both ,precision and recall as we can‟t always 

evaluate both and then take the higher one for our model. It is the harmonic mean of precision and 

recall. It tells us about the balance that exists between precision and recall. 

Precision basically tells us that out of the results classified as positive by our model, how many 

were actually positive. 

Recall tells us how many true positives (points labelled as positive) were recalled or found by our 

model. 

F1-score gives equal weight to both, the precision and the recall. 
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Results: 

 
the performance of the model is very promising as shown below 

loss Mean IOU score Mean F1-score 

0.36047 0.77471 0.84867 

Table 4 : performance of  Unet trained model 

 

 
                                     fig 01: IOU score 

 
                                                            fig 00  : Loss 
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3.1 Introduction 

The system detects bumps ahead and issues warnings in advance to drivers for avoiding or 

mitigating the harm caused by bump crashes. It identifies a target bump within trajectory of 

subject vehicle and determines range to the bump. And warning is issued when range is lower than 

a certain threshold. 

There are many approaches to calculate distance with different accuracy and costs. 

We will illustrate different approaches which we select between them to based on cost and 

accuracy. 

Before illustrate approaches we will illustrate camera calibration as it is an important phase before 

calculating distance. 

 

3.2 Calibration: 

A camera projects 3D world points onto the 2D image plane  

Calibration: Finding the quantities internal to the camera that affect this imaging process  

•Image center  

•Focal length  

•Lens distortion parameters 

Some pinhole cameras introduce significant distortion to images. Two major kinds of distortion 

are radial distortion which causes straight lines to appear curved. Radial distortion becomes larger 

the farther points are from the center of the image and tangential distortion and similarly occurs 

because the image-taking lenses is not aligned perfectly parallel to the imaging plane. So, some 

areas in the image may look nearer than expected. 

After calibration and getting the camera ready we have to make sure to fix the positioning of it as 

a small variation will lead to defect the results 
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3.3 stereo visions: 

3.3.1 Zed stereo camera: 

One of the most recent developed stereo sensors is the ZED camera, it has two high-resolution 

cameras that capture images (left and right) at the same time and transmit them to an external 

computer device for processing. It is a passive device, that is, it needs additional equipment for the 

power supply. According to manufacturer‟s information, it is designed and built to perceive the 

depth of objects in indoor and outdoor environments within a range of 1 to 20 meters and at 100 

FPS. This device can be used on several platforms, including standard PC and also SBC (Single 

Board Computers) as the NVidia development kit. By attaching the ZED camera to the recently 

launched Jetson board of the NVidia constitutes a powerful tool for applications in the field of 

Robotic Vision. 

The implementation of stereo vision in computers uses this basic principle to recreate a 3D scene 

representation based on the two images of it taken from different viewing points. This is known as 

stereo reconstruction. 

In order to do stereo reconstruction, a series of steps are necessary, as calibration, rectification, 

and further depth determination using the ZED Calibration tool "ZED SDK". 

 But Zed stereo camera is expensive so we will see another methods to calculate distance. 

 

 

   3.3.2 Two identical cameras: 
 

The advent of digital cameras has revolutionized the way users take pictures. Compared to their 

analog counterparts, such digital cameras (including mobile devices cameras) provide fast and 

easy image procurement, storage and retrieval. However, most of the popular digital cameras are 

capable of capturing a 2-dimensional (2D) projection of the scene while the components 

corresponding to depth are lost (not recorded). 3-dimensional (3D) imaging has emerged as 

advancement to the conventional 2D technology with the additional information of depth included. 

3D cameras have started to appear in the market but are prohibitively expensive. For a normal user 

with a 2D digital camera, 3D images may be constructed by extracting the depth information from 

2D images using a variety of techniques.  

There are various approaches for generation of depth-maps. Some of them are supervised and 

others are unsupervised. A MATLAB algorithm can be used to construct depth mask using two 

static images. The algorithm displays the two images and the user matches corresponding points in 

both images. From the displacement of the selected image points the algorithm estimates a depth 

surface for the scene. It is a supervised approach; among these methods, depth-map generation 

from a stereo pair of images is the most popular one. 

 

Essentially, a depth-map is a Grey-coded 2D image that gives the perception of depth by the 

intensity of colors. Darker regions in the Depth-Map are created for signifying that an object is far 

away and this darker color gradually decreases to brighter with decrease in depth and finally 

become white for closer objects 

This can be done using an algorithm for the creation of depth-map starting from a stereo pair of 

images left (L–) and right (R–) images corresponding to the same scene by performing a pixel-to-

pixel matching. 
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How it works: 

 

The algorithm finds matching pixels by comparing the RGB components of the pixels in the L– 

and R–images. If the dissimilarity between the compared pixels is found to be less than a pre-

specified tolerance (user defined) then those pixels are considered by the algorithm as a „matching 

pair‟ of pixels. Binocular disparity is then calculated for the matched pixels which are further 

utilized to estimate depth information. 

 

About this algorithm: 

A depth map is a 2D image that gives the depth (with respect to the viewpoint) of an object as a 

function of the image coordinates. Usually, it is represented as a Grey level image with the 

intensity of each pixel registering its depth. 

  

Tasks required for creation of Depth-map are: 

•Capturing Images 

•Image Preprocessing 

•Depth Estimation 

•Calculation of color value for all pixels. 

 

A. Capturing Images 

 

 The algorithm uses two images of the same scene. The left and right images can be taken with 

two digital cameras. They capture images of the same scene, at the same time. These cameras are 

slightly displaced by some horizontal distance. This horizontal distance should be fixed.  

 

B. Image Preprocessing  

 

Read the headers of L– and R–images to find number of pixels along the height and width of the 

images. Read both images byte by byte and store them. Separate RGB (Red, Green & Blue) 

components of each pixel. 

 

C. Depth Estimation  

Depth estimation is the calculation of depth of different objects in a scene from a multiple views 

or images. It is required to find corresponding pixels in the different views, i.e., point of 

correspondence that identifies the same 3D points. By finding these points. 

 

Depth information is calculated by following three main steps: 

 (1) Matching of Pixel. 

 (2) Choose the best in case of conflicts. 
 (3) Disparity Calculation. 
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Figure 22   : Distance Estimation with 2 cameras 

 

 

  

 

 

 

1) Matching of Pixel: 

 The matching criterion is based on Sum of Absolute Differences (SAD). SAD is a matching cost 

function, the metric of which is calculated for the three colors channels and the resulting three 

absolute difference values are simply added. If this value is less than or equal to ±2.5% of 

tolerance, then only consider the corresponding pixel of right image to be the matching pixel of 

the left image. 

 

 

2) Resolving conflicts: 

 If a situation occurs at which it has been found that some other pixel in right image is similar to 

that pixel of left image, which is already matched with some other pixel, then the ambiguity is 

resolved by comparing the Tolerance of previous pixel with that of present pixel. If the tolerance 

value of present pixel is more than ignore it, otherwise discard the previous pixel and consider 

present pixel to be the right choice.  
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3) Disparity Calculation: 

 The method of Binocular disparity is used for creating the depth map. Binocular disparity is the 

difference between the two images or two eyes, as illustrated in Fig. 12. Here, 

 • pl : pixel value in the left image  

• pr: pixel value in the right image corresponding to a similar pixel in left image  

• f : focal length of the camera 

 • T: difference between the origins of the two cameras  

• Z: depth value  

• xl : distance of pixel in the left image 

 • xr: distance of pixel in the right image . 

 

The disparity value of a point is often interpreted as the inverse distances to the observed objects. 

In other words, disparity is inversely proportional to Depth. Therefore, finding the disparity is 

essential for the construction of the depth map.  

Disparity = fT /z = xr – xl 

 And          z = fT |xl − xr| 

 

D. Calculate Pixel value 

 For the calculation of color values first calculate the maximum depth from the depth of among all 

pixels. Give value equal to 0 i.e. black color for the pixel of having maximum depth.  

 

The Color value for each pixel is calculated by: 

 

 Color = 255 − (depth ∗ 255) /maxdepth  

 

 Assign value equal to 255 i.e. white, to those pixels in left image which do not have any match in 

right image. By giving these pixel values, a depth-map can be created. In this depth map darker 

regions represent that object is far away and lighter regions represent that object is closer to the 

user. Fig. 2 depicts the details of the proposed algorithm. 

 

                       
 

Figure 23: depth map using two cameras 
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To apply this method properly: 

 

•The two pictures (right and left) must be taken at the same time and with specified distance as 

mentioned before. 

•This method produces a depth map for all the objects existing in the picture  

•The accuracy is quite good but not enough for critical and real time applications 

 

 

 

 

3.4 single camera:  
       

      3.4.1 Deep learning model: 

 
Here we wanted to have a deep learning setup that provides the bump detection system with a 

method to estimate the distance from the monocular camera to the bump viewed with the camera 

is presented.  

The presented distance estimation system is based on Multi Hidden-Layer Neural Network, which 

is used to learn and predict the distance between the bump and the camera sensor. The model was 

trained using a supervised learning technique where the inputs are the image and the boundary box 

of bump that is resulted from the object detection model and outputs are the distances to objects in 

the image. 

The model was trained with KITTI dataset that consists of video sequences taken from a driving 

vehicle. Dataset consists of 56 scenes, and contains around 20,000 images overall. 

When the model was tested with dataset similar to training dataset the accuracy is high but fail in 

case the objects are located on the sides of the camera or the curved road and in case objects are 

far away from the camera. 

 As we do not have images of bumps with known distance to train model and model accuracy is 

high so we will use model to give us range of distance (not accurate Distance). 

But when we tested this model on our collected dataset and given the 2D-bounding box as input, 

the output distance was illogical. 

 

      3.4.2 Simple Algorithm with known feature from object: 

 
The input of this algorithm is a 3d image with the wanted object marked and the output is the 

measured distance of it. 

In order to determine the distance from our camera to a known object or marker, we are going to 

utilize triangle similarity. 

The triangle similarity goes something like this: Let‟s say we have a marker or object with a 

known width W. We then place this marker some distance D from our camera. We take a picture 

of our object using our camera and then measure the apparent width in pixels P. This allows us to 

derive the perceived focal length F of our camera: 

F = (P x D) / W 

P: apparent width in pixels  

F: focal length   

D: distance from our camera. 
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To apply this algorithm: 

 the width (or height) of the object which we calculate distance toward must be fixed so in 

our case we choose to fix the width of the bump which is not accurate so we will get 

ranges of distance where first range with distance less than 3 meter, range 2 with distance 

less than 6 meter, and range 3 with distance greater than 6 meter. 

 

• After getting the focal length we can use this formula to get the distance 

          D= (W x F) / P 

 

 

Results: 
 Are quite accurate we tried it this algorithm to measure objects with range 10 meter away 

from the camera and the error is about 5 % Advantages of this technique. 

 Simple and Available hardware  

 Easy to apply. 

 

Disadvantages: 

 not accurate as bump width is not fixed. 

 Output will be ranges 

 

3.4.3 Simple Algorithm using Horizon of image: 
 

In this algorithm the horizon, which is an important feature from image, is used to calculate 

distance. 

First let‟s define Horizon line: 

Vanishing points are imaginary points at infinite distance away from the station point. In practice, 

the point at which the visual ray from the eye to that infinitely 

Distant point pierces the picture plane is referred to as the vanishing point. 

Vanishing point is considered for group of parallel lines in real but in image it will intersect in a 

point which is Vanishing point. 

 

 

 
Figure 14: Horizon line 
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Connecting all these vanishing points will create horizon. 

The horizon can be used to calculate distance which will be illustrated next.  

 So let‟s start the algorithm: 

 The inputs of algorithm are the original image having the horizon and the output of segmentation 

model which determining the bottom line of bump. With camera kept at constant height, we can 

get the distance between camera and the target bump. 

 

 
Figure 15: Distance estimation using Horizon  

 

Let contacting line between bump bottom and road surface in image be bottom line and let 

horizontal line passing through vanishing point of road lanes be horizon. Horizon will pass 

through the center of image when optical axis of camera is parallel to road surface. It moves 

upward or downward depending on camera angle. Distance between bottom line of a bump and 

horizon is inversely proportional to range to the bump. When camera angle is negligibly small, 

range 𝑑 to vehicle can be calculated as in the following: 

 

                                      d= fc*Hc /(yh-yb) 

Where: 

fc: focal length  

Hc: camera height (must be constant) 

yh: vertical coordinate of horizontal line  

yb: vertical coordinate of bottom line  
Experimental Results: 

When we tried this system to calculate distance between random objects and the camera within 

small ranges of around 10 meters, it results in good accuracy of distance estimation [error around 

0.3m to 0.5m. 

 

 

Conclusion: 

In this algorithm we propose a range estimation method which can be used in urban traffic 

environments. The proposed method estimates the bottom line from information of the bounding 

box of bumps in image which is obtained by object detection algorithm and calculates range from 

bump position in image with the virtual horizon. Small variation in position of horizon may result 

in large range error. Horizons determined by analyzing lane markings can be located even below 

bumps. Experimental results confirm that the proposed method provides robust results in urban 

traffic environment. 
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4.1 Introduction: 

Various mobile sensing technologies have been proposed to detect road anomalies (such as 

potholes, uneven manhole covers, and speed bumps) or to assess road surface conditions. One of 

the most popular approaches is to detect the vibrations of vehicles as they run over anomalies. In 

most studies, accelerometers, usually called G-sensors, were used to measure the vibrations, and 

GPS receivers, simply called GPS for short, were used to obtain the speed and location of the 

vehicles 
 
 

4.2 Literature: 

There are methods include RADAR sensors or LIDAR sensors which are used for the adaptive 

cruise control system  These sensors increase the cost of the car, and drivers who already own cars 

are not willing to pay for additional devices on board. Also, ultrasonic sensors can be used for 

detecting speed bumps but these sensors are not very reliable as their range is very limited and 

they may not provide sufficient time for the driver to brake. 

Video sensors require image processing techniques to analyze the color and determine the distance 

and height of the bump. However, video sensors are limited because video is not effective at night.  

Another method is the accelerometer sensors which continuously provide the x, 

y, and z coordinates of any point on the road. 

The accelerometer sensors can overcome the limitations of previous methods as they exist in most 

smartphones owned by drivers which reduces the cost. Also, these sensors can detect bumps more 

accurately than the aforementioned methods. This method collects big data that need efficient 

storage and processing before giving any good result. Existing accelerometer based methods are 

also limited to warning or notifying drivers about the bumps and are not accompanied with 

mechanical speed control solutions. 
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4.3 System Architecture: 

 
Figure 16:  Mapping system block diagram  

 

 

 

 

System mainly is consisting of three subsystems:  

  

1. First subsystem is sensing, detecting bump and determining location by application 

mobile phone that sends latitude, longitude of bump location, time, car speed, and other 

features of bump that represent the severity of road bumps. 

 

2. Second subsystem is server that provides service application programming interfaces 

(APIs) for collecting data from crowd and for sharing information with applications 

and data mining engines for extracting road anomaly information from crowd sourced 

data, and data warehouse capabilities. 

 

 

3. Third subsystem is the application where the web-based information management 

system is used for road pavement managers to schedule and dispatch maintenance jobs 

and evaluates the performance of workers; the worker application is used to facilitate 

the road pavement repairs such as on-site confirmations and progress reports. 

 

In this project we will focus on first 2 subsystems. 
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4.4 System Architecture in details: 
 

 
Figure 17: Mapping system components  

 

 

 

•First subsystem is consist of 2 layers where first layer for bumping detection using Accelerometer 

sensor to detect bump by finding any change height of road surface, and GPS sensor to determine 

location every second. Sensing module should be adaptive to vehicle conditions, smart phone 

specifications and installation posture. And second layer is Communication interface is used  

Wi-Fi to send data to server or to receive location of nearby bumps. 

 

•Second subsystem is Cloud server is  used to collect data bumps in tables, apply machine 

algorithm clustering to determine best location  of bumps where different cars are used in different 

speed, and to send maps with assigned bumps to user, server should continuous be updated. 
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4.6 Challenges: 

In design application, there are some challenges that we should overcome to build intelligent 

system.  

As we couple vehicle with mounted mobile phones  

•Application should be simple and without bringing any issues to drivers, not installing on a fixed 

position or orientation  ,to be more comfortable to use which will be solve by vertical component 

extraction heuristic. 

•System must not affect by environment:  for example Speed car, conditions of vehicles, type of 

vehicles, mobile frequency, and sensor sampling rate which will be solve by Data mining. 

•Even different times with different speed of the same car or different users move on the same 

bump, we should have one location to bump which is best allocated one. 

•Data usage: extract key features that represent the severity of road bumps reduce an excessive 

unnecessary data are reported which will be solve by Bumping index.                 

•Power consumption: application should be not use large size of memory on runtime. 

 

 4.7 Methodology: 

• VCEH: is introduced to extract the VCs of g-vectors upon which the bumping 

detection algorithm relies.so driver do not need to install mobile in a fixed position. 

 

• Bumping event: is a simple algorithm to detect bump by using statistics approach.  

 

• BI: an assessment metric called bumping index will be introduced. In short, this 

index is the ratio of a short-term standard deviation to a long-term standard 

deviation of the VCs of g-vectors which express height. 

 

• Data mining: The position obtained from the GPS and stored in the database is not 

totally accurate so data mining algorithm is used to reduce the error in the position. 

The algorithm is also necessary to ensure that the anomaly represented by the BI is 

a real bump. 

 

         4.7.1 VCEH: 

An Accelerometer sensor is used to determine any disturbance of height surface of road where we 

use statistics approach: the proposed algorithms rely on statistics on sensor reading in periods of 

time Where not to install mobile phone in certain orientation a vertical extract of g-vectors. 

 

Definitions: 

The main task here is to estimate the gravity vector in the sensor frame, after that the (VC) vertical 

component can be given by scalar projection of g-vectors to estimated gravity vector, and then 

long-term standard deviation of VC will be calculated as a parameter to model detect event 

bumping. 

The gravity is the major component of the g-vectors at most of times, in case of smart phone is 

mounted on a rack by applying (PCA) principle method analysis to determine direction of gravity, 

where to save power instead of applying PCA, we will use running average to determine gravity 

vector, to improve accuracy, where estimated gravity vector can be calculated as next equation:  

 

 ̅     ( ̅ )  *                 ( ̅   ̅ )    + 
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Where δ is a stable threshold to filter out g-vectors that differ extremely from the previous running 

average δ= ( ̅   ̅ ). 

 

Where upon [24] field tests δ and CDF measurements and since the purpose of δ is to find out 

significant vibrations and to reduce unnecessary amount of computation, we also choose the value 

used in that paper (δ=2m/s2) to reduce 95% computations at the same time. 

  

Define gꞱ to denote the VC of the g-vector at time t. 

 Ʇ  〈    ̅ 〉 ‖ ̅ ‖⁄  . 

 

Where 〈    ̅ 〉 is the inner product and  ‖ ̅ ‖    is the normalization. 

 

Estimate gravity vector by online approach   instead of batch approach 

Batch approach: The gravity is obtained by taking average on g-vectors over all stable periods. 

And online approach: The gravity is estimated by taking average over the stable periods in the last 

minute with 1-s period. 

A smartphone collect about 30 min of data with online approach (window size 60 sec) where the 

RMSEs are 0.03 m/s2 and of the batch mode is 0.01 m/s2. 

 

Window size selecting: 

Window size was chosen 180 sec. 

Based on experiment with two smartphone used with various running average window sizes from 

10 to 90 s were tested, where the results with a window size 60 will achieve the RMSE around 

0.02 m/s2. 

 

Vertical Component Extraction Heuristic: 

Upon [24] we used the same algorithm to extract vertical component. 

Where:  

Smart phone update parameters every 1 second  

     is time for system to initiate, which is set to 1 minute 

    is running average window size, which is set to 3 minute 

    is g vector in i second  

  ̅  is estimated gravity vector at end of i second 

   Ʇ is VC in i second 

 S set of indices of stable periods within running average window size. 

     is standard deviation of VCs in stable periods at the end of ith second. 

The input of the algorithm is     for i=1, 2 …and the outputs of the algorithm is  ̅  ,  Ʇ and 

    for i=1, 2 … 
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ALGORITHM FOR VCEH: 

 

1-                

2- Initialize parameters 

3- // repeat part while application is running 

4-  Periodic get     every 1 second 

5- i++ 

6- Get      〈    ̅   〉 ‖ ̅   ‖⁄  

7- If |    ‖ ̅   ‖| <δ  S=S U {i} 

8- If i>    S=S-{i-   } end if 

9- if   |S|<=       go to step 2 Initialize parameters    end if                                                                                                                                       

10- Get  ̅  which is averaging window size      for last 180 second. 

11-          𝑑  𝑑 𝑑           Ʇ  

12- // until  program is terminated 

 

Where Initialize parameters, the program waits    second to read     from i=0 to      ,initialize 

variables  

S= {1, 2,      }, ̅   average of     from i=0 to   ,   Ʇ from i=1 to      which is projection 

of    to ̅   the estimated gravity vector,      from i=0 to    which is standard deviation   Ʇ. 

After initialize parameters, lines 3 to 12 will be executed every second until the end of program. 

 

   4.7.2 Bumping Events Detection Algorithm: 

The bumping events can be detected by recognizing and analyzing abnormal vibrations, where we 

scan for a high pulse in the waveform and then analyze the following waveform to confirm or 

deny the observation, where a fixed threshold will be needed to detect high pulse of the waveform 

not to change with car dynamics. 

 

 In VCEH σ_(i  )can be a parameter representing the oscillation system, so we will use it as a 

threshold to detect the high pulse that may imply bumping event. 

 

1. Check if g_iꞱ- g  _(i-1)  > c1*σ_(i-1  ) 

                 Where c1 is a constant . 

 

2. If condition happens , a potential bumping event is detected , then  g_iꞱ is scanned  

from that time to ∆T millisecond backward to find maximum amplitude, 

       Let σ_(event  )= standard deviation (g_iꞱ) from time before bumping event by    ∆T to 

bumping event. 

Where ∆T=500 millisecond. 

 

3. If  σ_(event  )>c2*σ_(i-1  ) 

Where c2 is a constant 
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Choosing c1 , c2 based on [] designed that method they did experiments on two vehicles (Ford 

Windstar 2003 and Mitsubishi Lancer 1997) and four different racks were used ,they used 

c1=2,c2=2.5, so we will use these values and if  

we need to retune it we will change among experiments. 

 

  4.7.3 Bumping index: 
 

Extract height of bumps that represent the severity of road bumps with mitigation car vibrations, 

where the vibrations are represented as a long term standard deviation. When the vehicle passes 

over a bump, the VCs change dramatically and the standard deviation changes for a short time. 

We call the ratio between the long term standard deviation and short term standard deviation the 

Bump Index (BI). 

 

                                 BI= σ_event  /σ 

 

The BI value expresses the height of the bump. 

The local database stores the BI value, the GPS coordinates at which the BI occurs and the 

timestamp. When the trip finishes and the smartphone connects to the internet, it uploads to the 

cloud the log file which contains the BIs during the entire trip. 

 

 

 

        4.7.4 Data mining: 
 

The position obtained from the GPS and stored in the database is not totally accurate so a data 

mining algorithm is used to reduce the error in the position. The algorithm is also necessary to 

ensure that the anomaly represented by the BI is a real bump.  

For this purpose, we use the K-means algorithm that is used for clustering. In our context, every 

car j submits a set of bumps positions Pj = (P1, P2, …., Pn) where each Pi is the GPS coordinates 

(xi , yi). If m cars pass through a road, the road will have m sets of bumps. The k-means clustering 

algorithm runs firstly on these points to find the mean value of the distance between points. The 

mean value should achieve the minimum mean square error .The outcome of the algorithm is b1, 

b2, …, bc where c is the number of bumps in one road. These mined data are stored in bump data 

table in the database.                                                                                         

 

4.8 Application functions: 
 

an android application was written to map location of bumps by using accelerometer sensor to 

detect bump and GPS sensor to find location of bump and send location data to server which run 

clustering algorithm to define best location of bump to save into tables of bump to resend again to 

users when need . 

 Other functions were added to help drivers more like showing current position every time during 

driving and surrounding public facilities   

When application is started, the driver must to press to allow collecting data from accelerometer 

and GPS sensor.       
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 A message will be send to enable read GPS data in first time.                                                               

After you press the activity will start and the offline Google map is appeared. 

 

every second by average (5 samples of 200 millisecond). 

 

 

It marks your location by a blue marker and show important places restaurant, hospitals and all 

public facilities. 

 

 

finds your current location to mark it in GOOGLE maps.  If bump was detected the latitude and 

longitude of bump will be saved and sent to server to run clustering algorithm. 

 

e is opened in arrays to mark on map.   

 

 A message will be sent says that “map is ready” and also marks your current position with blue 

marker   as figure1 

If bump is detected a new marker will be added and sent to database, also a message will be sent 

says that “a new bump was detected at latitude: …, longitude: …”                                                                                

 

 

 

 

 

             
Figure 18: starting map                                Figure 19: Detecting bump 
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CHAPTER FIVE 5 

 
 
 
 

Merging between 2 approaches & Future work 
 

 
 
 
 

5.1  Merging between segmentation& Mapping 

 

5.2 challenges 

 
  
                           

5.3 conclusion & future work 

 

       5.3.1 Segmentation model 

 

       5.3.2   Distance Estimation 

  

       5.3.3   Mapping 
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5.1 Merging segmentation, distance estimation and mapping 

blocks: 
 

•Merging the two approach 

 

Now we have 2-modules detect the bump  

Segmentation module  

Mapping module  

 

We propose a merge method to combine the outputs from them 

  

 • Proposed approach 

 

As illustrated in section related works, detecting bumps is determined by different 

method as machine learning, or sensor readings statistics (deviation, mean) with a fixed 

threshold, in this project we built a full system to detect bumps by two methods using 

deep learning from camera images for upcoming bumps and applying two different 

algorithms (as illustrated in section calculate distance) to estimate distance and another 

method to detect bumps after passing using sensor readings. 

 So we should merge the two different methods to generate a full picture of environment.  

 

In this part we illustrate a method to merge 2 modules and its benefit. 

To connect different parts IOT (internet of things) will be used, 

So we should gather information from several sensors where camera will be connected to 

IOT device specifically a Raspberry pi which execute segmentation model with 2 

algorithms to estimate distance  to bump  ,the Raspberry pi must connect with server to 

send flag if bump is detected  and send distance estimated ,speed of car , and if then the 

sensing application mobile phone detect bump and send location of bump from GPS 

sensor to server so if server received information from 2 modules then location of  bump 

will be saved to database to resend to other users with 
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5.2 challenges: 
 

While building the system, there are many challenge was faced, 

such as:  

The system is consist of 3 large parts  with many details (deep 

learning ,control,  design mobile Application). 

Collecting data is taken a large time to have variety and large 

number of data as speed bumps data online is rare. 

Annotating data is taken a large time. 

Model parameters are retuned to get a result. 

Not all the required component for the project is available in the 

Egypt market as zed stereo camera. 

Collecting data from accelerometer and GPS sensor of mobile 

phone when car moving above bump is not available online to 

run clustering algorithm.    
             

               5.3 conclusion& future works: 
                      

Future works are Adding a new block to down speed of car automatic. 

                     And  improve 3 blocks output as: 

 

       5.3.1 Segmentation model: 

 As Model failed with shadow of car mirror so we should collect new data 

with 

Shadow of car mirror. 

 

Retune hyper parameters that may increase accuracy. 

 

Use VGG19 to increase FPS. 

 

Change decoder part to increase FPS. 

 

       5.3.2   Distance Estimation: 

      Using stereo- camera to increase range of distance. 

 

     Or collecting data of bumps with known distance and train model object 

detection 3D. 

 

       5.3.3   Mapping : 

 

Using deep learning with features from sensor reading to detect road 

specification (bump- smooth road). 

 



47 
 

References  
 

 
 

[ 1] Aslam, A. and Ansari, M., 2019. Depth-map generation using pixel matching in 
stereoscopic pair of images. arXiv preprint arXiv:1902.03471. 
 

[ 2] Celaya-Padilla, J.M., Galván-Tejada, C.E., López-Monteagudo, F.E., 

Alonso-González, O., Moreno-Báez, A., Martínez-Torteya, A., Galván-

Tejada, J.I., Arceo-Olague, J.G., Luna-García, H. and Gamboa-Rosales, 

H., 2018. Speed bump detection using accelerometric features: a genetic 

algorithm approach. Sensors, 18(2), p.443. 

 

 

[ 3] Fleury, D. and Fleury, A., 2018. Implementation of Regional-CNN and 

SSD machine learning object detection architectures for the real time 

analysis of blood borne pathogens in dark field microscopy. 

 
[ 4]  https://keras.io/guides/transfer_learning/. 

 
 

[ 5] Kariler, M., 2017. Road Surface Quality Detection Using Accelerometer 

Data (Doctoral dissertation, Master Thesis). 

 

[ 6] Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of 
visual pattern recognition. Neural networks, 1(2):119–130, 1988. 
 

 
[ 7] M Tan, QV Le - arXiv preprint arXiv:1905.11946, 2019 - arxiv.org. 
[ 8] Murali, S. and Avinash, N., 2004, December. Estimation of Depth Information 

from a Single View in an Image. In ICVGIP (pp. 202-209). 
 

[ 9] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detec ´ 

tion: An evaluation of the state of the art,” PAMI, vol. 34, 2012. 

 

[ 10] Park, K.Y. and Hwang, S.Y., 2014. Robust range estimation with a 
monocular camera for vision-based forward collision warning system. The 
Scientific World Journal, 2014. 

 
 
 
 

[ 11] Ronneberger, P Fischer, T Brox - International Conference on Medical …, 
2015 – Springer 

 

https://keras.io/guides/transfer_learning/


48 
 

[ 12] Rosebrock, A., 2015. Find distance from camera to object/marker using 
Python and OpenCV. PylmageSearch. 
 

[ 13] Siam, M., Gamal, M., Abdel-Razek, M., Yogamani, S., Jagersand, 

M. and Zhang, H., 2018. A comparative study of real-time semantic 

segmentation for autonomous driving. In Proceedings of the IEEE 

conference on computer vision and pattern recognition workshops (pp. 

587-597). 

 
 

[ 14] Yi, C.W., Chuang, Y.T. and Nian, C.S., 2015. Toward 

crowdsourcing-based road pavement monitoring by mobile sensing 

technologies. IEEE Transactions on Intelligent Transportation Systems, 

16(4), pp.1905-1917. 

[ 15]  O Ronneberger, P Fischer, T Brox - International Conference on 

Medical …, 2015 - Springer 

[ 16]  M Tan, QV Le - arXiv preprint arXiv:1905.11946, 2019 - arxiv.org 

[ 17]  https://keras.io/guides/transfer_learning/ 

[ 18]  DP Kingma, J Ba - arXiv preprint arXiv:1412.6980, 2014  - arxiv.org 

 

 

 

 

 

 

 

 
 

https://scholar.google.com/citations?user=7jrO1NwAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=0VAe-TQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=6POeyBoAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=vfT6-XIAAAAJ&hl=en&oi=sra
https://keras.io/guides/transfer_learning/
https://scholar.google.com/citations?user=yyIoQu4AAAAJ&hl=ar&oi=sra
https://scholar.google.com/citations?user=ymzxRhAAAAAJ&hl=ar&oi=sra

