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Abstract

ASIC Physical Design of the RISC-V based OpenPULP “Open Parallel

Ultra-low-power” Core, the aim of OpenPULP core is to satisfy the computa-

tional demands of IoT applications requiring flexible processing of data streams.

The project aims to deliver the GDSII file by going through the RTL-to-GDSII

flow, “SAED 32/28nm” PDK was used through the flow.

The core was implemented with three different synthesis styles (Topograph-

ical, Flat, Hierarchical) using Synopsys Design Compiler, followed by all main

steps of Place&Route flow using Synopsys IC Compiler, formal equivalence

checking is performed after PnR process to ensure that both Pre-layout netlist

and Post-layout netlist exhibit the same behavior using Synopsys Formality tool,

and then Post-layout STA is done with Synopsys PrimeTime to ensure that de-

sign meets all timing requirements at a wide range of PDK operating corners,

and then results were compared between the three implementation flows based

on area, power and synthesis runtime.



Chapter 1

Introduction

1.1 RISC-V

RISC-V (pronounced “risk-five”) is an open, free ISA enabling a new era of

processor innovation through open standard collaboration. Born in academia

and research, RISC-V ISA delivers a new level of free, extensible software and

hardware freedom on architecture, paving the way for the next 50 years of com-

puting design and innovation.

The goal for RISC-V is to become a universal instruction set architecture

(ISA):

1. It should suit all sizes of processors, from the tiniest embedded controller

to the fastest high-performance computer.

2. It should work well with a wide variety of popular software stacks and

programming languages.

3. It should accommodate all implementation technologies: Field-Programmable

Gate Arrays (FPGAs), Application-Specific Integrated Circuits (ASICs),

full-custom chips, and even future device technologies.
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4. It should be stable, in that the base ISA should not change. More im-

portantly, the ISA cannot be discontinued, as has happened in the past

to proprietary ISAs such as the AMD Am29000, the Digital Alpha, the

Digital VAX, the Hewlett Packard PA-RISC, the Intel i860, the Intel i960,

the Motorola 88000, and the Zilog Z8000.

A RISC-V ISA is defined as a base integer ISA, which must be present in

any implementation, plus optional extensions to the base ISA. The base integer

ISAs are very similar to that of the early RISC processors except with no branch

delay slots and with support for optional variable-length instruction encodings.

1.1.1 Modular vs. Incremental ISAs

The conventional approach to computer architecture is incremental ISAs, where

new processors must implement not only new ISA extensions but also all exten-

sions of the past. The purpose is to maintain backwards binary -compatibility

so that binary versions of decades-old programs can still run correctly on the

latest processor. This requirement, when combined with marketing appeal of

announcing new instructions with a new generation of processors, has let to

ISAs that grow substantially in size with age. For example, the 80x86. It dates

back to 1978, yet it has added about three instructions per month over its long

lifetime.

This convention means that every implementation of the x86-32 must im-

plement the mistakes of the past extensions, even when they no longer make

sense. Beyond being recent and open, RISC-V is unusual since, unlike almost

all prior ISAs, it is modular. At the core is a base ISA, called RV32I, which

runs a full software stack. RV32I is frozen and will never change, which gives

compiler writers, operating system developers, and assembly language program-

mers a stable target. The modularity comes from optional standard extensions

that hardware can include or not depending on the needs of the application.
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This modularity enables very small and low energy implementation of RISC-V,

which can be critical for embedded applications.

1.1.2 RISC-V Instructions

RISC-V instructions are in the following categories:

� Base Integer (RV32I)

� Multiply and Divide (RV32M)

� Single/Double Floating Point (RV32FD)

� Atomic (RV32A)

� Compressed (RV32C)

� Vector (RV32V)

� 64-bit Address (RV64)

RV32I is the category that contains six base instruction formats: R-type

for register-register operations; I-type for short immediates and loads; S-type

for stores; B-type for conditional branches; U-type for long immediates; J-type

for unconditional jumps. RV32I registers “x” are 32x32 registers, 31 registers

(x1 to x31) are used for base integer operations, while 1st register (x0) is always

having the value of 0. Dedicating a register to zero is surprisingly large factor

in simplifying the RISC-V ISA.

RV32M adds integer multiply and divide instructions to RV32I. It has

instructions for both signed and unsigned integers: divide (div) and divide

unsigned (divu), which place the quotient into the destination register. The

multiply is more complicated than divide because the size of the product is the

sum of the sizes of the multiplier and the multiplicand; multiplying two 32-bit

numbers yields a 64-bit product. To produce a properly signed or unsigned 64-

bit product, RISC-V has four multiply instructions. To get the integer 32-bit
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product – the lower 32-bits of the full product – use “mul”. To get the upper

32 bits of the 64-bit product, use “mulh” if both operands are signed, “mulhu”

if both operands are unsigned, and “mulhsu” if one is signed, and the other is

unsigned.

Although RV32F (single-precision floating point) and RV32D (double-

precision floating point) are separate, optional instruction set extensions, they

are often included together in RV32FD, Given single- and double-precision (

32- and 64-bit) versions for nearly all floating point instructions. RV32FD use

32 separate “f” registers instead of the “x” registers. The main reason for the

two sets of registers is that processors can improve performance by doubling

the register capacity and bandwidth by having two sets of registers without in-

creasing the space for the register specifier in the cramped RISC-V instruction

format. The major impact on the instruction set is to have new instructions to

load and store the f registers and to transfer data between the x and f registers.

RV32A has two types of atomic operations for synchronization:

� Atomic memory operation (AMO)

� Load reserved / store conditional

The AMO instructions atomically perform an operation on an operand in

memory and set the destination register to the original memory value. Atomic

means there can be no interrupt between the read and the write of memory,

nor could other processors modify the memory value between the memory read

and write of the AMO instruction. Load reserved and store conditional provide

an atomic operation across two instructions. Load reserved reads a word from

memory, writes it to the destination register, and records a reservation on that

word in memory. Store conditional stores a word at the address in a source

register provided there exists a load reservation on that memory address. It

writes zero to the destination register if the store succeeded, or a nonzero error

code otherwise.

RV32C takes a novel approach: every short instruction must map to one
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single standard 32-bit RISC-V instruction. Moreover, only the assembler and

linker are aware of the 16-bit instructions, and it is up to them to replace

a wide instruction with its narrow cousin. The RISC-V architects chose the

instructions in the RVC extension to obtain good code compression across a

range of programs.

Virtually every integer and floating-point instruction from previous sections

has a RV32V vector version. There are several types of each vector instruction

depending on whether the source operands are all vectors (.vv suffix) or a vector

source operand and a scalar source operand (.vs suffix). A scalar suffix means

an x or f register is an operand along with vector register (v). RV32V adds 32

vector registers, whose names start with “v”, but the number of elements per

vector register varies. That number depends on both the width of the operations

and on the amount of memory dedicated to vector registers, which is up to the

processor designer.

The ISAs typically add only a few word, doubleword, or long versions of the

32-bit instructions and expand all the registers, including the PC, to 64-bits.

Thus, “sub” instruction in RV64I subtracts two 64-bit numbers rather than

two 32-bit numbers as in RV32I. RV64 is a close but actually different ISA

than RV32; it adds a few instructions and the base instructions do slightly

different things due to the increase in operands size.

1.1.3 RISC-V Data Formats

The RISC-V Architecture recognizes these fundamental data types:

� Signed Integer: 8,16,32 and 64 bits

� Unsigned Integer: 8,16,32 and 64 bits

� Floating-Point: 32 and 64 bits
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The widths of data types are:

� Byte: 8 bits

� Halfword: 16 bits

� Word: 32 bits

� Doubleword: 64 bits

1.2 Thesis Objective

RTL-to-GDSII Flow plays an important role in the development process of elec-

tronic chips over the world. Due to the huge competition in this field and huge

customer demands, the technology in this field is developing at a fast pace to-

wards smaller, faster and more complex devices which is making it harder for

a newcomer to cope up with this field without learning and understanding the

basics first. CAD tools nowadays offer more than one ASIC design style to

satisfiy huge customer demands and improve QoR and TTR of ASIC designs.

Objective of this thesis is to demonstrate the impact of different design flows

on an open-source RTL Design of OpenPULP Core ( RI5CY) using the 32nm

CMOS technology.

This objective is achieved by going through RTL-to-GDSII flow starting from

three different logic synthesis flows which are hierarchical, flat and topographical

synthesis flows, passing after that with all necessary Place And Route steps

and Post-layout STA to ensure good timing performance over various operating

conditions.

1.3 Thesis Map

This thesis documentation is divided into five chapters and an Appendix, chap-

ter 1 is an introductory chapter that provides a quick background about the

new-born RISC-V ISA at the time of this thesis, and also it covers the thesis

objective and this thesis map. Chapter 2 demonstrates the structure of the

OpenPULP system and its implementation history with a brief description of
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each system component and also demonstrates the structure of the OpenPULP

core known as RI5CY and at the end of this chapter, we provide an idea of the

proposed design which will be implemented with three different flows.

Appendix A shows methodology of each flow in general and not depending

on a specific design. Chapter 3 describes the attempt to implement OpenPULP

core using different synthesis flows based on the methodologies discussed in

Appendix A and chapter 4 gathers all the achieved results obtained at each

step for every flow of these three flows. Chapter 5 concludes the impact of these

flows on the same design with respect to three performance metrics which are

area, power and synthesis runtime, and shows a comparison between the famous

ARM Corte-M4 with RI5CY core implemented with each of the three flows.
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Chapter 2

OpenPULP

The Parallel Ultra Low Power (PULP) is a joint project between the Integrated

Systems Laboratory (IIS) of ETH Zurich and the Energy-efficient Embedded

Systems (EEES) group of UNIBO to develop an open, scalable Hardware and

Software research platform with the goal to break the pJ/op barrier within a

power envelope of a few mW.

The PULP platform is a multi-core platform achieving leading-edge energy-

efficiency and featuring widely-tunable performance. The aim of PULP is to

satisfy the computational demands of IoT applications requiring flexible pro-

cessing of data streams generated by multiple sensors, such as accelerometers,

low-resolution cameras, microphone arrays, vital signs monitors. As opposed to

single-core MCUs, a parallel ultra-low-power programmable architecture allows

to meet the computational requirements of these applications, without exceed-

ing the power envelope of a few mW typical of miniaturized, battery-powered

systems. Moreover, OpenMP, OpenCL and OpenVX are supported on PULP,

enabling agile application porting, development, performance tuning and de-
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bugging.

The PULP platform have intentionally taken an open source approach from

the very onset of the project and so far, PULP have released efficient 32 and

64bit implementations based on the open-source RISC-V instruction set archi-

tecture, peripherals and complete systems starting from simple micro-controllers,

to the state-of-the-art OpenPULP release which sets a new bar for low-power

multicore IoT processors.

2.1 OpenPULP Architecture

Figure 2.1: PULP Overview

FIGURE 2.1 shows a block diagram of OpenPULP Architecture. OpenPULP

– or just PULP – is hierarchical, demand-driven architecture enables

ultra-low-power operation by combining:

� A fabric controller (FC) core for control, communications and security

functions. This can be viewed like a classic MCU.
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� A cluster of 8 cores with an architecture optimized for the execution of

vectorized and parallelized algorithms.

All cores and peripherals are power switchable and voltage and frequency

adjustable on demand. DC/DC regulators and clock generators with ultra-fast

reconfiguration times are integrated. This allows PULP to adapt extremely

quickly to the processing/energy requirements of a running application.

All elements share access to an L2 memory area. The cluster cores share

access to an L1 (TCDM) memory area and instruction cache. Multiple DMA

units allow autonomous, fast, low power transfers between cluster L1 and L2

memory and between L2 memory and external peripherals.

2.1.1 Cores

All 8 cores of the cluster share the RV32IMFCXpulp instruction set archi-

tecture, while the fabric controller can be configured as either RV32IMC or

RV32IMFCXpulp. The I (integer), C (compressed instruction), M (Multi-

plication and division) and a portion of the supervisor ISA subsets are sup-

ported. These standard instruction sets are extended with specific instruc-

tions to optimize the performance of signal processing and machine learning

algorithms. These extensions include zero-overhead hardware loops, pointer

post/pre-modified memory accesses, instructions mixing control flow with com-

putation (min, max, etc), multiply/subtract and accumulate, vector operations,

fixed-point operations, bit manipulation and dot product. All of these instruc-

tion extensions are optimized by the compiler or can be used ‘by hand’.
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2.1.2 Memory Areas

There are 2 different levels of memory internal to PULP. A larger level 2 area of

512kB which is accessible by all processors and DMA units a smaller (Tightly

Coupled Device Memory - TCDM) level 1 area shared by all the cluster cores

(128kB). The cluster level 1 memory is banked and connected to the cluster

cores via a logarithmic interface that is sized to provide single cycle access in

98% of cases. L2 memory is divided into 4 128kB blocks.

Cluster L1 memory supports test-an-set functionality. The test-and-set is an

atomic instruction used to write to a memory location and return its old value

as a single atomic (i.e. non-interruptible) operation. If multiple processes access

the same memory area and if a process is currently performing a test-and-set, no

other process may begin another test-and-set until the first process is done. The

instruction caches of the FC (1kB) and cluster (4kB) will automatically cache

instructions as needed. The cluster instruction cache is shared between all the

cores in the cluster. Generally, the cluster cores will be executing the same area

of code on different data hence the shared cluster instruction cache exploits

this to reduce memory accesses for loading instructions. The combination of

a high-speed shared data and instruction memory in the cluster provides an

ideal memory architecture for the execution of code implementing parallelized

algorithms. PULP can also access external memory areas over the HyperBus

(Flash or RAM) or quad-SPI (Flash) interfaces. We refer to RAM accessed over

the HyperBus or quad-SPI interfaces as level 3 memory. Since the energy and

performance cost of accessing external RAM over external buses is very high

compared to the internal memory, generally this should be avoided as much as

possible. In consequence, program code is loaded from external flash at boot

into the L2 memory area.

11



2.1.3 Debug Architecture

PULP contains debug functionalities to help the developer observing/controlling

application code execution. Debug functionalities are accessible through JTAG

or SPI Slave interfaces using a GDB server. They permit access to the FC

RI5CY core debug unit and Cluster RI5CY cores debug units to break pro-

gram execution. A direct connection from JTAG or SPI Slave to PULP bus

architecture also allows access to all the memory mapped registers of the chip.

2.1.4 Data Types Supported

The memories are byte addressable so every single data type whose size is a

multiple of bytes can be supported either natively if the number of bytes is less

or equal than 4 or through software emulation if it is larger.

2.1.5 Event Units

Two event units (EU) are available in PULP. One for the FC and one for the

cluster. The EU allows the RI5CY cores to be put into sleep mode when waiting

for an event to occur. In the EUs, the way of treating incoming events can be

controlled. The EU can be instructed to react instantly by jumping to an

interrupt routine or to delegate the treatment of the event to a software event

task controller.
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2.1.6 DMA (Direct Memory Access)

The DMA unit allows the transfer of data between L2 and cluster L1 memory

areas. 8 channels can be programmed. Channels can be 1D/2D on the L2

memory and 1D on the cluster L1 side.

2.1.7 Micro DMA

The micro DMA (UDMA) provides direct transfer of data between L2 memory

and the different interfaces provided in PULP connected to UDMA. It helps

in relaxing the execution load of FC RI5CY core. Up to 11 channels can be

managed by the UDMA:

� Camera to L2

� I2S0 to L2

� I2S1 to L2

� I2C0 from/to L2

� I2C1 from/to L2

� UART from/to L2

� SPIM0 from/to L2

The width of transfers can be selected between 8, 16 or 32 bits. Up to 128kB

can be transferred during a single transaction (8kB for SPIM). In the general

case, transactions can be bidirectional but depending on the interface, in some

cases only one direction is available.

2.1.8 SPI master (serial peripheral interface)

Up to 2 SPI master interfaces are available:
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� One Single/Quad SPI (Master) which is able to communicate at speeds

up to 50Mbits/s.

� One Single SPI (Master) which is able to communicate at speeds up to

50Mbits/s.

2.1.9 UART (universal asynchronous receiver-transmitter)

One UART interface is available with up to 1Mbits/s baud rate. No dedicated

synchronization (CTS/RTS/DTR/DSR/DCD) signals are provided.

2.1.10 I2C (inter-integrated circuit)

Up to 2 I2C (Inter-Integrated Circuit) are provided in PULP. They support

multi-master, multi-slave, single-ended modes. I2C uses only two bidirectional

open-drain lines, Serial Data Line (SDA) and Serial Clock Line (SCL), pulled

up with resistors.

2.1.11 I2S (digital microphone interface) RX

Up to 2 RX I2S are available for connecting digital audio devices to PULP

chip. Up to 4 digital microphones (either PCM or PDM format) can be di-

rectly connected to PULP. These are able to communicate at speeds of up to

10Mbits/s.
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2.1.12 CPI (camera parallel interface)

The CPI interface is 8 bits wide and can communicate at speeds up to 50MHz.

VSYNC, HSYNC and PCLK are provided by the camera.

2.1.13 GPIOs (general purpose inputs/outputs)

Up to 32 digital general purpose I/O’s are available. Each I/O can be configured

either as an input or output. Interrupts on event can be generated on the rising

or the falling or both edges for all I/O’s. I/O’s can also be configured to act as

an external wake up signal.

2.1.14 SPI slave

One SPI slave interface directly connected to PULP bus architecture is avail-

able. It is able to access all memory mapped registers and L2 memory. It can

communicate at speeds up to 50Mbits/s.

2.1.15 Basic Timers

2 basic timers are available, one connected to the FC and the other to the

cluster. They can be configured either as 2 x 32-bit timers or as a single 64-bit

timer. The basic timers can either run continuously or trigger just once. Events

can be generated using a compare match.

Clock sources of these timers can be the:

� FLL

15



� FLL with pre-scaler

� 32.768kHz reference clock

2.1.16 Advanced PWM Timers

4 advanced PWM timers are available in the SOC domain. Each of them pro-

vides 4 output signal channels that can be used for PWM signal generation with

multiple configuration possibilities.

2.1.17 RTC

A real-time clock is available. It provides a set of continuously running counters

which can be used with suitable software to provide a clock calendar function.

It provides also alarm and a periodic interrupt features. It is clocked by the

32.768 kHz external crystal.

2.1.18 Performance Counters

Each RI5CY cores of the FC and the cluster provide a performance counter.

These 32-bit counters can be configured to count the:

1. Total number of cycles (also includes the cycles where the core is sleeping)

2. Number of cycles the core was active (not sleeping)

3. Number of instructions executed

4. Number of load data hazards

5. Number of jump register data hazards
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6. Number of cycles waiting for instruction fetches, i.e. number of instruc-

tions wasted due to non-ideal caching

7. Number of data memory loads executed. Misaligned accesses are counted

twice

8. Number of data memory stores executed. Misaligned accesses are counted

twice

9. Number of unconditional jumps (j, jal, jr, jalr)

10. Number of both taken and not taken branches

11. Number of taken branches

12. Number of compressed instructions executed

13. Number of memory loads to EXT executed. Misaligned accesses are

counted twice. Every non-L1 access is considered external (cluster only)

14. Number of memory stores to EXT executed. Misaligned accesses are

counted twice. Every non-L1 access is considered external (cluster only)

15. Number of cycles used for memory loads to EXT. Every non-L1 access is

considered external (cluster only)

16. Number of cycles used for memory stores to EXT. Every non-L1 access is

considered external (cluster only)

17. Number of cycles wasted due to L1/log-interconnect contention (cluster

only)

18. Number of cycles wasted due to CSR access
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2.2 OpenPULP Core

Figure 2.2: OpenPULP Core block diagram

FIGURE 2.2 shows a block diagram of the OpenPULP Core. OpenPULP Core –

or RI5CY – is a 4-stage in-order 32b RISC-V processor core. The ISA of RI5CY

was extended to support multiple additional instructions including hardware

loops, post-increment load and store instructions and additional ALU instruc-

tions that are not part of the standard RISC-V ISA.

18



2.2.1 Supported Instruction Set

RI5CY supports the following instructions:

� Full support for RV32I Base Integer Instruction Set.

� Full support for RV32C Standard Extension for Compressed Instructions.

� Full support for RV32M Integer Multiplication and Division Instruction

Set Extension.

� Optional full support for RV32F Single Precision Floating Point Exten-

sions.

� PULP specific extensions:

– Post-Incrementing load and stores.

– Multiply-Accumulate extensions.

– ALU extensions.

– Hardware Loops.

2.2.2 LSU (Load-Store Unit)

The LSU of the core takes care of accessing the data memory. Load and stores

on words (32 bit), half words (16 bit) and bytes (8 bit) are supported.
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Signal Direction Description

data req o Output
Request ready, must stay high

until data gnt i is high for one cycle

data addr o[31:0] Output Address

data we o Output
Write Enable, high for writes,

low for reads. Sent together with data req o

data be o[3:0] Output
Byte Enable. Is set for the bytes to

write/read, sent together with data req o

data wdata o[31:0] Output
Data to be written to memory,

sent together with data req o

data rdata i[31:0] Input Data read from memory

data rvalid i Input
data rdata i holds valid data when data rvalid i is high.

This signal will be high for exactly one cycle per request

data gnt i Input
The other side accepted the request.

data addr o may change in the next cycle

Table 2.1: LSU Signals

The protocol that is used by the LSU to communicate with a memory works

as follows:

The LSU provides a valid address in data addr o and sets data req o high.

The memory then answers with a data gnt i set high as soon as it is ready

to serve the request. This may happen in the same cycle as the request was

sent or any number of cycles later. After a grant was received, the address

may be changed in the next cycle by the LSU. In addition, the data wdata o,

data we o and data be o signals may be changed as it is assumed that the

memory has already processed and stored that information. After receiving a

grant, the memory answers with a data rvalid i set high if data rdata i is valid.

This may happen one or more cycles after the grant has been received. Note

that data rvalid i must also be set when a write was performed, although the

data rdata i has no meaning in this case.
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Figure 2.3: Basic Memory Transaction

Figure 2.4: Back-to-back Memory Transaction
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Figure 2.5: Slow Response Memory Transaction

FIGURE 2.3, FIGURE 2.4 and FIGURE 2.5 show example-timing diagrams of

LSU’s protocol.

2.2.3 Physical Memory Protection (PMP) Unit

The RI5CY core has a PMP module which can be enabled by setting the param-

eter PULP SECURE=1 which also enabled the core to possibly run in USER

MODE. Such unit has a configurable number of entries (up to 16) and supports

all the modes as TOR, NAPOT and NA4. Every fetch, load and store access

executed in USER MODE are first filtered by the PMP unit which can possibly

generated exceptions. For the moment, the MPRV bit in MSTATUS as well as

the LOCK mechanism in the PMP are not supported.
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2.2.4 Post-Incrementing Load and Store Instructions

Post-incrementing load and store instructions perform a load/store operation

from/to the data memory while at the same time increasing the base address

by the specified offset. For the memory access, the base address without off-

set is used. Post-incrementing load and stores reduce the number of required

instructions to execute code with regular data access patterns, which can typi-

cally be found in loops. These post-incrementing load/store instructions allow

the address increment to be embedded in the memory access instructions and

get rid of separate instructions to handle pointers. Coupled with hardware loop

extension, these instructions allow to reduce the loop overhead significantly.

2.2.5 Misaligned Accesses

The LSU is able to perform misaligned accesses, meaning accesses that are not

aligned on natural word boundaries. However, it needs to perform two separate

word-aligned accesses internally. This means that at least two cycles are needed

for misaligned loads and stores.

2.2.6 Instruction Fetch Unit

The instruction fetcher of the core is able to supply one instruction to the ID

stage per cycle if the instruction cache or the instruction memory is able to serve

one instruction per cycle. The instruction address must be half-word-aligned

due to the support of compressed instructions. It is not possible to jump to

instruction addresses that have the LSB bit set. For optimal performance and

timing closure reasons, a prefetcher is used which fetches instruction from the

instruction memory, or instruction cache.
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Signal Direction Description

instr req o Output
Request ready, must stay high

until instr gnt i is high for one cycle

instr addr o[31:0] Output Address

instr rdata i[31:0] Input Data read from memory

instr rvalid i Input

instr rdata i holds valid data when instr rvalid i is high.

This signal will

be high for exactly one cycle per request

instr gni i Input
The other side accepted the request. instr addr o

may change in the next cycle

Table 2.2: Instruction Fetch Signals

TABLE 2.2 shows the signals used in the core fetcher.

There are two prefetch flavors available:

1. 32-Bit word prefetcher. It stores the fetched words in a FIFO with three

entries.

2. 128-Bit cache line prefetcher. It stores one 128-bit wide cache line plus

32-bit to allow for cross-cache line misaligned instructions.

The protocol used to communicate with the instruction cache or the

instruction memory is the same as the protocol used by the LSU.
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2.2.7 Multiply-Accumulate

RI5CY uses a single-cycle 32-bit x 32-bit multiplier with a 32-bit result. All

instructions of the RISC-V M instruction set extension are supported. The

multiplications with upper-word result (MSP of 32-bit x 32-bit multiplication),

take 4 cycles to compute. The division and remainder instructions take between

2 and 32 cycles. The number of cycles depends on the operand values. Addi-

tionally, RI5CY supports non-standard extensions for multiply-accumulate and

half-word multiplications with an optional post-multiplication shift.

2.2.8 PULP ALU Extensions

RI5CY supports advanced ALU operations that allow to perform multiple in-

structions that are specified in the base instruction set in one single instruction

and thus increases efficiency of the core. For example, those instructions in-

clude zero-/sign-extension instructions for 8-bit and 16-bit operands, simple bit

manipulation/counting instructions and min/max/avg instructions. The ALU

does also support saturating, clipping, and normalizing instructions which make

fixed-point arithmetic more efficient.

2.2.9 Optional private Floating-Point Unit (FPU)

It is possible to extend the core with a private FPU, which is capable of per-

forming all RISC-V floating-point operations that are defined in the RV32F ISA

extensions. The latency of the individual instructions and information where

they are computed are summarized in Table 3. FP extensions can be enabled

by setting the parameter of the top-level file “riscv core.sv” to one.

The FPU is divided into three parts:

1. A simple FPU of 10kGE complexity, which computes FP-ADD, FP-SUB
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and FP-casts.

2. An iterative FP-DIV/SQRT unit of 7 kGE complexity, which computes

FP-DIV/SQRT operations.

3. An FP-FMA unit which takes care of all fused operations. This unit is

currently only supported through a Synopsys Design Ware instantiation,

or a Xilinx block for FPGA targets.

FP CSR

When using floating-point extensions, the standard specifies a floating-point

status and control register (fcsr) which contains the exceptions that occurred

since it was last reset and the rounding mode. fflags and frm can be accessed

directly or over fcsr which is mapped to those two registers. Since RISCY

includes an iterative div/sqrt unit, its precision and latency can be controlled

over a custom csr (fprec). This allows faster division / square-root operations at

the lower precision. By default, the single-precision equivalents are computed

with a latency of 8 cycles.

Floating-point Performance Counters

Some specific performance counters have been implemented to profile FP-kernels.
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2.2.10 PULP Hardware Loop Extensions

To increase the efficiency of small loops, RI5CY supports hardware loops. Hard-

ware loops make it possible to execute a piece of code multiple times, without

the overhead of branches or updating a counter. Hardware loops involve zero

stall cycles for jumping to the first instruction of a loop.

A hardware loop is defined by its start address (pointing to the first in-

struction in the loop), its end address (pointing to the instruction that will be

executed last in the loop) and a counter that is decremented every time the loop

body is executed. RI5CY contains two hardware loop register sets to support

nested hardware loops, each of them can store these three values in separate flip

flops which are mapped in the CSR address space. If the end address of the two

hardware loops is identical, loop 0 has higher priority and only the loop counter

for hardware loop 0 is decremented. As soon as the counter of loop 0 reaches 1

at an end address, meaning it is decremented to 0 now, loop 1 gets active too.

In this case, both counters will be decremented and the core jumps to the start

of loop 1.

In order to use hardware loops, the compiler needs to setup the loop before-

hand with the following instructions. Note that the minimum loop size is two

instructions and the last instruction cannot be any jump or branch instruction.

For debugging and context switches, the hardware loop registers are mapped

into the CSR address space and thus it is possible to read and write them via

csrr and csrw instructions. Since hardware loop registers could be overwritten

in when processing interrupts, the registers have to be saved in the interrupt

routine together with the general purpose registers.
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CSR Address Hex Name Acc. Description

11:10 9:8 7:6 5:0

01 11 10 110000 0x7C0 Ipstart[0] R/W Hardware Loop 0 Start

01 11 10 110001 0x7C1 Ipendt[0] R/W Hardware Loop 0 End

01 11 10 110010 0x7C2 Ipcount[0] R/W Hardware Loop 0 Counter

01 11 10 110000 0x7C4 Ipstart[1] R/W Hardware Loop 1 Start

01 11 10 110001 0x7C5 Ipendt[1] R/W Hardware Loop 1 End

01 11 10 110010 0x7C6 Ipcount[1] R/W Hardware Loop 1 Counter

Table 2.3: Hardware-Loop CSR Mapping

2.2.11 Pipeline

RI5CY has a fully independent pipeline, meaning that whenever possible data

will propagate through the pipeline and therefore does not suffer from any un-

needed stalls. The pipeline design is easily extendable to incorporate out-of-

order completion. E.g., it would be possible to complete an instruction that

only needs the EX stage before the WB stage, that is currently blocked waiting

for an rvalid, is ready. Currently this is not done in RI5CY, but might be added

in the future.
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Figure 2.6: RI5CY Pipeline.

FIGURE 2.6 shows the relevant control signals for the pipeline operation.

The main control signals, the ready signals of each pipeline stage, are propa-

gating from right to left. Each pipeline stage has two control inputs: an enable

and a clear. The enable activates the pipeline stage and the core moves forward

by one instruction. The clear removes the instruction from the pipeline stage

as it is completed.

Every pipeline stage is cleared if the ready coming from the stage to the

right is high, and the valid signal of the stage is low. If the valid signal is high,

it is enabled. Every pipeline stage is independent of its left neighbor, meaning

that it can finish its execution no matter if a stage to its left is currently stalled

or not. On the other hand, an instruction can only propagate to the next stage

if the stage to its right is ready to receive a new instruction. This means that

in order to process an instruction in a stage, its own stage needs to be ready

and so does its right neighbor.
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2.2.12 Register File

RI5CY has 31 32-bit wide registers which form registers x1 to x31. Register x0

is statically bound to 0 and can only be read, it does not contain any sequential

logic.

There are two flavors of register file available:

1. Latch-based

2. Flip-flop based

While the latch-based register file is recommended for ASICs, the flipflop

based register file is recommended for FPGA synthesis, although both are com-

patible with either synthesis target. Note the flipflop based register file is sig-

nificantly larger than the latch-based register-file for an ASIC implementation.

Latch-based Register File

The latch-based register file contains manually instantiated clock gating cells

to keep the clock inactive when the latches are not written. It is assumed that

there is a clock gating cell for the target technology that is wrapped in a module

called cluster clock gating and has the following ports:

� clk i: Clock Input

� en i: Clock Enable Input

� test en i: Test Enable Input (activates the clock even though en i is not

set)

� clk o: Gated Clock Output
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FPU Register File

In case the optional FPU is instantiated, the register file is extended with an

additional register bank of 32 registers f0-f31. These registers are stacked on top

of the existing register file and can be accessed concurrently with the limitation

that a maximum of three operands per cycle can be read. Each of the three

operands addresses is extended with an fp reg sel signal which is generated in

the instruction decoder when a FP instruction is decoded. These additional

signals determines if the operand is located in the integer or the floating point

register file. Forwarding paths, and write-back logic are shared for the integer

and floating-point operations and are not replicated.

2.2.13 Control and Status Registers

RI5CY does not implement all control and status registers specified in the RISC-

V privileged specifications, but is limited to the registers that were needed for

the PULP system. The reason for this is that we wanted to keep the footprint

of the core as low as possible and avoid any overhead that we do not explicitly

need.
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CSR Address Hex Name Acc. Description

11:10 9:8 7:6 5:0

00 11 10 000000 0x300 MSTATUS R/W Machine Status

00 11 00 000101 0x305 MTVEC R
Machine Trap-Vector

Base Address

00 11 01 000001 0x341 MEPC R/W
Machine Exception

Program Counter

00 11 01 000010 0x342 MCAUSE R/W
Machine Trap

Cause

01 11 00 0xxxxx 0x780-0x79F PCCRs R/W
Performance Counter

Counter Registers

01 11 10 100000 0x7A0 PCER R/W
Performance Counter

Enable

01 11 10 100001 0x7A1 PCMR R/W
Performance Counter

Mode

01 11 10 110xxx 0x7B0-0x7B7 HWLP R/W
Hardware Loop

Registers

11 00 00 010000 0xC10 PRIVLV R Privilege Level

00 00 00 010100 0x014 UHARTID R
Hardware Thread

ID

11 11 00 010100 0xF14 MHARTID R
Hardware Thread

ID

01 11 10 110000 0x7B0 DCSR R/W
Debug Control

and Status

01 11 10 110001 0x7B1 DPC R/W Debug PC

01 11 10 110010 0x7B2 DSCRATCH0 R/W
Debug Scratch

Register 0

01 11 10 110011 0x7B3 DSCRATCH1 R/W
Debug Scratch

Register 1

Table 2.4: Control and Status Register Map
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2.2.14 Exceptions and Interrupts

RI5CY supports interrupts, exceptions on illegal instructions and (if enabled)

on PMP filtered requests on the data and instruction bus. The base address of

the interrupt vector table is given by the mtvec address. As RI5CY supports

only vectorized interrupts, the interrupt 0 is reserved for exceptions as illegal

instructions, ecall and instruction or data prohibited accesses.

Interrupts

Interrupts can only be enabled/disabled on a global basis and not individually.

It is assumed that there is an event/interrupt controller outside of the core that

performs masking and buffering of the interrupt lines. The global interrupt

enable is done via the CSR register MSTATUS. Multiple interrupts requests

are assumed to be handled by event/interrupt controller. When an interrupt is

taken, the core gives an acknowledge signal to the event/interrupt controller as

well as the interrupt id taken.

Exceptions

The illegal instruction exception, ecall instruction exceptions cannot be disabled

and are always active. For PMP exceptions when enabled, every instruction

or data requests is filtered by the PMP which can possibly generated LOAD,

STORE or FETCH exceptions.
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2.2.15 Handling

RI5CY supports SW-assisted nested interrupt/exception handling. Exceptions

inside interrupt/exception handlers cause another exception, thus exceptions

during the critical part of your exception handlers, i.e. before having saved

the MEPC and MESTATUS registers, will cause those register to be overwrit-

ten. Interrupts during interrupt/exception handlers are disabled by default,

but can be explicitly enabled if desired. Upon executing an mret instruction,

the core jumps to the program counter saved in the CSR register MEPC and

restores the MPIE value of the register MSTATUS to IE. When entering an in-

terrupt/exception handler, the core sets MEPC to the current program counter

and saves the current value of MIE in MPIE of the MSTATUS register.

2.2.16 Debug

RI5CY supports the RISC-V debug specification 0.13 and it implementes the

execution based to reuse the existing core pipeline. RI5CY has a debug req i

input port that is sent by the system Debug Module. Such request makes the

core jumps to a specific address location where the Debug Rom is mapped.

Such address location is referred as to the parameter DM HaltAddress. RI5CY

implements the debug sets of registers as dpc, dcsr, dscratch0, dscratch1.
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2.3 OpenPULP Design History

Application PULP

Technology 40nm

Manufacturer TSMC

Type Research Project

Package QFN64

Dimensions 3200µm x 3200µm

Gates 1800kGE

Voltage 0.8-1.1 V

Power
153mW @ 1.1 V

, 450MHz

Clock 450MHz

Table 2.5: Main Details of “Mr.Wolf”

In 2017, Integrated Systems Laboratory (IIS) of ETH Zurich and the Energy-

efficient Embedded Systems (EEES) group of UNIBO have released a full ASIC

implementation of the OpenPULP RTL Design that was codenamed “Mr.Wolf”.

TABLE 2.5 shows the main specifications of Mr.Wolf.

Some features:

� One cluster with eight 32bit RISC-V Cores (RI5CY) supporting ICMF

extensions.

� Two IEEE-754 compliant FPUs each shared by four cores.

� A minimal area RISC-V (zero-ri5cy) fabric controller in the SoC module

that can be used for basic control operations.
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� Integrated LDO to generate all internal voltages.

� 64 Kbyte TCDM + 512 Kbyte L2 Memory

Figure 2.7: Mr.Wolf ASIC Implementation from PULP.
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2.4 Proposed Design

Work on this thesis project started targeting a complete RTL-to-GDSII flow of

the OpenPULP Core in three different synthesis modes. The first problem is to

check the synthesizability of the opensource RTL code of the core by running

a quick synthesis to compile RTL files and debug the issues that may prevent

synthesis tool to synthesize the design. The second issue was to use custom

clock gating cells from the technology library provided rather than structural

gating logic, to reduce potential power and area also. This was achieved by

manually instantiating the custom clock gating cells from the PDK inside the

clock gating module in the RTL. Synopsys educational kit (SAED 32/28nm)

CMOS technology is used through RTL-to-GDSII flow.

The RTL modifications can be summarized as follows:

� Using custom clock gating cells from the provided PDK rather than struc-

tural gating logic instantiated in the RTL.

� Removing floating-point unit from the RTL, by setting FPU parame-

ter in the top-level file “riscv core.sv” to ‘0’, since the core is generally

parametrized to isolate floating-point unit if needed. This modification

was done to reduce performance parameters such as area and power of the

core by isolating optional units such as Floating-point unit.
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Chapter 3

Core Implementation Flow

3.1 Logic synthesis

3.1.1 Flat Flow

To synthesis the design, the Design Compiler tool from synopsis was used. The

Design Compiler is considered the best synthesis tool in the market in this time.

In our style, logic synthesis flow consists of choosing constraints, removing levels

of hierarchy, synthesis the design, and pre-Layout verification.

Choosing constraints

we choose to design on the worst case process variation which is slow-slow at 0.7

voltage at temperature 125 degree of Celsius. During synthesis we found that

the longest path delay is in range of 14 nano-seconds to 15 nano-seconds and

with our knowledge of what comes next in layout, we decide to implement our

design at 20 nano-seconds clock (50 MHz) to leave a suitable margin when clock

network delay and interconnect delays are added. we define the clock latency

with 25% of clock period which is an estimation value of clock network delay.

we define clock uncertainty with 0.95 nano-seconds which is the uncertainty of

the clock edge to encounter for any clock disturbance from the clock source like

clock jitter and clock skew. we define the IO delay with 25% of clock period

and the output load capacitance to be 20 nano-Farad. we set input transition

with 0.1 nano-seconds which specifies a fixed transition time for inputs or in-
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out ports. and also, we define fanout to be 2.5 to ensure that the sum of the

fanout load attributes for input pins on nets driven by the specified ports or

all nets in the specified design is less than this value. and finally, setting the

clock gating style which used in our design to be latch with and gate which will

be an integrated circuit found in technology file which compiler will use it in

compiling phase as shown in figure 3.1.

Figure 3.1: clock gating style (Flat Flow)

Removing levels of hierarchy

In this phase we face a challenge this challenge is our design consists of large

number of gates that when flatten these gates and removing all levels of hierarchy

the tool can not optimize results as the memory available to this big module is

not enough to use so we reduce levels of hierarchy as much as we can to allow

tool to make optimization.

Now, we will discuss how we remove levels of hierarchy.

the default levels of hierarchy of the design is shown as in figure 3.2.
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Figure 3.2: default levels of hierarchy (Flat Flow)

by default, ultra high effort compilation removes levels of hierarchy as much

as it can so we allow tool to remove levels of hierarchy which help it to optimize

results, figure 3.3 shows us how the tool remove part of hierarchy.
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Figure 3.3: after ultra high effort compilation (Flat Flow)

And then we remove levels of part hierarchy by our hand to optimize results

more than this case, the removing of levels of hierarchy we done depend on more

iterations we done. figure 3.4 shows the final hierarchy we do which gives us

good results in timing, area, and power.
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Figure 3.4: final levels of hierarchy (Flat Flow)

As shown in the figure 3.4 only there are 3 levels of hierarchy which no

sub-levels of hierarchy found inside each one and other cells are flatten in top

module the number of gates in each module are:

� Top module: 1096

� If stage i: 2139

� Id stage i: 9019

� block1: 10766
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Synthesis the design

After choosing the library file and applying all constraints to the design and re-

moving (flatten) levels of hierarchy as much as we can to get good optimization

results in timing, area, and power we then compile the design using compile the

design with ultra high effort compilation with activation of gate clock option to

improve dynamic power of the design. during synthesis process we face a many

setup time violation and to solve these violations we use group pathing method

which group these violated paths and give it a high priority during optimization

and also setting maximum delay value to these paths helps to get good results.

Finally, the gate level netlist is created with no setup and hold time violations

at worst case PVT variation.

pre-Layout verification

After synthesis of the design in worst-case operating conditions with no vio-

lations, we test the design for best-case operating conditions to verify that it

works well or not. Actually, best case operating condition needs a large number

of buffers to add to design and as we know after Layout phase the timing results

change because of clock tree delay is replaced by an estimated clock latency and

parasitics delay of wires, So we decide to minimize the weight of paths slack’s

for example if the worst hold slack is -3 we minimize it to -2 and all other

paths are affected as worst one. This technique helps us to provide the available

location of buffers in the Layout phase and to get fewer violations during the

post-Layout verification phase for multi-corner multi-mode analysis.

43



3.1.2 Topographical Flow

First-Pass Synthesis

First-pass synthesis is performed by three main steps:

1. Loading RTL Files

2. Design Constraining

3. Mapping and Optimization

we start by reading RTL files then we define our timing constraints. We

define our target frequency based on a few trial runs of increasing clock frequency

and tightening design constraints, finally we settle with 50MHz clock frequency

that satisfies our timing requirements.

In design constraining phase, we first define uncertainty to the clock period

of 5% of clock period to account for some factors such as clock skew and clock

jitter that may affect our timing results afterwards, then define clock latency

with 30% of the clock period. Clock latency is by definition the propagation

delay measured from the clock definition point to the clock pin of sequential cells.

We also define the environment constraints for the boundaries of the core such as

IO delays with 25% of clock period, capacitive load of 20nF on the output ports

and input transition of 0.1ns on the input ports. These external constraints

are mandatory so that accurate estimation of the paths delay can be done. We

then divide all timing paths in our design to three path groups in addition

to the default path group which is the master clock path group, ”REGIN”

includes all timing paths from input ports to D pins of registers , ”REGOUT”

includes all timing paths from clock pins of registers to the output ports and

”FEEDTHROUGH” which includes all timing paths from input ports to output

ports. Path groups are groups of timing endpoints that have a common property.

This is a technique used by the tool in order to categorize timing endpoints into

several groups so that STA engine can work on the timing requirements of each

group separately.
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By default , our design has manually instantiated clock gating cells provided

by the PDK. In order to run a clock gating synthesis flow , Synopsys Design

Compiler requires from user to determine the style of clock gating cells to be

chosen from the standard library, Therefore, we define the clock gating style to

be used during mapping and optimization phase by the FIGURE shown below.

Figure 3.5: Clock gating style used during synthesis (Topographical Flow)

Then we proceed to mapping and optimization step where ultra high ef-

fort compilation is performed with some additional techniques such as registers

retiming to improve QoR of the core and clock gating to optimize total power.
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initial floorplan

intial floorplan including mainly four steps:

1. defining physical constraints.

2. Virtual Placement

3. Power Network Synthesis

4. Optimization for timing.

Initial floorplan is performed using Synopsys IC compiler, we start by read-

ing netlist from the first pass synthesis. based on a few trials we start to define

core dimensions (227micron x 454micron) which is the minmum dimensions that

satisfies physical constraints and core aspect ratio of 2 that achieves minimum

routing congestion.

Our PDK has 9 routable layer, we specifiy minimum routing layer to be

Metal2 and maximum routing layer to be Metal8 while Metal1 is used for power

rails and internal connections of the standard cells and Metal9 is used for cre-

ating the power rings. Virtual placement is then performed to allocate cell

placement locations in the core area , then we proceed to power network syn-

thesis in which we create vertical/horizontal power straps and connect them

to the standard cells. Power straps are made with Metal4 and Metal5 layers.

Maximum VDD IR Drop is 53 mV and maximum VSS IR Drop is 52 mV that

don’t exceed ten percent of voltage source which is 0.7 volt. Then we proceed

with connecting power network to all cells and commit it.

finally, we proceed to floorplanning timing optimization step and check if any

DRC violations before moving to next step. Inital floorplan passed without any

timing/DRC violations with overall routing congestion of 2.38%. DEF file that

contains all physical information needed for topographical synthesis iteration is

now extracted to proceed with second iteration of synthesis.
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Second-Pass Synthesis

In second-pass synthesis , we acutally perform topographical-mode synthesis

with back annotated cell placement locations and parasitic interconnections

that are extracted from initial floorplan. We read RTL files again, SDC file

and extracted physical constraints from initial floorplan. Wire load models are

not used in this pass because the tool will depend on accurately extracted phys-

ical constraints now for static timing analysis rather than timing estimations

as WLMs. Ultra high effort compilation is performed again with clock gat-

ing techniques and timing high effort scripts that enhances QoR in addition

to physical guidance flow that is made especially for Design Compiler in topo-

graphical mode. Physical guidance flow enables Design Compiler Graphical to

perform enhanced placement that is consistent with the IC Compiler placement

commands functionality and enhanced post-placement delay optimization in or-

der to provide a better optimized starting point for physical implementation.

As a result, placement is aligned between Design Compiler and IC Compiler,

improving runtime, quality of results (QoR), and correlation.

We managed to reduce power, area and get more improvment in timing as

shown in the next chapter, Topographical DC compiler taking physical con-

straints in his consideration made a remarkable utilization in area , power ,

runtime and QoR, rather than first pass synthesis. We then proceed to the

actual place and route flow afterwards in the next sections.
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3.1.3 Hierarchical Flow

General logic synthesis flow is preformed as shown in 3.6.

Figure 3.6: Generic logic synthesis (Hierarchical flow)

In the hierarchical flows there are many techniques that may be used such as

bottom-up or top down flow , we used both at different stages . The synthesis

step is preformed by Synopsys Design Compiler (DC) the most powerful and

the more commonly used tool in market.
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First-Pass Synthesis

First pass synthesis is done by the following main steps:

1. Reading the RTL (HDL) Files.

we manually instantiated integrated clock gating cells from the target

library to avoid over constraining the clock gating design rules such clock

gating setup or hold timing constraints, pre-mapped cells Design compiler

(DC) takes its design rule constrains in its account.

Figure 3.7: Clock gating style that is used by Hierarchical flow

2. Apply Logical Constrains

constraining design is partitioned into two main sections:

(a) design rule constraints.

I/O delays ,clock period ,clock uncertainty ,capactive load , max

transition and max fan-out ..,etc

(b) optimization constrains

grouping each related paths to guide the tool to do the best opti-

mization and focus on each path group separately , such as regin

(in-to-reg) , regout (reg-to-output), inout (inputs-to-outputs) and

the default clock path group and leakage power , dynamic power ,

max area , wire-load modeling and operating condition ...,etc

our constraints values were as follows :

� clock period: 20 ns
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� clock latency : 7.5 ns (37.5 % of clock period)

� clock uncertainty :0.75 ns

� input transition : 0.1 ns

� output delay : 5 ns ( 25% of clock period )

� input delay : 6 ns ( 30 % of clock period )

� output capactive load : 0.02 fF

� operating condition: the worst case ( ss0p7v125c )

(c) Compiling and Optimization.

we have done the compilation step by high ultra compilation efforts

and some other techniques such as clock gating to improve (QoR) of

timing , power and area .

First pass netlist in done using top-down approach which is constraining the

top module only and as DC by default propagates the top module constrains to

the lower hierarchical modules and compiling the whole design under the worst

operating condition of a PDK (student version PDK ) saed32rvt ss0p7v125c

and results the whole design without any setup timing,hold timing or DRC

violations.

Design Planning

Design planning stage consists the following major steps :

1. Design import, floorplanning

2. Plan Group creation

3. Virtual Flat Placement

4. Hierarchical Placement

5. Power Network Synthesis and Analysis

6. Pin Assignment

7. Timing Budgeting
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8. Committing the hierarchy

Figure 3.8: Design Planning steps followed in Hierarchical Flow

� Design Import and Floorplanning :

at this step we import the full netlist which is generated from the top-down

flow and define the physical constrains from the core area by specifying

the core aspect ratio and the utilization factor which is define the ration

between the estimated interconnections and routing area and the physical

cells area, the metal layers used during design planning are from Metal1

to Metal9. Metal layers are divided such as Metal7 and Metal8 are used

for power straps, Metal9 is used for core power rings, and Metal3 up to

Metal5 are used for clock tree synthesis. While Metal1, Metal2 and Metal6

are used mainly for signals routing.
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� Plan Group creation :

in this step we define the physical hierarchy of the design and the physical

constrains of each the decision of this hierarchy in supported by the tool

that defines it based on the area and routing considerations

� Virtual Flat Placement :

Virtual flat placement is the simultaneous placement of standard cells and

macros for the whole chip; it is a fast initial flat placement performed for

design planning purposes. For designs with macros, plan groups, or volt-

age areas that have not already been placed, virtual flat placement can

help you decide on the locations, sizes, and shapes of the top-level phys-

ical blocks. This placement is “virtual” because it temporarily considers

the design to be entirely flat, without hierarchy. After you decide on the

shapes and locations of the physical blocks, you restore the design hierar-

chy and proceed with the block-by-block physical design flow.

� Hierarchical Placement :

this step is also e simultaneous placement of standard cells and macros

but for each plan group after shaping the plan groups inside the chip die

area
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� Power Network Synthesis and Analysis

the power planning steps is shown in figure 3.9.

Figure 3.9: Power planning steps in Hierarchical flow

� Pin Assignment

this step is mainly for use pin assignment to assign pins at the top level of

the design, or to assign pins on soft macros and plan groups.For top-level

pin assignment, the tool considers the top-level connections to plangroups,

macros, and pad locations when it determines where to assign the pins. For

block-level pin assignment, the tool considers the cell placement inside the

soft macro or plan group when it assigns pin locations. The tool minimizes

the wire lengths from the pins to the internal connections within the soft

macro or plan group. Use block-level pin assignment in a bottom-up design

flow.

� Timing Budgeting

During the design planning stage, timing budgeting is an important step

in achieving timing closure in a physically hierarchical design. The timing

budgeting determines the corresponding timing boundary constraints for

each top-level soft macro or plan group (block) in a design. If the timing

boundary constraints for each block are met when they are implemented,

the top-level timing constraints are satisfied.

Timing budgeting distributes the timing constraints from the top level
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to the block level, creating a new constraint set for each of the top-level

blocks in the design. Budgeting also allocates slack between blocks for

timing paths crossing the block boundaries. Timing budgeting propagates

the timing constraints downward one hierarchical level at a time. Timing

budgeting also propagates timing exceptions to block-level constraint sets.

� Committing the hierarchy after finalizing the floorplan by converting plan

groups into soft macros. Committing the hierarchy creates a new level

of physical hierarchy in the virtual flat design by creating CEL views for

selected plan groups.

figure 3.10 shows the plan groups after committing and turns up to be

soft macros

Figure 3.10: Hierarchy Commitment in Hierarchical Flow
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Second-Pass Synthesis

Second pass synthesis is done using the bottom-up approach this step is required

since the design is optimized in the first path without any correlation between

which we will be done in the Design planning and the logic synthesis , so it

is required to avoid the timing violations which is appeared in the block level

implementation. This step begins with the budgeted constrains for each block

and the DEF or the floorplan file for each block which contains all the physical

constraints which is need to be consider in the logic synthesis stage. This second

pass logic synthesis is preformed by also Synopsys Design Compiler but in the

topographical mode with also ultra high effort compilations with clock gating

techniques for power reduction and optimizations and also with spg option to

consider also the congestion in each blocks as well as in the top module.

note: All the Design Planning steps and the second pass ( bottom-up) logic

synthesis are preformed by the Synopsys Reference Methodology scripts .
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3.2 Place And Route

3.2.1 Flat Flow

After successfully synthesizing the core with the target clock and constraints,

we then proceed to place and route the entire core inside the chip area.

Floorplanning

Floor planning is first step to begin with it in the place and route flow where

it is a common stage in our three flows. After receiving the clean netlist from

synthesis tool, we then start to plan the floor area of the physical standard cells

by inserting them inside the boundaries of die area. Boundaries of the core area

are defined by the aspect ratio which is the length over the width of die. We

chose the aspect to ratio to be 2, so that we can be able to reduce the congestion

issue in the vertical-based axis.

Figure 3.11: Floorplan of Riscv Core (Flat Flow)
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Figure 4.7 shows the raw die with 70% in utilization of the core area and

aspect ratio of 2. In floorplanning, we have set the virtual placement strategy

to be virtual in-place optimization, or virtual-IPO, in order to reduce the con-

gestion when the timing is not critical as we have a good positive slack margin

so that we may not need to perform a timing driven placement. The last step

in this section is to apply the virtual flat placement which is the core of our

design flow with timing-driven and no hierarchy gravity so that the cells can

move freely in any location in the core without any constraints.

After we had virtually placed the design in the core area and set the placing

strategy, we become ready for establishing the grid of power which is going to

feed the standard cells with the needed supply of voltage.

Figure 3.12: PNA voltage drop heat map (Flat Flow)

In order to synthesize the power network, we have to follow some steps. First

of all, we have defined the power and ground nets and ports in each standard

cell so that the tool can be able to connect later to the grid. After that, we have

constrained the power-ground rails and core rings so that they do not exceed 30
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rails either in vertical or horizontal directions. We then chose metal 5 and metal

6 layers to build our power grid on them and the maximum voltage drop not to

exceed 10% of power supply. The power supply in the worst-case study is 0.7

volt so that the maximum drop must be 0.07 volt. In order to simulate the power

flow in the network, the tool needs virtual power pads so that it can calculate

the available current flown from them to be able to strictly construct the power

grid in virtual ports basis. Figure 3.12 illustrates the voltage drop map after

synthesizing the power grid and virtual pads. The red color indicates the worst

voltage drop achieved in the network and the outside colors is indicating the drop

which is gradually decreasing in all directions outside the interior red-colored

circle.

Placement

After performing a virtual flat placement and synthesizing the power network

on the chip, we applied a standard coarse placement step. In this step, we

performed a congestion-driven placement in order to improve the routing con-

gestion in the design, and the result was an overflow of a few GRC cells which

was indicated by approximately 0% of congestion in both vertical and horizontal

directions. The timing requirements were also satisfied in this stage, and the

design was not optimized in area due to conservation of inserted buffers to clean

hold time in some corner case. Therefore, the design was clean in timing and

congestion, but the area would be optimized later in the final clean-up stage.
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Figure 3.13: Hierarchy map of the core (Flat Flow)

Figure 3.13 illustrates the post-placement hierarchy of the design. There

are four colors, each of them indicates a high-level block in the hierarchy. The

orange color dominates in the design area since it indicates the most of the

flattened blocks in the design.

CTS

After placing the design with no congestion and timing violations, the next step

is to build our clock tree. In clock tree synthesis stage, we are going to discuss

the clock tree construction process, and its steps. The design contains a single
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clock source distributed over the whole chip. This stage comprises of three main

sub-stages each of them has its own characteristics, but before establishing these

three steps, we have to set some configurations and rules in order to build our

tree without any problems. We going to discuss these rules and constraints in

detail.

First of all, we have set the fanout of the clock nets not to exceed the value

of 20 in order to decrease the clock latency and skew as much as possible.

The second configuration is the routing rules. We chose to establish our clock

network in metal 8 and metal 9 layers with default routing rules for clock sinks,

but non-default routing rules for clock nets. We have to widen the wires so as

to achieve good latency and decrease the electromigration and crosstalk effects.

In order to help the tool to build the network with some constraints, we gave

it some information about timing requirements. The required minimum skew

was to be 0.1 nanoseconds and maximum clock transition is 0.2 nanoseconds,

and the target clock latency was to be 1 nanosecond.

After all, we have become ready for initializing the first step. This first step is

considered as only building the clock tree itself where inserting the buffers with

different sizes and different locations so that we can achieve balanced network

with minimum skew and latency. This step was done without routing the clock

nets so that we can have some liberty to have best results without the overhead

of routing the clock nets as routing can take significant time, and we didn’t need

it in this step.

In this phase, we have encountered some violations like minimum clock pulse

violation. This problem occurs due to much buffering in the same clock path

since the clock pulse decreases in width when passing through a buffer. One

solution to this problem is to reconfigure the whole clock tree many times so

that the clock tree has the required minimum pulse width. If this solution fails

due to having many buffers which cannot be manageable in this way. We can

resort to using inverter-based clock tree. The inverter can decrease the clock

pulse width with a smaller amount than buffer. As a result, the tool can handle

this violation in a better manner.

The next step is to perform a post-CTS optimization. In most cases, synthe-

sizing the clock tree can cause timing violations in setup and hold manners in
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addition to design rule violations such as maximum capacitance and maximum

transition violations. Therefore, we have to perform an additional synthesis step

after successfully build the clock tree. By enable hold time violations fixing in

the tool, we can fix them side-by-side with setup violations. We at last have

finally clean timing and DRC results.

The last step is routing the clock nets and clock buffers together. After con-

structing the clock tree and performing post-CTS optimizations, we finally can

route the clock wires with relief. Routing the clock nets can affect the setup and

timing requirements with small violations due to the finite parasitic resistance

and capacitance in the wires. Therefore, we have to do another synthesis step

with a separate synthesis engine that is dedicated for timing and DRC violations

in any stage in the PNR process.

Figure 3.14: Clock Tree Network (Flat Flow)
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Figure 3.14 illustrates the clock tree network distributed over the whole chip.

As shown in the figure, the density of clock nets in not balanced in the chip due

to non-uniform distribution of the sequential devices. There are 20 levels in this

tree. Each of them is illustrated by a certain color.

Routing

After establishing the core clock network without any timing and DRC vio-

lations, the physical design is now ready for being routed. But before going

through the routing stage, we have to check for congestion so that the tool can

route with ease. The resultant congestion in post-CTS stage is approximately

0% in both vertical and horizontal directions.

After that, we can enable signal integrity options in order to guarantee a

robust routing so that all signals find their way to their sinks without any signal

drops. These drops can sBefore performing actual routing, we need to define

some rules and configure some options in order to achieve clean routing without

any violations. First of all, we defined the delay calculation options so as to

calculate the delay of the actual clock and signal nets. There are two methods

for the tool to calculate the delay: Elmore and Arnoldi. Arnoldi method is

considered more accurate in delay calculation but needs a more powerful com-

puter to perform the calculation without any problem since tool got crashed

when using this method. Therefore, we had to use the less accurate one which

is Elmore. The second option is to specify the routing layers. We chose to

route at maximum of three layers which are metal-2, metal-3 and metal-4 lay-

ers. Another routing options that we selected is to perform timing-driven global

and detailed routing so that the tool can take timing into account when rout-

ing.ignificantly damage the entire chip. In our case, we have chosen to enable

crosstalk prevention and static noise reduction.

Consequently, we can forward to our routing steps directly. The routing

process comprises of three main phases: global routing, track assignment and

detailed routing. Each of them is discussed in detail in appendix chapter in

the tail of our document. Another step that comes in final phase is search and

repair. This step is dedicated for fixing physical DRC violations when routing

is complete. By analyzing the congestion one more time before routing, we can
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notice that approximately no congestion found in the design. Therefore, we

can skip the separate global routing stage. IC compiler tool offers a routing

command that can perform the three routing phases by only one-hit command.

First of all, we have run an initial routing phase instead of full routing

which is time-consuming and can be useless if the initial routing is done with no

problems. After performing this step, we found many DRC violations on nets

and timing requirements was not met. Therefore, we had to skip this step and

begin a full routing phase. This phase covers all routing issues but has long

runtime. After successfully performing the first full routing phase, we found a

few timing and physical DRC violations. The tool also offers an incremental

routing phase which can fix timing and DRC violations without performing the

whole routing of the design from the beginning. We can notice that the tool

can fix the setup violations in this stage by adding more length to the wires and

adding more vias in order to increase the delay of the timing path. On the other

hand, the hold time fixing can be done by shortening the wires and reducing

the number of vias as much as possible.

After all, we have got a clean timing and physical DRC results which will

be exposed in detail in results chapter.

Chip Finishing

The final step in the place and route is to do the final touches on the chip. The

main reason behind this step is the manufacturing process which needs some

steps to guarantee error-free chip during manufacturing process. This stage

essentially comprises of four elements as follows:

� Wire spreading and widening

� Standard cell filling

� Redundant via insertion

� Metal filling

The concepts and reasons for performing these steps are discussed in detail in

the appendix chapter. So, we can only discuss the results of the standard chip

finishing phase.
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Figure 3.15: Final die shape after chip finishing (Flat Flow)

As shown in Figure 3.15, the die has filled with dummy standard cells and

dummy metal wires in order to fill the gaps among the actual cells and wires.

The dummy cells appear in the light blue color and actual cells appears in dark

violet color.

After performing this stage, we have to perform a final check for the whole

design against timing and DRC violations. If any of them appears, we can

perform a simple synthesis to recover these errors, then the chip is now ready

for being manufactured after performing a post-layout sign-off in an STA tool

to accurately check the timing of the entire chip.
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3.2.2 Topographical Flow

In this section we describe in more details the attempt to implement the Open-

PULP Core based on the flow described in Appendix A, Synopsys IC Compiler

tool is used in the implementation.

Floorplanning

Figure 3.16: Floorplan of the OpenPULP Core (Topographical Flow)
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FIGURE 3.16 shows floorplan of the chip. In floorplanning stage, we start

by defining Die/Core area, aspect ratio, core utilization and IO2Core margins.

Aspect ratio is the ratio between height and width ( Height/Width), core uti-

lization means the percentage of total cell area relative to the total area of

the chip.Core Height is 238.488micron, and core width is 476.52micron. Total

area increased relative to the initial floorplan performed previously and did not

decrease, since we added ECO changes from Pre-layout STA such as buffers

insertion and cell sizing, which result in an increase in the cell area. Core uti-

lization is defined by 70% , core aspect ratio is ”2” and IO2Core margins are

5micron in all sides of the chip. Then we define the metal layers that will be

used for routing stage, this is important at floorplanning stage so that PnR tool

can perform global routing to estimate routing regions and potential congestion

properly. The technology file provided with the PDK contains 9 routable layers,

minimum routing layer is chosen to be Metal2 and maximum routing layer is

Metal8.

These layers will be used as the following:

� Metal2 and Metal3 for signals routing.

� Metal4 and Metal5 for horizontal/vertical power straps.

� Metal6-Metal8 for clock signal routing as higher metal layers have less re-

sistance than lower layers which means lower interconnections propagation

delay.

Virtual placement is then performed to allocate cell placement locations inside

the chip core. After that we proceed to power network synthesis stage in which

we construct power straps and connect them to standard cells at the bottom of

the chip.
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Figure 3.17: PNA Voltage Drop Map (Topographical Flow)

FIGURE 3.17 shows the voltage drop severity across the whole chip. PNA

Voltage drop is constrained by the voltage supply value, here voltage supply of

0.7 V is used which constrains the maximum IR Drop value by 70 mV ( 10%

of the voltage supply). We achieved maximum VDD IR Drop of 50 mV and

maximum VSS IR Drop of 49.1 mV. These values are the values inside the red

region of FIGURE 3.17 which are acceptable as long as they are below 70 mV.
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Global routing is then performed, routing congestion value is found to be

2.28% mostly concentrated at horizontal routing resources by 2.2%. While ver-

tical routing congestion is 0.08%.

Placement

Figure 3.18: Hierarchy map of the core (Topographical Flow)

FIGURE 3.18 shows the virtual cell placement locations defined from floorplan-

ning stage, note that cells from the same block are not tied together, this is with

the help of no-hierarchy-gravity placement that results in a better QoR. During

placement stage, non-default routing rules are defined for clock nets, these rules
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basically are double-spacings and double-widths of the clock nets. Non-default

rules are often used to “harden” the clock, it means to make the clock routes less

sensitive to crosstalk or electromigration (EM) effects, these rules are needed to

be taken into consideration at placement stage which is before actual routing of

clock nets. Here we define 4x spacings and 4x widths to ensure less sensitivity to

crosstalk and electromigration effects. Additional path grouping here is made

for integrated clock gating cells (ICG) enable pins to tighten timing require-

ments on these pins during placement. As mentioned in previous sections, path

groups are groups of timing endpoints that have a common property. This is a

technique used by the tool in order to categorize timing endpoints into several

groups so that STA engine can work on the timing requirements of each group

separately, this can help in more QoR improvements.

CTS

In CTS, Clock network is built either with inverters or buffers. When trying

to build the clock network of the core with buffers, max transition violations

appeared at the clock pins of sequential cells during Pre-CTS optimizations. Al-

ternative solution was to build it using inverter cells with various sizes provided

by the PDK. Buffer based clock tree can introduce asymmetry in the rise and

fall delays, and hence the high and low pulse widths of the clock signal, this

asymmetry can cause max transition violations at the clock sink pins. To avoid

such a problem, we used inverters rather than buffers, advantage of using an

inverter based clock tree is that the high pulse width and the low pulse width

would be symmetrical.

Another problem appeared after clock nets routing is max capacitance vi-

olations on some clock sink pins located in id stage i block. Solution for such

a problem was to insert an extra stage of inverters at these sink pins to de-

crease heavy loading on the violating clock nets. This modification results in

an increase in the global clock skew, but this is not an issue as long as global

clock skew is below maximum clock uncertainty, specified at logic synthesis
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stage. FIGURE 4.17 shows the clock network of the core, Clock network is

built across 26 levels. Each level is colored in a different color as shown.

Figure 3.19: Clock Network of the core (Topographical Flow)
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Routing

All signals nets are actually routed during Routing stage, clock signals are al-

ready routed in CTS stage. Routing is performed on four main steps:

1. Global Route

2. Track assignment

3. Detail Route

4. Search and Repair

Global routing is performed here again to assign nets to specific metal layers

and global routing cells. Track assignment assigns each net to a specific track

and lays down the actual metal traces and detail routing actually route the

specified nets from previous steps. Search and repair is a method to solve any

DRC violations that appeared from previous steps through multiple loops using

progressively larger SBox sizes.

Chip Finishing

Chip finishing consists of four basic steps:

� Metal layers spreading and widening

� Standard cell filling

� Redundant vias insertion

� Metal filling

Metal layers spreading and widening is performed to protect minimum-

width interconnecions from opens and minimum-spacing interconnections from

shorts, this could happen because of any random particles that could fall on
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the chip and damage it during fabrication process. But spreading and widening

may introduce new timing violations, to avoid such a problem we may prevent

spreading and widening from timing-critical nets by setting setup threshold of

2ns and hold threshold of 0.2ns in our case. These thresholds mean if any timing

path that has a setup margin or hold margin below or equal to these values, no

spreading or widening is performed on any net of these paths.

Standard cell filling is performed in the empty locations in the standard

cell rows to make the chip uniform in density and to improve the yield of the

chip. Some locations may be still empty because if filling occurred at such

locations , it would lead to DRC violations.

Defects in vias is a serious issue and needs to be taken into account, Re-

dundant vias insertion is an insertion of extra vias beside the original vias

because if any via of both original via and extra via is defective , connection

between metal layers will not fail as another contact will still connect metal

layers together.

Metal filling is performed to protect metal interconnections in low metal

density regions from over-etching during fabrication process. Timing driven

metal filling specifically is performed to preserve timing on critical nets, metal

fill near critical nets on the same layer, upper layer, and lower layer are removed

or trimmed. FIGURE 3.20 shows the core after chip finishing step
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Figure 3.20: OpenPULP Core after chip finishing (Topographical Flow)
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3.2.3 Hierarchical Flow

After the second pass logic synthesis ,we also tried to do full hierarchical flow

in IC Compiler , but unfortunately the design has timing violations issues in

the top level integration so we turns to a plan B which is to preserve the hier-

archic y in the plan groups and complete the other PnR flow as the baseline flow .

Floorplanning

figure 3.21 shows the shape of plan groups .

Figure 3.21: Plan Groups in Hierarchical Flow

Power Network Analysis

Figure 3.22 shows the power network synthesis map, we have synthesized the

power network at voltage supply 1.5 Volt with maximum IR Drop of 10% of

voltage supply value. Power network was synthesized successfully according to

the constraints applied.
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Figure 3.22: Power network synthesis map in Hierarchical Flow

Placement

As shown in figure 3.23, we can see that standard cells locations is preserved

based upon the hierarchy commited from synthesis stage.

Figure 3.23: Hierarchy Placement in Hierarchical Flow
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CTS

figure 3.24 shows the clock tree distribution across the design .

Figure 3.24: Clock tree network in Hierarchical Flow

Chip Finishing

figure 3.25 shows the chip in its final layout, several steps is made here such as

standard cells filling to improve chip yield and to make the chip more uniform

in density. Also metal filling is done here with taking into consideration critica-

timing nets to be avoided so that no timing violations are being introduced.

Metal spreading and widening is also made to prevent problems of over-etching

and any shorts/opens in interconnections that could lead to a layout failure.
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Figure 3.25: Chip finishing in Hierarchical Flow
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3.3 Formal Equivalence Checking

Equivalence checking is performed using Synopsys Formality tool. Verification

can be done between RTL-Gate Netlist, Gate Netlist-Gate netlist and RTL-

RTL. In this section, we will verify Post-layout netlist versus Pre-layout netlist

to make sure they exhibit exactly the same behavior, first we perform compare

points matching so that formality tool can perform formal verification properly.

For all styles There is zero unmatched points which means that the environment

is ready for verification as shown in Figure 3.26. Gate-to-Gate netlist verifica-

tion is now performed.

Figure 3.26: Compare points Matching Report
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3.3.1 Flat Flow

Figure 3.27: Formal Equivalence Report (Flat Flow)

FIGURE 3.27 shows that all compare points with total number of 2704 passed

verification successfully.
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3.3.2 Topographical Flow

Gate-to-Gate netlist verification is now performed. FIGURE 3.28 shows that

all compare points with total number of 2668 passed verification successfully.

Figure 3.28: Formal Equivalence Report (Topographical Flow)
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3.3.3 Hierarchical Flow

Gate-to-Gate netlist verification is now performed. figure 3.29 shows that all

compare points with total number of 2571 passed verification successfully.

Figure 3.29: Formality Equivalence Report in Hierarchical flow
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3.4 Post-layout STA

3.4.1 Flat Flow

After performing a clean place-and-route phase, the next necessary step is to

make timing verification on a high precision static timing analysis tool as the

timing aspect is a very sensitive aspect to take care of. Our STA tool that we

have worked on is Synopsys PrimeTime, and we are going to discuss our work

on it.

The target of using this tool in this stage is to verify timing on a spectrum of

operating conditions that the design is expected to operate at. These operating

conditions have three main dimensions which are temperature, operating voltage

and manufacturing process. Another dimension that can be taken into account

is MOSFET threshold voltage. We are going to spread them below.

In manufacturing process analysis, we can classify it to three elements: slow-

slow, typical-typical, and fast-fast process. As illustrated from the naming, the

slow-slow process has the highest standard cell delay among the others, and

then the fast-fast process has the lowest one among them. With respect to the

ambient temperature, we can say that the highest temperature-based cells have

the highest delay, and the lowest temperature-based cells have the lowest delay.

Another affecting aspect is the operating voltage, it also has a significant

impact on the propagation delay, since the highest voltage-based cells have the

lowest delay, and the lowest voltage can contribute with a higher delay.

The last affecting factor is the MOSFET threshold voltage. There are three

main types of threshold voltage based on MOS devices, and they are low volt-

age threshold (LVT), regular voltage threshold (RVT), high voltage threshold

(HVT). This factor is also significantly affecting the delay of the standard cells.

The low threshold-based cells have the lowest delay, and the highest one has the

highest propagation delay. In our case, we have only regular voltage threshold-

based libraries. This type of libraries has a variety of the previously mentioned

operating conditions.

Therefore, we can conclude that the best-case library has the lowest temper-

ature, the highest voltage, and the fastest process, and the worst-case library

has the inverse of these condition.
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After recognizing the expected cases, we can go through our work, and handle

all of these cases in order to meet the setup and hold timing requirements.

One the significant problems that we have faced is that we have performed the

synthesis process in the worst-case library. That implies good setup timing

results, but deeply worst hold-timing results, since the timing paths is well-

optimized for the worst case and have minimum possible delay so that these

paths cannot hold enough time for data to be well-stabilized.

In order to solve this problem, we have to insert plenty of buffers to boost

the delay, and that can be achieve in each case separately.

Recalling to the inputs of the tool, the tool needs to read the Verilog netlist

and the operating library that we are going to analyze its case, in addition to

the constraints file, and the parasitics file so that we can define the actual delays

of the physical nets.

Till now, everything appears to be great, but a problem arises when setting

up the environment to work, and this problem is that the tool calculates the

propagation delay of the nets based on a non-real resistance and capacitance

values, thus that can lead to non-real delay values. As discussed in the library

section in the appendix, the standard cell library has a table to calculate the

delay based on it. When the parasitic values exceed these values, the STA tool

begins to make extrapolations based on the last parasitic values that defined in

the table, and it takes this maximum value of defined delay and adds an extra

10% of delay. This can result in non-accurate delay calculations at all. That

conclusion illustrated that the parasitic values, one way or another, is wrongly

written in the file.

Therefore, we have resorted to another manipulating solution, and that so-

lution was to work with DDC-based files. These files contain the design netlist

information in addition to the calculated values of the parasitics, and also the

design constraints are built-in in this file. To ensure that these values are valid,

we have made a small comparison between the end-point path slack histogram

in both layout tool and STA tool, and the result was approximately the same.

After finishing the setup successfully, we have stepped forward to analyze

the design against the different cases. In most cases, the design had clean setup

timing, and the problem was at the hold time. There are two was ways to
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solve such problems. The first one is to fix them in the layout tool and forward

the design to layout tool to verify the results. The other one is to fix them in

STA tool itself and to write the changes that have done to the design, and then

forward them the layout tool to make these changes on the design, and finally

the tool can write a new DDC-based file that contains the changes. That new

file can be forwarded again to the STA tool for further analysis.

After experiencing the two method, we have decided to build our final results

based on the second method. The PrimeTime STA tool offers a built-in synthesis

engine to fix the setup and hold timing violations. We can take case study

example, and we can consider all the other cases were treated by the same

analogy.

For example, we have a certain library causes a certain hold time violation to

the design. Therefore, we basically have inserted buffers with different sizes to

recover the violation, but unfortunately, the STA cannot fix the setup and hold

time violations simultaneously. Thus, a setup time violation can easily arise.

After few iterations for solving the setup and hold violations, we can finally

forward the changes file, which can be named “ECO netlist”, to the layout

tool. Then, the layout have to do some modifications on the design such as

performing eco routing to resolve the expected violations that can be resulted

from the “ECO netlist”.
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3.4.2 Topographical Flow

Post-layout static timing analysis is mandatory to verify performance of the de-

sign over several operating conditions. In this section we will describe briefly the

procedure followed to verify OpenPULP Core over more than twenty operating

conditions to ensure proper functionality without any violations.

Corner Name Process Power Supply (V) Temperature °C

ss0p7v125c Slow - Slow 0.7 125

ss0p75v125c Slow - Slow 0.75 125

ss0p95v125c Slow - Slow 0.95 125

ss0p95v25c Slow - Slow 0.95 25

ss0p95vn40c Slow - Slow 0.95 -40

tt1p05v125c Typical - Typical 1.05 125

tt1p05v25c Typical - Typical 1.05 25

tt1p05vn40c Typical - Typical 1.05 -40

tt0p85v125c Typical - Typical 0.85 125

tt0p85v25c Typical - Typical 0.85 25

tt0p85vn40c Typical - Typical 0.85 -40

tt0p78v125c Typical - Typical 0.78 125

tt0p78v25c Typical - Typical 0.78 25

tt0p78vn40c Typical - Typical 0.78 -40

ff1p16v25c Fast - Fast 1.16 25

ff1p16vn40c Fast - Fast 1.16 -40

ff0p95v125c Fast - Fast 0.95 125

ff0p95v25c Fast - Fast 0.95 25

ff0p95vn40c Fast - Fast 0.95 -40

ff0p85v125c Fast - Fast 0.85 125

ff0p85v25c Fast - Fast 0.85 25

ff0p85vn40c Fast - Fast 0.85 -40

Table 3.1: Verified Corner Cases
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TABLE 3.1 shows all the verified cases out of total cases of 27. The remaining

five cases have DRC violations that require to go back and solve them during

PnR stage, this requires to go through what is called Multi-corner Multi-mode

PnR flow ( MCMM). But the available resources ( computer machine ) couldn’t

help at the time of this thesis. However, the core can typically operate properly

on 22 cases out of 27. The type of operating condition analysis used during STA

is On-Chip variations ( OCV ) , it specifies that the minimum and maximum

operating conditions for each corner case represent, respectively, the lower and

upper bounds of the maximum variation of operating conditions on the chip. All

maximum path delays use the maximum operating condition, and all minimum

path delays use the minimum operating condition. Cells and net delays are

derated by early derating factor of -10% and late derating factor by +10%.

Long path delays (for example, data paths and launch clock path for setup

checks or capture clock paths for hold checks) are derated by +10% , and short

path delays (for example, capture clock paths for setup checks or data paths

and launch clock paths for hold checks) are derated by -10%.

3.4.3 Hierarchical Flow

Post-layout STA is really important to confirm the layout design. Sometimes

bad wires, I/Os and some other effects will change the parameters in circuits and

the real performance badly. The parasitic capacitances extracted according to

how your layout is designed might be critical in affecting the actual performance

of your design. In order to get an idea of how the design would work from

your layout, you should perform a post-layout STA from the extracted view.

The procedure is identical to that for running STA verification on your logical

netlist. So this helps you to get idea about how much deviation you’re getting

from both the results. General tolerance of 5% is accepted. If both pre-layout

and post-layout STA matches exactly(or with the tolerance) then you’re good

to go. Our implementation of the core is analyzed using OCV analysis type,

and also under time derateing factor by -10 % for the minimum paths and the

longest paths have a derate factor by +10% to more restrict the design to meet

timing requirements under the extreme condition.
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Chapter 4

Results

4.1 Synthesis results

4.1.1 Flat Flow

Area results

Initial results After removing levels of hierarchy After optimization

total cell area 69677.898602 66889.96648 65878.953995

net interconnect area 15983.773588 16765.1871 16876.197741

total area 85661.672189 83655.15358 82755.151736

46.4%

41.5%10.0%

2.1%

block1

id stage

if stage

other flatten cells

Cell Area percentage distribution of Top level hierarchy
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60.9%

18.7%

20.4%
Combinational

Noncombinational

Net interconnect

Total Area percentage distribution

power results

Initial results After removing levels of hierarchy After optimization

leakage power 2.0278 mw 1.9476 mw 1.9376 mw

switching power 17.9883 micron-watt 18.1487 micron-watt 18.3331 micron-watt

total power 2.0458 mw 1.96575 mw 1.9559 mw

As, shown in power table the final result indicates that the Leakage power

which is the power consumed in transistor due to the constant current from Vdd

to ground and its value is 1.9376 mw which is 99.06% of total power.

The switching power or dynamic power which is the power consmed in tran-

sistors due to switching from 1 to 0 or from 0 to 1 and its value is 18.3331

micron-watt which is 0.937% of total power.
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timing results

1- Initial results:

setup slack of endpoints

2- After removing levels of hierarchy:

Here we solve violations by using group pathing method and setting maximum

delayfor a certain paths.

Figure 4.1: setup slack of endpoints (Flat Flow)
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Here in figure 4.1 we succeed to make all paths met with the constraints but

the timing range will be not enough when adding parasitic delay of wires after

place and route phase, so we decide to optimize path’s delays more than that.

In figure4.2 the setup slacks of all paths (2581 path) are representet as:

� first column consists of 1935 path and is form 0 to 2.2

� second column consists of 302 path and is from 2.2 to 4.4

� third column consists of 93 path and is from 4.4 to 6.6

� forth column consists of 101 path and is from 6.6 to 8.8

� fifth column consists of 55 path and is from 8.8 to 11

� sixth column consists of 22 path and is from 11 to 13.2

� seventh column consists of 44 path and is from 13.2 to 15.4

� eighth column consists of 29 path and is from 15.4 to 17.6

3- After optimization:

Figure 4.2: setup slack of endpoints after optimization (Flat Flow)

As shown in figure 4.2 the ranges of slack margin goes to right that is mean

the delay of paths going smaller and more acceptable.In figure4.2 the setup

slacks of all paths (2581 path) are representet as:
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� first column consists of 1558 path and is form 0 to 2.2

� second column consists of 239 path and is from 2.2 to 4.4

� third column consists of 426 path and is from 4.4 to 6.6

� forth column consists of 189 path and is from 6.6 to 8.8

� fifth column consists of 62 path and is from 8.8 to 11

� sixth column consists of 24 path and is from 11 to 13.2

� seventh column consists of 43 path and is from 13.2 to 15.4

� eighth column consists of 40 path and is from 15.4 to 17.6

Note: There is 992 paths with slack 0 these paths are paths of latchs of register

file as we use latch base register file, the tool use time borrowing technique to

these paths for more timing optimization.

The time borrowing technique, which is also called cycle stealing, occurs at

a latch. In a latch, one edge of the clock makes the latch transparent, that is,

it opens the latch so that output of the latch is the same as the data input, this

clock edge is called the opening edge. The second edge of the clock closes the

latch, that is, any change on the data input is no longer available at the output

of the latch, this clock edge is called the closing edge.

Typically, the data should be ready at a latch input before the active edge

of the clock. However, since a latch is transparent when the clock is active, the

data can arrive later than the active clock edge, that is, it can borrow time from

the next cycle. If such time is borrowed, the time available for the following

stage (latch to another sequential cell) is reduced.
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we will represent more details of worst 10 paths except paths of latchs:

endpoint data arrival data required slack

time(ns) time(ns) (ns)

R 161 23.04 23.09 0.0401

U3355/U2944 ex stage i R 160 23.04 23.09 0.040

instr addr o[18] 13.94 14.00 0.058

R 87/D 22.99 23.05 0.059

U3355/U2944 ex stage i R 86/D 22.99 23.05 0.059

instr addr o[26] 13.94 14.00 0.059

id stage i/mult dot op b ex o reg 13 /D 22.98 23.04 0.060

id stage i/mult operand b ex o reg 13 /D 22.98 23.04 0.060

id stage i/alu operand b ex o reg 13 /D 22.98 23.04 0.060

instr addr o[11] 13.94 14.00 0.062

Table 4.1: worst SETUP slack of 10 paths after synthesis (Flat Flow)

note: U3355 represent block1 in hierarchy levels.

Hold time slacks of all paths (2581 path):

Figure 4.3: hold slack of endpoints after optimization (Flat Flow)
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As shown in figure 4.3 here there is no hold time violations in worst case.

we will represent more details of worst 10 paths:

endpoint data arrival time data required slack

time(ns) time(ns) (ns)

U3355/U2944 load store unit i rdata q reg 27 /D 5.1323 5.13 0.0023

U3355/U2944 load store unit i rdata q reg 29 /D 5.15 5.14 0.0047

U3355/U2944 load store unit i rdata q reg 26 /D 5.15 5.14 0.0047

if stage i/prefetch 32 prefetch buffer i instr addr q reg 22 /D 5.12 5.11 0.0089

U3355/U2944 load store unit i rdata q reg 24 /D 5.15 5.14 0.0102

if stage i/prefetch 32 prefetch buffer i instr addr q reg 31 /D 5.12 5.11 0.011626

id stage i/registers i riscv register file i wdata b q reg 26 /D 5.16 5.15 0.01787

U3355/cs registers i dscratch1 q reg 21 /D 5.14 5.12 0.01812

U3355/U2944 load store unit i rdata q reg 25 /D 5.16 5.14 0.02187

U3355/cs registers i dscratch1 q reg 0 /D 5.14 5.12 0.02227

Table 4.2: worst HOLD slack of 10 paths after synthesis (Flat Flow)

note: U3355 represent block1 in hierarchy levels.

Synthesis Runtime:

The overall synthesis run time of Flat Flow is 3926.50 seconds which is

about 1 hour and 5 minutes.
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4.1.2 Topographical Flow

Results of two-pass topographical flow will be in two categories:

1. First-Pass Synthesis Results

2. Second-Pass Synthesis Results

First-Pass Synthesis

Endpoint Req time (ns) Arrival time (ns) Slack

ex stage imult iDP OP 101J6 125 8146R 194 IP 26.58 25.20 1.38

ex stage imult iDP OP 101J6 125 8146R 195 26.54 25.11 1.43

id stage imult operand b ex o reg[24] 26.51 24.91 1.60

id stage ialu operand b ex o reg[24] 26.51 24.91 1.60

id stage imult operand b ex o reg[8] 26.53 24.89 1.65

id stage imult dot op b ex o reg[8] 26.53 24.89 1.65

id stage ialu operand b ex o reg[8] 26.53 24.89 1.65

id stage imult dot op b ex o reg[24] 26.52 24.85 1.67

id stage ialu operand b ex o reg[31] 26.53 24.85 1.68

id stage imult dot op b ex o reg[31] 26.53 24.85 1.68

Table 4.3: worst 10 setup paths after synthesis (Topographical Flow)

Endpoint Req time (ns) Arrival time (ns) Slack

id stage iimm vec ext ex o reg[1] 7.79 7.62 0.17

ex stage ialu iint div div iCnt DP reg[0] 7.96 7.64 0.32

id stage idata type ex o reg[0] 8.00 7.64 0.37

cs registers iPCCR q reg[0][2] 8.00 7.62 0.38

id stage imult operator ex o reg[1] 8.00 7.61 0.39

cs registers iPCCR q reg[0][28] 8.03 7.62 0.41

cs registers iPCCR q reg[0][24] 8.03 7.62 0.41

cs registers iPCCR q reg[0][20] 8.03 7.62 0.41

cs registers iPCCR q reg[0][18] 8.03 7.62 0.41

cs registers iPCCR q reg[0][8] 8.03 7.62 0.41

Table 4.4: worst 10 hold paths after synthesis (Topographical Flow)

TABLEs 4.3 and 4.4 show the most critical 10 setup/hold timing paths in

the design.
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Figure 4.4: histogram for setup paths (Topographical Flow)

Figure 4.5: histogram for hold paths (Topographical Flow)
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FIGUREs 4.4 and 4.5 show design setup/hold timing status. As latches are

level sensitive, time borrowing is the property of a latch by virtue of which a

path ending at a latch can borrow time from the next path in pipeline such that

the overall time of the two paths remains the same. The time borrowed by the

latch from next stage in pipeline is, then, subtracted from the next path’s time.

Area Results

43%

38.8%

9.2%

2.6%

6.4%

EX Stage

Decoding Stage

IF Stage

LSU

CS Registers

Figure 4.6: Cell Area Distribution across hierarchy (Topographical Flow)

61.5%

17.8%

20.7%

Combinational

Noncombinational

Net Interconnect

Figure 4.7: Total Area Distribution (Topographical Flow)
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FIGURE 4.27 shows distribution of cell area across hierarchy blocks, we can

notice that both EX stage and Decoding stage are two major blocks compared

to other hierarchy blocks. FIGURE 4.28 also shows design area classified into

combinational,non-combinational and interconnections occupied area.

Power Results

Figure 4.8: Total Power Report (Topographical Flow)

Total power is measured to be 2.14 mW , major power component is cell leakage

power as shown in FIGURE 4.8. Solution for such an increase in cell leakage

power is to switch from RVT cells to HVT cells as an example, however, increase

in cell delays will occur.
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Synthesis Runtime

Figure 4.9: Synthesis Runtime Report (Topographical Flow)

Synthesis runtime is measured to be 2038 seconds equivalent to about 33 min-

utes as shown in FIGURE 4.9.
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Second-Pass Synthesis

Endpoint Req time (ns) Arrival time (ns) Slack

id stage imult dot op b ex o reg 18 26.45 26.45 0.001

id stage ialu operand b ex o reg 18 26.45 26.45 0.001

id stage imult operand b ex o reg 18 26.45 26.45 0.001

id stage imult dot op b ex o reg 16 26.46 26.45 0.01

id stage imult operand b ex o reg 16 26.46 26.45 0.01

id stage ialu operand b ex o reg 16 26.46 26.45 0.01

id stage imult operand b ex o reg 25 26.52 26.49 0.03

id stage imult dot op b ex o reg 25 26.52 26.49 0.03

id stage ialu operand b ex o reg 25 26.52 26.49 0.03

id stage imult operand b ex o reg 26 26.53 26.50 0.03

Table 4.5: worst 10 setup paths in second pass synthesis (Topographical Flow)

Endpoint Req time (ns) Arrival time (ns) Slack

id stage ihwloop regs ihwlp counter q reg 0 0 7.93 7.64 0.29

id stage ihwloop regs ihwlp counter q reg 1 0 7.94 7.64 0.30

ex stage iregfile waddr lsu reg 0 7.92 7.61 0.32

ex stage iregfile waddr lsu reg 1 7.92 7.60 0.32

ex stage ialu iint div div iCnt DP reg 0 7.96 7.64 0.33

ex stage iregfile waddr lsu reg 4 7.93 7.60 0.33

ex stage iregfile waddr lsu reg 2 7.93 7.60 0.33

ex stage iregfile waddr lsu reg 3 7.94 7.60 0.34

ex stage ialu iint div div iResReg DP reg 22 8.01 7.64 0.36

id stage iint controller iexc ctrl cs reg 0 8.00 7.62 0.37

Table 4.6: worst 10 hold paths in second pass synthesis (Topographical Flow)

TABLEs 4.5 and 4.6 show the most critical 10 setup/hold timing paths in

the design. Latch-based paths are not shown in these tables since their setup

slack margin is 0 due to time-borrowing effect.
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Figure 4.10: histogram for setup paths in second pass synthesis (Topographical

Flow)

Figure 4.11: histogram for hold paths in second pass synthesis (Topographical

Flow)

100



FIGUREs 4.10 and 4.11 show design setup/hold timing status. From setup

timing histogram we can notice more uniform distribution of paths along slack

range relative to the first iteration’s setup timing histogram.

Area Results

39.5%

40.5%

9.9%

2.9%

7.2%

EX Stage

Decoding Stage

IF Stage

LSU

CS Registers

Figure 4.12: Cell Area Distribution across hierarchy in second pass synthesis

(Topographical Flow)

74.4%

25.6%

Combinational

Noncombinational

Figure 4.13: Total Area Distribution in second pass synthesis (Topographical

Flow)
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FIGURE 4.12 shows distribution of cell area across hierarchy blocks, we

can notice that both EX stage and Decoding stage are two major blocks com-

pared to other hierarchy blocks. FIGURE 4.13 also shows design area classified

into combinational and non-combinational occupied area. We can see that net

interconnect area is not included in statistics of FIGURE 4.13, since in topo-

graphical synthesis, interconnect parasitics are used in delay calculations rather

than WLMs.

Power Results

Figure 4.14: Total Power Report in second pass synthesis (Topographical Flow)

Total power is measured to be 1.76 mW , major power component is still cell

leakage power as shown in FIGURE 4.14.
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Synthesis Runtime

Figure 4.15: Synthesis Runtime Report (Topographical Flow)

Synthesis runtime is measured to be 413 seconds equivalent to about 7 minutes

as shown in FIGURE 4.15.
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4.1.3 Hierarchical Flow

Results of two-pass topographical flow will be in two categories:

1. First-Pass Synthesis Results

2. Second-Pass Synthesis Results

First-pass Synthesis

Figures 4.16 , 4.17 , 4.18 and 4.18 show that the design has no timing violation

in first-pass synthesis.

Figure 4.16: Setup timing histogram of first-pass synthesis in Hierarchical Flow

Figure 4.17: Hold timing histogram of first-pass synthesis in Hierarchical Flow
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Figure 4.18: Worst 10 Setup timing paths in first-pass synthesis in Hierarchical

Flow

Figure 4.19: Worst 10 hold timing paths in first-pass synthesis in Hierarchical

Flow
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Area Results

43%
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9.2%
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Figure 4.20: Cell Area Distribution across hierarchy in Hierarchical Flow

59%
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21.3%

Combinational

Noncombinational

Net Interconnect

Figure 4.21: Total Area Distribution in Hierarchical Flow
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Power Results

Figure 4.22: Total Power Report of Hierarchical Flow in first-pass synthesis

Second-pass Synthesis

Figures 4.23 and 4.24 show that the design has no timing violations

Figure 4.23: Setup timing histogram of second-pass synthesis in Hierarchical

Flow
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Figure 4.24: Hold timing histogram of second-pass synthesis in Hierarchical

Flow

Figure 4.25: Worst 10 setup timing paths in second-pass synthesis in Hierarchi-

cal Flow
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Figure 4.26: Worst 10 hold timing paths in second-pass synthesis in Hierarchical

Flow

Area Results

43%

38.8%

9.2%

2.6%

6.4%

EX Stage

Decoding Stage

IF Stage

LSU

CS Registers

Figure 4.27: Cell Area Distribution across hierarchy in Hierarchical Flow
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Figure 4.28: Total Area Distribution in Hierarchical Flow

Power Results

Figure 4.29: Total Power Report in second-pass synthesis in Hierarchical Flow
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Synthesis Runtime

Figure 4.30: Synthesis Runtime Report in Hierarchical Flow
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4.2 PnR results

4.2.1 Flat Flow

Chip Floorplan

Core Utilization 0.601

Number of Rows 316

Core Width(micron) 264.328

Core Height(micron) 528.352

Aspect Ratio 1.999

Table 4.7: Chip Floorplan Table (Flat Flow)

From TABLE 4.7, core area is calculated to be 0.1397 mm2. Number of rows

is the number of rows in which standard cells are arranged, we choose an aspect

ratio of 2 so that we can reduce horizontal routing congestion and increase the

utilization of the chip.

Timing results

Maximum delay timing results:
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Endpoint Arrival Time Req Time Slack)

(ns) (ns) (ns)

id stage i/alu operand b ex o reg 20 /D 21.27 21.45 0.18

U3355/U2944 ex stage i R 214/D 21.28 21.47 0.19

id stage i/alu operand b ex o reg 30 /D 21.23 21.42 0.19

R 215/D 21.20 21.40 0.20

id stage i/mult dot op b ex o reg 20 /D 21.27 21.47 0.20

id stage i/mult dot op b ex o reg 30 /D 21.23 21.45 0.22

id stage i/alu operand b ex o reg 11 /D 21.23 21.45 0.22

id stage i/alu operand b ex o reg 27 /D 21.18 21.40 0.22

id stage i/mult operand b ex o reg 11 /D 21.23 21.47 0.24

id stage i/mult dot op b ex o reg 11 /D 21.23 21.50 0.26

Table 4.8: WNS of 10 maximum delay timing paths after PnR (Flat Flow)

Table 4.8 illustrates the worst slack of the first 10 timing paths for setup time.

There are latch-based timing paths in this design located ended at register file.

Therefore, we have more than 1000 paths that stuck at 0 slack due to latches.

So, we have to begin tracking our timing results after the last latch-based path

so that we can determine the real quality of the timing optimization. In our

design, we have gained a worst slack of 0.18 nanosecond at the first path, and

a 0.26 nanosecond slack at the tenth path.

Figure 4.31 illustrates the number of timing paths against slack of the max-

imum delay timing based on their endpoints. As shown in the figure, the num-

ber of paths is almost equally distributed over the chart except the first col-

umn. This is because of latch-based timing paths which are typically stuck at 0

nanosecond, due to time borrowing phenomenon. Figure 1 also shows the worst

and the best slack ever in the design. The worst slack is typically 0 as said

before, and the best one is 19.33 nanosecond.
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Figure 4.31: Max delay path slack histogram after PnR (Flat Flow)
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Minimum delay timing results:

Endpoint Arrival Req Slack

Time(ns) Time(ns) (ns)

U3355/U2944 ex stage i regfile waddr lsu reg 2 /D 2.04 1.57 0.47

U3355/U2944 ex stage i regfile waddr lsu reg 3 /D 2.04 1.57 0.48

U3355/U2944 load store unit i data sign ext q reg 0 /D 2.04 1.56 0.48

U3355/U2944 ex stage i regfile waddr lsu reg 1 /D 2.06 1.56 0.50

U3355/U2944 ex stage i regfile waddr lsu reg 0 /D 2.06 1.56 0.50

U3355/cs registers i PCCR q reg 0 0 /D 2.11 1.60 0.51

U3355/U2944 load store unit i data we q reg/D 2.07 1.55 0.52

U3355/U2944 ex stage i regfile waddr lsu reg 4 /D 2.07 1.54 0.53

if stage i/prefetch 32 prefetch buffer i fifo i rdata 2.20 1.67 0.53

Q reg 3 16 /D

U3355/U2944 ex stage i R 132/D 2.17 1.63 0.53

Table 4.9: WNS of 10 minimum delay timing paths after PnR (Flat Flow)

As shown in Table 4.9, The worst positive slack for hold time requirement

is 0.47 nanosecond and the worst slack of the tenth one is 0.53.
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Figure 4.32: Min delay path slack histogram after PnR (Flat Flow)

In the latch-based timing paths, there is no hold time requirements. There-

fore, all the timing paths illustrated in Figure 4.32 is pure flipflop-based paths.

The figure also shows the worst and the best slack of all timing paths. Thus,

the worst slack is 0.473 nanosecond and the best one is 11.199 nanosecond.
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Core Area
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Id Stage

U3355
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Top Level

Figure 4.33: Cell area distribution after PnR (Flat Flow)

As shown in Figure 4.33, the dominant percentage of cell area lies in “U3355”

unit as it contains all other flattened top-level blocks so that it contributes with

about 44.4% of the entire cell area which is approximately “73594.766” microns

square. The second dominant cell is the id stage which contains decoding logic

and register file, so it is expected to contributed with such a ratio which is 38.1%.

IF stage contributes with 15.9 %, since it contains only the prefetch buffering

logic. The remaining percentage is dedicated for the rest of the top-level design

logic like clock-gating cells.
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Total Area

58.4 %

15.7%

25.9 %

Combo

Non-combo

Net Interconnects

Figure 4.34: Total area distribution after PnR (Flat Flow)

Total area of the design consists of three main components: combinational

area, non-combinational area, and net interconnect area as illustrated in Figure

4.34. Combinational logic contributed with 58.4% of the total area, and memory

elements contribute with 15.7%, and the routing wires contribute with 25.9%.

Routing Congestion

Phase Total (%) Vertical (%) Horizontal (%)

Floorplan 0.01 0.00 0.01

Placement 0.00 0.00 0.00

CTS 0.00 0.00 0.00

Routing 0.05 0.01 0.05

Chip Finish 0.06 0.01 0.06

Table 4.10: Routing congestion table after PnR (Flat Flow)

Table 4.10 exposes the percentage of routing congestion in both vertical and

horizontal directions and their overall percentage with respect to the available

global routing cells (GRCs). In floorplan stage, the congestion is 0.01% which

indicates that the design is completely routable without obstacles, and after
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fine placement of the design, the congestion reduced to be 0%. The congestion

remains 0% after performing the CTS stage, since the CTS was established in

metal-8 and metal-9 layers. These two layers are independent on other rout-

ing layers. Therefore, routing in them does not affect the signal routing layers.

After routing, the congestion increases to be 0.05% due to actual routing. In

the last stage, the chip is completely filled with standard cells and metal fillers

which contribute with a small factor on the total congestion.

CTS results

Clock Tree name clk i

Number of levels 19

Max Global Skew (ns) 0.930

Max Insertion Delay (ns) 2.463

Min Insertion Delay (ns) 1.533

Table 4.11: CTS table (Flat Flow)

Table 4.11 illustrates the main results of the clock tree network that was

achieved in our design. We have achieved a maximum global skew of 0.93

nanosecond which is somehow acceptable. The maximum achieved propagation

delay is 2.463 ns which is approximately 12.3% of the clock period.

Wire Statistics

Total M1 M2 M3 M4 M5 M6 M7 M8 M9

Wire length(um) 796510 25969 263062 222856 157227 83751 5148 2866 23728 16296

Wire length(%) 100 3.26 33.026 27.979 19.739 10.5147 0.6463 0.3598 2.979 2.046

Table 4.12: Wire statistics table (Flat Flow)

Table 4.12 illustrates the wire length statistics over metal layers stack. The

power network was purely built in layer 6 and layer 7, thus the power network

contributes with a small percentage of the entire wire length. The CTS was

constructed on layer 8 and layer 9. The remaining signal routes were inserted
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mainly on layers 2, 3 and 4 with little contribution of other layers.

Power Consumption

Figure 4.35: Total power report after PnR (Flat Flow)

86.32 %

9.39%

4.29 %

Leakage Power

Internal Power

Switching Power

Figure 4.36: Total power distribution after PnR (Flat Flow)

As discussed before, when the technology steps forward, dynamic power

consumption decreases and the leakage power increases. Figure 4.36 shows that

the leakage power is the dominant component of the total power due to the

advanced technology. Figure 4.41 shows a detailed report for power consumption

in each part of the design.
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4.2.2 Topographical Flow

In the next sections, we describe in more details the physical results of the

processor core implementation.

Chip Floorplan

Core Utilization 0.701

Number of Rows 285

Core Width(micron) 238.488

Core Height(micron) 476.52

Aspect Ratio 1.998

Table 4.13: Chip Floorplan Table (Topographical Flow)

From TABLE 4.13, core area is calculated to be 0.113 mm2. Number of rows

is the number of rows in which standard cells are arranged, we chose an aspect

ratio of 2 so that we can reduce horizontal routing congestion and increase the

utilization of the chip.
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Timing Results

Endpoint Arrival time Req time Slack

id stage i/alu operand b ex o reg 26 /D 25.44 25.39 -0.05

id stage i/alu operand b ex o reg 24 /D 25.42 25.39 -0.03

id stage i/alu operand b ex o reg 15 /D 25.27 25.25 -0.02

id stage i/alu operand b ex o reg 27 /D 25.37 25.36 -0.01

id stage i/hwloop regs i/hwlp counter q reg 1 25 /D 25.41 25.41 0.00

id stage i/alu operand b ex o reg 31 /D 25.36 25.36 0.00

id stage i/mult operand b ex o reg 26 /D 25.44 25.44 0.00

id stage i/alu operand a ex o reg 0 /D 25.25 25.25 0.00

id stage i/alu operand b ex o reg 18 /D 25.34 25.34 0.00

id stage i/alu operand b ex o reg 23 /D 25.37 25.37 0.00

id stage i/alu operand b ex o reg 29 /D 25.37 25.37 0.00

id stage i/alu operand a ex o reg 29 /D 25.41 25.41 0.00

Table 4.14: Worst 12 setup timing paths after PnR (Topographical Flow)

TABLE 4.14 shows the most critical 10 paths after Place and Route is fin-

ished, we can see that the WNS equals to 50ps which is very small and can

be resolved in Post-Layout STA verification as we will see in the next sections.

Note that time unit used is ”ns”.
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Figure 4.37: Setup timing histogram after PnR (Topographical Flow)

from FIGURE 4.37 we can see that there are 12 timing paths which are

below 0 shown in more details in TABLE 4.14. Also we can observe the peak

number of paths near to 0 slack which is back to the concept of time borrowing

discussed in previous sections, which is related to latch-based timing paths in

our design.
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Endpoint Arrival time(ns) Req time(ns) Slack(ns)

id stage i/hwloop regs i/hwlp counter q reg 0 31 /D 3.76 2.99 0.77

id stage i/hwloop regs i/hwlp counter q reg 0 31 /D 3.77 2.99 0.78

id stage i/hwloop regs i/hwlp counter q reg 1 31 /D 3.78 3.00 0.79

id stage i/hwloop regs i/hwlp counter q reg 0 31 /D 3.79 2.99 0.81

if stage i/prefetch 32 prefetch buffer i/fifo i/rdata Q reg 1 26 /D 4.48 3.42 1.06

if stage i/prefetch 32 prefetch buffer i/fifo i/rdata Q reg 1 19 /D 4.48 3.42 1.06

if stage i/prefetch 32 prefetch buffer i/fifo i/rdata Q reg 0 11 /D 4.51 3.43 1.08

id stage i/registers i/riscv register file i/wdata b q reg 22 /D 4.31 3.18 1.13

if stage i/prefetch 32 prefetch buffer i/fifo i/rdata Q reg 0 11 /D 4.49 3.36 1.13

id stage i/int controller i/irq id q reg 1 /D 4.19 3.06 1.13

id stage i/int controller i/irq id q reg 2 /D 4.19 3.06 1.13

id stage i/int controller i/irq id q reg 3 /D 4.19 3.06 1.13

Table 4.15: Worst 10 hold timing paths after PnR (Topographical Flow)

Figure 4.38: Hold timing histogram after PnR (Topographical Flow)
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Figure 4.39: Cell Area Distribution across hierarchy after PnR (Topographical

Flow)

FIGURE 4.39 shows the cell area percentage for each block out of the total cell

area, we found that both pipeline decoding stage and execution stage are two

major blocks with respect to cell area and together they represent more than

half of the total cell area.
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Figure 4.40: Total Area Distribution after PnR (Topographical Flow)

In FIGURE 4.40 , we can see the total area of the chip classified into three

main groups. Combinational, Noncombinational and interconnect area. Com-

binational area occupies more than half of the total area of the chip where

interconnect area comes next to it.

Routing Congestion

Phase Total (%) Vertical(%) Horizontal(%)

Floorplan 0.00 0.00 0.00

Placement 0.03 0.00 0.03

CTS 0.52 0.03 0.49

Routing 1.18 0.02 1.16

Chip Finish 1.20 0.02 1.18

Table 4.16: Routing Congestion table after PnR (Topographical Flow)
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TABLE 4.16 refers to the routing congestion percentage after each PnR step.

It is clear that congestion has a remarkable increase especially after CTS, which

is reasonable as new cells are inserted for clock tree synthesis which increases

routing congestion, However, congestion is still acceptable over all phases.

CTS Results

Clock Tree Name clk i

Number of levels 26

Max Global Skew(ns) 0.406

Max insertion delay(ns) 2.1

Min insertion delay(ns) 1.694

Table 4.17: CTS table (Topographical Flow)

From TABLE 4.17 we can see that global skew is less than the clock uncertainty

that is assumed at synthesis step, which is acceptable amount of clock skew, also

we can see that max insertion delay is nearly 10% of the clock period.

Wire Statistics

Total M1 M2 M3 M4 M5 M6 M7 M8

Wire Length(um) 722595 10804 317348 218364 45384 13800 51836 42799 22259

Wire Length(%) 100 1.495 43.917 30.219 6.28 1.909 7.173 5.922 3.08

Table 4.18: Wire Statistics table (Topographical Flow)

TABLE 4.18 shows design routing statistics. We can see that design routing is

mostly done using both Metal2 and Metal3 , this is because they were reserved
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for signals routing. Metal4 and Metal5 were reserved for power straps, Metal6-

Metal8 are used for clock network routing and Metal1 is mostly used for power

rails and internal connections of standard cells.

Power

Figure 4.41: Total Power report after PnR (Topographical Flow)
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Figure 4.42: Total Power Distribution after PnR (Topographical Flow)
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FIGURE 4.41 shows design power statistics. Total power is 1.78 mW calculated

at a 10% toggle rate which is the default toggling rate available, we can notice

that leakage power specifically dominates the amount of total power. Such

leakage power can be reduced with switching from RVT cells to HVT cells as

an example but with the penalty of slower cells and larger delays.
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4.2.3 Hierarchical Flow

Chip Floorplan

Figure 4.43: Chip Floorplan Table in Hierarchical Flow

Timing Results

Figure 4.44: Setup timing histogram in Hierarchical Flow
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Figure 4.45: Hold timing histogram in Hierarchical Flow

Routing Congestion

Figure 4.46: Routing Congestion in Hierarchical Flow

CTS Results

Figure 4.47: CTS Results in Hierarchical Flow
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Wire Statistics

Figure 4.48: Wire Statistics in Hierarchical Flow

Power

Figure 4.49: Total Power Report in Hierarchical Flow
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4.3 STA results

4.3.1 Flat Flow

The design timing was tested using static timing analysis(STA) in primetime.

In STA you define the design constraints and then test the design and see if it

passes them. These constraints are the same constraints used to build up the

design in addition to the parasitics come from layout. We test the design for

22 case and show how to make the design passes without timing violations for

these cases.

Clock gating savings

Figure 4.50: clock gating report (Flat Flow)

Before we go through STA results of the previous mentioned corners, we review

the effciency of clock gating in the design. Clock gating savings report shown in

Figure 4.50 summarizes the overall effectiveness of clock gating in the design, the

toggle savings and gating effciency are computed based on 10% clock toggling

rate. Average Register Gating effciency is 76.5% (savings with respect to root

clock) , toggle saving reaches 60% to 80% for about half the sequential elements
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in the design which is good, since 60% to 80% toggles are suppressed by clock

gating logic which highly reduces dynamic power in the design. Toggle saving is

by de nition the ratio between toggle rate at clock pin of registers to the toggle

rate at clock root pin, toggle rate is represented as a percentage. Toggle rate of

a sequential element means the rate at which output pin switches relative to the

clock input frequency, toggle rate ranges between 0%-200%. Toggle rate of 100%

as an example means that frequency of the output pin is half the frequency of

the clock input. This convention comes from the assumption that the output

changes every rising edge or a falling edge of the clock cycle.

Review of cases

we will show how to make the design passes all 22 case with OCV 1.1 derate of

setup check and 0.9 derate of hold check except the worst case ss0p7v125c with

1.05 derate of setup check.

notes:

how to read case’s name ?

ss means slow-slow case.

tt means typical-typical case.

ff means fast-fast case.

and the next part of name corresponds to operating voltage and operating tem-

berature.

example:

ss0p7v125c means slow-slow case operating at 0.7voltage and 125°C.
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number of SETUP number of HOLD

case violationed pathes violationed pathes

ss0p7v125c 93 1

ss0p75v125c 0 2

ss0p95v25c 0 3

ss0p95v125c 0 3

ss0p95vn40c 0 3

tt0p78v25c 0 0

tt0p78v125c 0 3

tt0p78vn40c 0 2

tt0p85v25c 0 3

tt0p85v125c 0 3

tt0p85vn40c 0 2

tt1p05v25c 0 46

tt1p05v125c 0 3

tt1p05vn40c 0 3

ff0p85v25c 0 3

ff0p85v125c 0 34

ff0p85vn40c 0 3

ff0p95v25c 0 3

ff0p95v125c 0 3

ff0p95vn40c 0 3

ff1p16v25c 0 3

ff1p16vn40c 0 3

Table 4.19: Table of 22 cases before ECO fixing time (Flat Flow)

As shown in Table 4.19 the corner cases are ss0p7v125c ,tt1p05v25c ,and

ff0p85v125c.

From this point we start to solve setup time violations with upsizing technique

and solve hold time violations with inserting buffers technique.
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More details about corner cases:

1- slow-slow at 0.7v and 125°C

Figure 4.51: Analysis coverage report of Slow-Slow (Flat Flow)

Figure 4.51 shows the initial checks on the design that shows the percentage

of met, violated, and untested pathes for each check. For example for setup

check there is 2300 path are met that is their percentage of all pathes is 96%

and there is 93 violated path that is 4% of all pathes and there is 3 untested

path that is their percentage of all pathes almost 0% and so on for all checks.

The resons of untested pathes are false pathes such as Reset path and scan

enable paths in clock gating these pathes are similar to Reset pathes and also

another reson of untested path is that there is no startpoint and endpoint for

pathes related to APU block that controls FPU operations in the design. While

FPU is removed as mentioned in earlier chapters, APU is also not implemented

which makes its related output ports grounded by default.

Figure 4.52: Global timing report (SETUP) of Slow-Slow (Flat Flow)
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Figure 4.53: Global timing report (HOLD) of Slow-Slow (Flat Flow)

Figure 4.52 and Figure 4.53 show a global overview of timing violations be-

fore fixing these violations.

we start to solve thes violations by upsizing for setup violations and insertting

buffers for hold violations and back again to layout tool and add these changes

on the design and then extract new physical results and back to STA tool and

repeat again to make the design pass without violations in this case. The fol-

lowing figures slow results after solving violations.

Figure 4.54: Setup slack histogram of Slow-Slow (Flat Flow)
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Figure 4.55: Hold slack histogram of Slow-Slow (Flat Flow)

Figure 4.56: Max capacitance histogram of Slow-Slow (Flat Flow)
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Figure 4.57: Max fanout histogram of Slow-Slow (Flat Flow)

Figure 4.58: Max transation histogram of Slow-Slow (Flat Flow)
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Figure 4.59: power report of Slow-Slow (Flat Flow)

Figure 4.60: power histogram of Slow-Slow (Flat Flow)

140



Figure 4.61: power map of the design of Slow-Slow (Flat Flow)

Figure 4.61 shows power distribution across hierarchy. It represents the

percentage of power with respect to block that dissipate mostly power with

respect to total power.

Block Name Power relative to threshold(W) Power relative to threshold(%)

U3355 0.00063581 100

if stage i 0.000295003 46

id stage i 0.000504256 79

Table 4.20: Power Design Map Statistics of Slow-Slow (Flat Flow)
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2- typical-typical at 1.05v and 25°C

Figure 4.62: Analysis coverage report of Typ-Typ (Flat Flow)

Figure 4.62 shows the initial checks on the design that shows the percentage

of met, violated, and untested pathes for each check. For example for hold check

there is 2347 path are met that is their percentage of all pathes is 98% and there

is 46 violated path that is 2% of all pathes and there is 3 untested path that is

their percentage of all pathes almost 0% and so on for all checks. The resons

of untested pathes are false pathes such as Reset path and scan enable paths in

clock gating these pathes are similar to Reset pathes and also another reson of

untested path is that there is no startpoint and endpoint for pathes related to

APU block that controls FPU operations in the design. While FPU is removed

as mentioned in earlier chapters, APU is also not implemented which makes its

related output ports grounded by default.
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Figure 4.63: Global timing report (HOLD) of Typ-Typ (Flat Flow)

Figure Figure 4.63 shows a global overview of timing violations before fixing

these violations. As cleared there is no setup violations only thre is hold time

violations that can be solved by insertting buffers.

Figure 4.64: Setup slack histogram of Typ-Typ (Flat Flow)
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Figure 4.65: Hold slack histogram of Typ-Typ (Flat Flow)

Figure 4.66: Max capacitance histogram of Typ-Typ (Flat Flow)
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Figure 4.67: Max fanout histogram of Typ-Typ (Flat Flow)

Figure 4.68: Max transation histogram of Typ-Typ (Flat Flow)
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Figure 4.69: power report of Typ-Typ (Flat Flow)

Figure 4.70: power histogram of Typ-Typ (Flat Flow)
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Figure 4.71: power map of the design of Typ-Typ (Flat Flow)

Figure 4.71 shows power distribution across hierarchy. It represents the per-

centage of power with respect to block that dissipate mostly power with respect

to total power.

Block Name Power relative to threshold(W) Power relative to threshold(%)

U3355 0.000233796 99

if stage i 0.000109478 46

id stage i 0.000229038 97

Table 4.21: Power Design Map Statistics of Typ-Typ (Flat Flow)
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3- fast-fast at 0.85v and 125°C

Figure 4.72: Analysis coverage report of Fast-Fast (Flat Flow)

Figure 4.72 shows the initial checks on the design that shows the percentage

of met, violated, and untested pathes for each check. For example for hold check

there is 2359 path are met that is their percentage of all pathes is 98% and there

is 34 violated path that is 1% of all pathes and there is 3 untested path that is

their percentage of all pathes almost 0% and so on for all checks. The resons

of untested pathes are false pathes such as Reset path and scan enable paths in

clock gating these pathes are similar to Reset pathes and also another reson of

untested path is that there is no startpoint and endpoint for pathes related to

APU block that controls FPU operations in the design. While FPU is removed

as mentioned in earlier chapters, APU is also not implemented which makes its

related output ports grounded by default.
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Figure 4.73: Global timing report (HOLD) of Fast-Fast (Flat Flow)

Figure Figure 4.73 shows a global overview of timing violations before fixing

these violations. As cleared there is no setup violations only thre is hold time

violations that can be solved by insertting buffers.

Figure 4.74: Setup slack histogram of Fast-Fast (Flat Flow)
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Figure 4.75: Hold slack histogram of Fast-Fast (Flat Flow)

Figure 4.76: Max capacitance histogram of Fast-Fast (Flat Flow)
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Figure 4.77: Max fanout histogram of Fast-Fast (Flat Flow)

Figure 4.78: Max transation histogram of Fast-Fast (Flat Flow)
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Figure 4.79: power report of Fast-Fast (Flat Flow)

Figure 4.80: power histogram of Fast-Fast (Flat Flow)
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Figure 4.81: power map of the design of Fast-Fast (Flat Flow)

Figure 4.81 shows power distribution across hierarchy. It represents the per-

centage of power with respect to block that dissipate mostly power with respect

to total power.

Block Name Power relative to threshold(W) Power relative to threshold(%)

U3355 0.0428456 100

if stage i 0.0143898 33

id stage i 0.0287977 67

Table 4.22: Power Design Map Statistics of Fast-Fast (Flat Flow)

Finally, we succeed to make the design passes without timing violations for

all 22 case.
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4.3.2 Topographical Flow

In previous chapter we discussed total 22 verified corners out of total 27 corners.

In the next sections, we describe in more details the results from verifying design

performance using Synopsys PrimeTime STA , especially at three main corners

which are:

� Slow-Slow , 0.7 V , 125°C

� Typ-Typ , 0.85 V , 25°C

� Fast-Fast, 1.16 V, -40°C

Clock gating savings

Figure 4.82: Clock Gating Savings Report (Topographical Flow)

Before we go through STA results of the previous mentioned corners, we review

the efficiency of clock gating in the design. Clock gating savings report shown

in FIGURE 4.82 summarizes the overall effectiveness of clock gating in the

design, the toggle savings and gating efficiency are computed based on 10%

clock toggling rate. Average Register Gating efficiency is 73.6% , toggle saving
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reaches 60% to 80% for about half the sequential elements in the design which is

good, since 60% to 80% toggles are suppressed by clock gating logic which highly

reduces dynamic power in the design. Toggle saving is by definition the ratio

between toggle rate at clock pin of registers to the toggle rate at clock root pin,

toggle rate is represented as a percentage. Toggle rate of a sequential element

means the rate at which output pin switches relative to the clock input frequency,

toggle rate ranges between 0%-200%. Toggle rate of 100% as an example means

that frequency of the output pin is half the frequency of the clock input. This

convention comes from the assumption that the output changes every rising

edge or a falling edge of the clock cycle.

TABLE 4.23 shows the initial number of violated paths over 22 verified cor-

ners, we can notice that setup violations only appears at ss0p7v125c corner case.

Solving such violations by ECO fixing is performed on both worst case which is

ss0p7v125c ( Slow-Slow / 0.7 V / 125°C) and best case which is ff1p16vn40c (

Fast-Fast / 1.16 V / -40°C), solving on these cases in its turn solved all other

violations in the remaining corners.
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number of SETUP number of HOLD

case violationed pathes violationed pathes

ss0p7v125c 101 129

ss0p75v125c 0 56

ss0p95v25c 0 0

ss0p95v125c 0 0

ss0p95vn40c 0 0

tt0p78v25c 0 0

tt0p78v125c 0 0

tt0p78vn40c 0 0

tt0p85v25c 0 0

tt0p85v125c 0 0

tt0p85vn40c 0 0

tt1p05v25c 0 3

tt1p05v125c 0 0

tt1p05vn40c 0 0

ff0p85v25c 0 0

ff0p85v125c 0 0

ff0p85vn40c 0 0

ff0p95v25c 0 4

ff0p95v125c 0 2

ff0p95vn40c 0 6

ff1p16v25c 0 66

ff1p16vn40c 0 119

Table 4.23: Number of violated paths in verified cases before ECO Fixing (To-

pographical Flow)
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Slow-Slow Results

Figure 4.83: Analysis Coverage Report of ss0p7v125c (Topographical Flow)

FIGURE 4.83 shows the initial analysis of the design performance at Slow-Slow

corner. We can notice 68 setup violations, 128 hold violations, 1 hold violation

at clock gating enable pin and 33 setup violations at specifically ”REGOUT”

paths. Untested paths are intentionally ignored paths from STA in our case.

1366 paths that are untested for recovery, removal and Min pulse width tests

which are Reset paths, Reset paths are considered as false paths since they are

being static most of the operation time. Also we can see 78 untested paths

at clock gating setup/hold which are scan enable paths, scan enable paths are

considered as false paths similar to Reset paths. We can also see there is 28

paths that are not checked in REGOUT path group, these paths are related to

APU block that controls FPU operations in the design. While FPU is removed

as mentioned in earlier chapters, APU is also not implemented which makes its

related output ports grounded by default.
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Figure 4.84: Global Timing Report of Slow-Slow (Topographical Flow)

FIGURE 4.84 shows a global overview on design timing status. After ECO

rounds to solve these violations, we discuss new design status at Slow-Slow

corner in the figures below.
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Figure 4.85: Max Fanout Histogram of Slow-Slow (Topographical Flow)

Figure 4.86: Max Capacitance Histogram of Slow-Slow (Topographical Flow)
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Figure 4.87: Max Transition Histogram of Slow-Slow (Topographical Flow)

As shown in previous three histograms, our design has no DRC violations

at Slow-Slow corner after ECO. We also preview our design new timing status

in the following two figures that show setup and hold timing histograms.
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Figure 4.88: Setup Timing Histogram of Slow-Slow (Topographical Flow)

Figure 4.89: Hold Timing Histogram of Slow-Slow (Topographical Flow)
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Figure 4.90: Total Power Report at Slow-Slow Corner (Topographical Flow)

Figure 4.91: Total Power Distribution at Slow-Slow Corner (Topographical

Flow)
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As shown earlier in Place And Route section, FIGURE 4.90 shows design

power statistics. This is exactly the same report of PnR report, as Slow-Slow

corner is the corner used to synthesize and implement the design. Power distri-

bution by type is also shown in FIGURE 4.91.

Figure 4.92: Power Design Map at Slow-Slow Corner (Topographical Flow)

FIGURE 4.92 shows power distribution across hierarchy. Power threshold

in the bottom of the figure means the power associated with the block that

contributes mostly to the total power which is ID stage as shown, other blocks’

power is calculated as a percentage of this threshold. We can see that distribu-

tion is also by block’s occupied area.

Block Name Power relative to threshold(W) Power relative to threshold(%)

ID Stage 0.000674 100

EX Stage 0.000397 58

IF Stage 0.00036 53

CS Registers 0.000226 33

LSU 0.0000051 7

Table 4.24: Power Design Map Statistics Table of Slow-Slow (Topographical

Flow)
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Typical-Typical Results

Figure 4.93: Analysis Coverage Report of Typ-Typ Corner (Topographical

Flow)

FIGURE 4.93 shows no timing violations initially at tt0p85v25c corner case, this

is expected with typical-typical conditions as violations mainly are concentrated

at both worst (slow-slow) and best (fast-fast) corners.
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Figure 4.94: Global Timing Report of Typ-Typ Corner (Topographical Flow)

Figure 4.95: Setup Timing Histogram of Typ-Typ Corner (Topographical Flow)
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Figure 4.96: Hold Timing Histogram of Typ-Typ Corner (Topographical Flow)

Timing histograms for setup/hold at typical-typical corner cases are shown

in FIGURES 4.95 and 4.96. In FIGURE 4.95 we can clearly observe latch-

based timing paths with 0 setup slack at the left most of the histogram due

to time-borrowing. Physical results related to typical-typical corner case are

shown in FIGURES 4.97, 4.98, and 4.99. Design in Typ-Typ corner has no

DRC violations.
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Figure 4.97: Max Capacitance Histogram of Typ-Typ Corner (Topographical

Flow)

Figure 4.98: Max Fanout Histogram of Typ-Typ Corner (Topographical Flow)
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Figure 4.99: Max Transition Histogram of Typ-Typ Corner (Topographical

Flow)

Figure 4.100: Total Power Report on Typ-Typ Corner (Topographical Flow)
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FIGURE 4.100 shows design power statistics at Typ-Typ corner. Total

power increased in typical conditions relative to total power calculated at Slow-

Slow corner.

Figure 4.101: Total Power Distribution by type at Typ-Typ Corner (Topograph-

ical Flow)

Figure 4.102: Power Design Map at Typ-Typ Corner (Topographical Flow)

169



Block Name Power relative to threshold(W) Power relative to threshold(%)

ID Stage 0.001036 100

EX Stage 0.000587 56

IF Stage 0.0004455 42

CS Registers 0.0003259 31

LSU 0.0000077 7

Table 4.25: Power Design Map Statistics Table of Typ-Typ Corner (Topograph-

ical Flow)

Fast-Fast Results

Figure 4.103: Analysis Coverage Report of Fast-Fast Corner

FIGURE 4.103 shows initial timing analysis of the design at ff1p16vn40c (Fast-

Fast / 1.16 V / -40°C), we can see about 5% of hold timing paths are violated

and no setup timing violations .
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Figure 4.104: Global Timing Report of Fast-Fast Corner (Topographical Flow)

Violated hold timing paths are found to be specifically reg2reg timing paths

as shown in FIGURE 4.104. FIGUREs 4.105 and 4.106 show design timing

status after ECO fixing at Fast-Fast corner.

Figure 4.105: Setup Timing Histogram of Fast-Fast Corner (Topographical

Flow)
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Figure 4.106: Hold Timing Histogram of Fast-Fast Corner (Topographical Flow)

Figure 4.107: Max Capacitance Histogram of Fast-Fast Corner (Topographical

Flow)
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Figure 4.108: Max Fanout Histogram of Fast-Fast Corner (Topographical Flow)

Figure 4.109: Max Transition Histogram of Fast-Fast Corner (Topographical

Flow)
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FIGUREs 4.107, 4.108, and 4.109 show that design is physically clean of any

DRC violations at Fast-Fast corner.

Figure 4.110: Total Power Report at Fast-Fast Corner (Topographical Flow)

Figure 4.111: Total Power Distribution by type at Fast-Fast Corner (Topo-

graphical Flow)
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FIGURE 4.110 shows design power statistics at Fast-Fast corner with total

power of 0.0866W, it shows a large total power increase due to extensive increase

in leakage power at Fast-Fast corner. This is considered as the highest total

power calculated over all 22 verified corners.

Figure 4.112: Power Design Map at Fast-Fast Corner (Topographical Flow)

Block Name Power relative to threshold(W) Power relative to threshold(%)

ID Stage 0.0308 100

EX Stage 0.0318 99

IF Stage 0.0108 34

CS Registers 0.00838 26

LSU 0.0029 9

Table 4.26: Power Design Map Statistics Table of Fast-Fast Corner (Topograph-

ical Flow)
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4.3.3 Hierarchical Flow

Clock gating savings

figure4.113 , show the clock gating savings which we review the efficiency of

clock gating in the design. Clock gating savings report shown in figure 4.113

summarizes the overall effectiveness of clock gating in the design, the toggle

savings and gating efficiency are computed based on 10% clock toggling rate.

Average Register Gating efficiency is 71.6% , toggle saving reaches 60% to 80%

for nearly half the sequential elements in the design which is good, since 60% to

80% toggles are suppressed by clock gating logic which highly reduces dynamic

power in the design. Toggle saving is by definition the ratio between toggle

rate at clock pin of registers to the toggle rate at clock root pin, toggle rate

is represented as a percentage. Toggle rate of a sequential element means the

rate at which output pin switches relative to the clock input frequency, toggle

rate ranges between 0%-200%. Toggle rate of 100% as an example means that

frequency of the output pin is half the frequency of the clock input. This

convention comes from the assumption that the output changes every rising

edge or a falling edge of the clock cycle.

Figure 4.113: Clock gating savings Report in Hierarchical Flow

We have tested our design at 22 cases out of 27 and has met the timing

requirement and there is no hold or setup violations . We will show one case

from each category of corner cases. Worst case discussed is ss0p7v125c, best

case is ff0p85v125c and typical case is tt0p78v25c .
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Worst Case Results

Figure 4.114: Hold timing histogram at ss0p7v125c case in Hierarchical Flow

Figure 4.115: Setup timing histogram at ss0p7v125c case in Hierarchical Flow
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Figure 4.116: Max Capacitance Histogram at ss0p7v125c case in Hierarchical

Flow

Figure 4.117: Max Fanout Histogram at ss0p7v125c case in Hierarchical Flow
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Figure 4.118: Max Transition Histogram at ss0p7v125c case in Hierarchical

Flow

figure 4.119 show the power distribution across the blocks . it shows that the

id stage is the maximum block that consume total power. Power threshold in the

bottom of the figure means the power associated with the block that contributes

mostly to the total power which is id stage as shown, other blocks’power is

calculated as a percentage of this threshold. We can see that distribution is

also by block’s occupied area.the power corresponding to each block as shown

in table 4.27.

Block Name Power relative to threshold(W) Power relative to threshold(%)

id stage 0.000751705 98

ex stage 0.000439964 57

if stage i 0.000411939 54

cs registers 0.000269615 35

LSU 6.26743e-05 8

Table 4.27: Power Design Map Statistics Table at ss0p7v125c in Hierarchical

Flow
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Figure 4.119: Power Design Map at Slow-Slow Corner in Hierarchical Flow

figure 4.120 , show the timing analysis coverage about the design and there

are no violations.

Figure 4.120: Analysis Coverage Report at ss0p7v125c in Hierarchical Flow

Figure 4.121: Global Timing Report at ss0p7v125c in Hierarchical Flowl

Best case Results

in figures 4.122 and 4.123 we show the histogram of both hold and setup time

slack and there are no violations as illustrated.
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Figure 4.122: Hold timing histogram for ff0p85v125c in Hierarchical Flow

Figure 4.123: Setup timing histogram for ff0p85v125c in Hierarchical Flow

figure 4.127 show the power distribution across the blocks . it shows that

the id stage is the maximum block that consume power. Power threshold in the

bottom of the figure means the power associated with the block that contributes

mostly to the total power which is id stage as shown, other blocks’power is

calculated as a percentage of this threshold. We can see that distribution is
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Figure 4.124: Max Capacitance Histogram at ff0p85v125c case in Hierarchical

Flow

Figure 4.125: Max Fanout Histogram at ff0p85v125c case in Hierarchical Flow
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Figure 4.126: Max Transition Histogram at ff0p85v125c case in Hierarchical

Flow

also by block’s occupied area. the power associated with each block is shown in

table 4.28

Figure 4.127: Power Design Map at Fast-Fast Corner in Hierarchical Flow
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Block Name Power relative to threshold(W) Power relative to threshold(%)

id stage 0.0383104 100

ex stage 0.027634 72

if stage i 0.0116358 30

cs registers 0.00898035 23

LSU 0.00316329 8

Table 4.28: Power Design Map Statistics Table of Fast-Fast corner in Hierar-

chical Flow

figure 4.128 , show the timing analysis coverage about the design and there

is no violation.

Figure 4.128: Analysis Coverage Report at ff0p85v125c case in Hierarchical

Flow

figure 4.129 show the global timing report and there are no violations .

Figure 4.129: Global timing Report at ff0p85v125c case in Hierarchical Flow
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Typical case Results

in figures 4.130 and 4.131 we show the histogram of both hold and setup time

slack

Figure 4.130: Hold timing histogram at tt0p78v25c case in Hierarchical Flow

Figure 4.131: Setup timing histogram at tt0p78v25c case in Hierarchical Flow
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Figure 4.132: Max Capacitance histogram at tt0p78v25c case in Hierarchical

Flow

Figure 4.133: Max Fanout histogram at tt0p78v25c case in Hierarchical Flow
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Figure 4.134: Max Transition histogram at tt0p78v25c case in Hierarchical Flow

Figure 4.135: Power Design Map at Typical case in Hierarchical Flow

figure 4.136 , show the timing analysis coverage about the design and there

is no voilation.
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Block Name Power relative to threshold(W) Power relative to threshold(%)

id stage 0.00074967 100

ex stage 0.000394525 52

if stage i 0.000408939 54

cs registers 0.000287508 38

LSU 6.41922e-05 8

Table 4.29: Power Design Map Statistics table of typical-typical case in Hierar-

chical Flow

Figure 4.136: Analysis Coverage Report at tt0p78v25c case in Hierarchical Flow

Figure 4.137: Global Timing Report at tt0p78v25c case in Hierarchical Flow
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Chapter 5

Conclusion

In this thesis a complete RTL-to-GDSII flow for the OpenPULP Core known as

RI5CY was performed, with three different synthesis styles which yield to three

different flow results, objective of this thesis is to help ASIC designers choose

the most suitable flow which satisfy their requirements. Next, we shall deter-

mine the key benefits of each flow compared to other flows and its weakenesses

against other flows. Below we will conclude our results in both post-synthesis

stage of the implementation flows and post-layout stage of them, also we will

compare our post-layout results with ARM Cortex-M4 and RI5CY cores from

reference [6], taking into consideration several factors that may affect validity

of the comparison. Future ideas are then discussed that would improve design

performance in all implementation flows.

5.1 Post-Synthesis Results

In post-synthesis stage as shown in TABLE 5.1, we can notice that both Hier-

archical flow and Topographical flow have nearly the same results in cell area,

while all flows have nearly the same total power. Hierarchical flow has achieved

the minimum synthesis runtime and next to it comes Topographical flow. How-

ever, we will distinguish key benefits of each flow later on after actual layout is

made for the core. Below charts that demonstrate the results between flows in

post-synthesis stage.

189



Flat Flow Topographical Flow Hierarchical Flow

(second pass) (second pass)

Critical Path Delay (ns) 23.04 26.45 17.66

Cell Area (um2) 65878.953995 59444.027710 58692.269822

Total Power (mW) 1.134 1.125 1.182

Synthesis Runtime (min) 65 7 2

Table 5.1: Post-synthesis Results Table
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5.2 Post-layout Results

Parameter Flat Flow Topographical Flow Hierarchical Flow

Critical Path Delay (nsec) 21.27 25.44 18.75

Area
Cell area (um2) 73594 80973 79335

Physical area (mm2) 0.1397 0.1136 0.1576

ss0p7v125c 1.5 1.782 1.789

ss0p75v125c 1.709 1.919 1.99

ss0p95v25c 1.164 1.514 1.646

ss0p95v125c 3.629 3.969 3.968

ss0p95vn40c 0.9375 1.286 1.339

tt0p78v25c 1.633 1.863 1.978

tt0p78v125c 6.564 6.564 6.934

tt0p78vn40c 0.992 1.358 1.421

tt0p85v25c 2.249 2.592 2.621

tt0p85v125c 9.036 9.641 9.7

tt0p85vn40c 1.13 1.31 1.5

Total Power (mW) tt1p05v25c 6.067 6.751 6.527

tt1p05v125c 25 25.8 25.9

tt1p05vn40c 2.185 2.493 2.617

ff0p85v25c 29 30.4 30.9

ff0p85v125c 88.6 90.6 91.5

ff0p85vn40c 11.1 11.5 12.1

ff0p95v25c 54.2 56 57.7

ff0p95v125c 145.2 149.1 150

ff0p95vn40c 22.8 23.4 24.7

ff1p16v25c 170.1 175.8 179.9

ff1p16vn40c 84 86.6 90.8

Table 5.2: Post-layout Results Table

TABLE 5.2 shows post-layout results in addition to the total power calculated

at each PDK corner of the verified corners, including the corner which is used
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for actual implementation of the core in all flows which is ( Slow-Slow / 0.7 V

/ 125 °C ). Below are charts that help visualize these results.
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Parameter Flat Topographical Hierarchical

Synthesis runtime(min) 65 7 2

Physical Area(mm2) 0.1397 0.1136 0.1576

Power(mW) 1.5 1.782 1.789

Table 5.3: Flows Comparison Table

TABLE 5.3 summarizes the key results that distinguish each flow. We can

see that Hierarchical flow has the minimum synthesis runtime, this comes from

the concept of ”Divide and Conquer” as we manage to divide the hierarchy

into several blocks. Then we perform parallel block runs to accelerate logic

synthesis, then we integrate these blocks and perform another iteration of top-

level synthesis. Therefore, we can consider the actual runtime is the sum of the

longest block runtime in addition to top-level synthesis runtime, which is found

to be two minutes in our case. This may not be an important and critical fac-

tor with our proposed design, but it could be crucial to minimize such a factor

when working with large designs such as working with the OpenPULP itself or

a larger design to meet the required TTR.

An advantage of working with Topographical flow is the highest possible

chip utilization that is achieved with 70% , unlike other flows such as Flat flow

that worked with a utilization of 60% and Hierarchical flow with a utilization of

50%. This is achieved with the help of congestion-aware routing estimates that

highly eases the routing task with highest possible chip utilization, although

Hierarchical flow is based on topographical mode runs also, plan groups that

are created between blocks result in an increase in the routing congestion which

makes routing task a quite hard with higher chip utilization percentages. There-

fore, we can notice that Topographical flow achieved the minimum physical area

as found in TABLE 5.3.

From the perspective of total power consumption, Flat flow has minimized

total power consumption compared to other flows at the worst case corner. Flat-
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tening all levels of hierarchy except only the first level which is directly below

the top-level has led us to the best possible logical optimization, which highly

reduces the total power consumed by the standard cells due to the reduction in

the total cell area in the design.

Therefore, if an ASIC designer might want to achieve minimum possible

TTR, we strongly advice him/her with working with Hierarchical flow. If the

goal is to minimize occupied area as much as possible, Topographical flow is the

best choice in that case. And if the goal is to reduce the total power consumed

by the design, then it is preferred to perform the implementation with Flat flow

to achieve highest cell area optimizations.

5.3 RI5CY vs. ARM Cortex-M4

TABLE 5.4 shows the comparison between ARM Cortex-M4 and RI5CY cores

in reference [6] with RI5CY core implemented with our three different imple-

mentation flows. Several factors would affect this comparison such as voltage

supply and technology. We can see that our results of RI5CY core mentioned in

TABLE 5.4 are under different technology and operating conditions compared

to the cores in reference [6]. Here we chose the most similar corner to the condi-

tions of the cores in reference [6] under comparison, which is ( Typical-Typical

/ 1.05 V / 25°C).

RI5CY(Flat) RI5CY(Topo) RI5CY(Hier) RI5CY [6] ARM Cortex-M4 [6]

Technology 32 32 32 65 65

Conditions 1.05 V, 25°C 1.05 V, 25°C 1.05 V, 25°C 1.2 V, 25°C 1.2 V, 25°C

Dynamic Power(uW/MHz) 8 8.4 8 17.5 23.2

Physical Area(mm2) 0.139 0.113 0.157 0.05 0.062

Table 5.4: RI5CY Core vs. ARM Cortex-M4 Table
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Figure 5.10: RI5CY vs. ARM Cortex-M4 in Physical Area

The dynamic power by definition is proportional to the switched load ca-

pacitance, the core frequency, and the square of the voltage supply. Therefore,

a scaling to the voltage supply from 1.2 Volt to 1.05 Volt will reduce the nor-

malized dynamic power of ARM Cortex-M4 to be 17.762 uW/MHz and RI5CY

in reference [6] by 13.39 uW/MHz at 65nm technology, technology node scaling
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from 65nm to 32nm also plays an important role in reducing normalized dy-

namic power by reducing the load capacitance.

Physical area is mainly affected by technology. Therefore, technology scal-

ing is needed to demonstrate the physical area difference between the cores in

reference [6] and RI5CY core implemented by all flows. Also switching from

SAED 32nm to another manufacturer at the same node would highly reduces

the physical area for RI5CY core by the three flows, that is mentioned in TABLE

5.4.

5.4 Future Work

In this section, we propose some ideas that could enhance design performance

and speed under all implementation flows. Below we shall describe these ideas

in more details.

5.4.1 Place and Route design using MCMM flow

A solution to the problem that not all PDK corners are verified and not passing

STA cleanly without DRC/timing violations in our three implementation flows

is to perform Place&Route flow using MCMM flow, synopsys IC Compiler offers

this flow so that ASIC designers could optimize their design over several corners

within both function and test modes, this flow results in a more optimized design

which is aware of potential timing/DRC violations that may appear on different

corners while running post-layout STA.

5.4.2 Switch from RVT Cells to HVT Cells

HVT standard cells have less leakage power than RVT cells, but this comes with

the penalty with an increase in cells propagation delay. As we can see the part

that mostly contribute to the total power in all flows is the cell leakage power,

reducing this part will significantly affect the total power by reducing it.
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Appendix A

RTL-to-GDSII Flow

A.1 RTL Logic synthesis

A.1.1 Introduction to Logic Synthesis

What is RTL?

A brief Introduction In the beginning, the digital designs were performed

by simple schematic diagrams, describing the logic functionality, and the hier-

archical levels of the design. Then, these designs were being implemented by

using the printed circuit board (PCB) technology. By the time, the digital de-

signs were rapidly increasing in complexity, and the implementation of designs

using this methodology became more difficult, and non-reliable. Moreover, the

performance of the digital circuits, including timing, area and power, degraded

with a remarkable rate. Therefore, the need for a new technology was a must.

HDLs The invention of FPGA and ASIC-proven technologies was the double-

handed aid, and the rise of a new era for digital world that we now are witnessing.

The key entrance for these two technologies was the HDL which is the acronym

for Hardware Description Languages.

Hardware description languages are simply describing the behavior of the

digital circuits through a software code. Each basic element is the digital circuit

(e.g. and, or, not) can be individually implemented with that code. At the level

of circuits, this code can describe the circuit either with element-by-element, or
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functional blocks in a hierarchical diagram manner.

There are two widely used HDLs in the world of digital design, and they are

VHDL and Verilog. Each of them has its advantages and disadvantages over

the other. Anyway, we can take an example to demonstrate the implementation

of a basic logic circuit with Verilog HDL.

module SIMPLE LOGIC(A, B, C, D, F);

input A, B, C, D;

output F;

assign F = ((A & B) — (C & D));

endmodule

Regardless to the language syntax, this code logically describes the basic op-

eration of a digital circuit. By tracking and tracing the code, its function is

to construct a logic circuit with four inputs and single output. The relation

between the inputs and the output is shown in the fourth line. Each symbol

in this relation annotates an explicit logical operation (e.g. ‘&’ symbol maps

ANDing operation, and ‘—’ maps ORing, and ‘ ’ maps NOT). The braces are

used for separating the logical operations as any programming language.

By the same manner, any digital circuit, involving combinational and sequential

circuits, could be built using these HDLs. After that, that code can ride over

any flow either FPGA or ASIC.

RTL By using the key concept of HDLs and its functional utility, we can build

our RTL with close eyes. But firstly, what is the RTL?

In digital design, the design can be split into top-down-based or bottom-up-

based layers, and that depends on how it would be looked at.
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Figure A.1: Gajski Y chart

The register transfer level, or shortly RTL, defined as the level at which the

data, control signals transfer could be seen and handled by the designer using

the hardware description language in the level of registers and functional blocks.

The “Gajski Y chart”, shown in Figure A.1, illustrates the layering process

of any digital circuit design from three angles of view. In our case, we need to

know the location of RTL among the different layers and views. As illustrated,

the RTL is located at the third place from the bottom. That means it covers

the circuit levels in the registers and functional units.

Figure A.2: Top-level view of RTL

As illustrated in FigureA.2, the figure shows the top-level view of the RTL,

containing the hierarchical blocks as known from definition.
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Code-to-logic synthesis

Introduction After writing the HDL code and verifying it from syntax and

logical errors, the next step is to synthesizing the code, so what is the meaning

of code-to-logic synthesis?

In the past time, there was a one-step design to reveal the actual implementa-

tion into the light. But now, the designs are written in a software code, thus

they need to be realized as done in the past. In other words, we can extract

the definition of logic synthesis from the previous words. Therefore, the logic

synthesis is simply the process of converting the coded RTL representation into

a real hardware digital logic.

Figure A.3: Top-level view of RTL

Synthesis process flow Logic sythesis is not limited to translate only the

HDL code into the real logic, but it involves five main sub-processes as illustrated

in Figure A.3. The first one is to directly translate the HDL code into its

equivalent boolean functions (e.g. F = AB+C) to be prepared for technology-

independent optimiztions. Before stepping forward to the next sub-process, we

need to take a break and understand the of meaning of the technology of the

digital logic. The technology, as a general view, means simply a multi-level

ladder at which we can attain a higher level of performace in a multi-aspect

view. In our case of study, the techology of digital logic implys a triangle with

three ribs which are area, power and delay. Therefore, the technology-indendent
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optimizations in the second step means to perform logical optimizations such

as minimizing the the number of logic gates and registers using the common

methods like karnough map and boolean algebra, and all these optimization

techniques are preformed indpendently on the technology metrics which are

area, power and timing.

After that, we can apply the technology to the optimized logic so that we can

measure the real metrics for the design in terms of area, timing and power. We

will talk in detail about technology libraries in “Standard EDA-based synthesis

flow” section. However, we can briefly say that the technology package includes

the timing information based on the input transition and output capacitance,

and the area calculated based on the actual area of the cell in that certain

technology. Moreover, the leakage power is typically measured for that cell

and so the power needed for proper operation, in addition to wire-load models

delays.

After mapping the target technology to our functionally optimized logic, the

design may need more or less further optimizations to meet the given standard

technical specifications based on a certain technology. These specifications are

about our three major components that were mentioned before.

We are now possessing the information of the design about timing, area and

power for our specified technology. Therefore, we can optimize the design to

achieve clean setup and hold timing. Setup timing optimization can be concisely

done by reducing the delays of the timing paths, and that can be achieved

through upsizing the logic gates and replacing combination of gates with another

has the same function but has less delay. Although up-sizing the gate can

enhance the setup timing, but it’s not all the way. As we have to consider that

the up-sized gate increases the capacitance of it’s input, thereby the delay of the

previous stage can can be increased and thus the whole path delay. Hold timing

optimization can be done by increasing the delay of the timing paths, and that

could be achieved by injecting highly buffers with different sizes dependently

on the delay status of the timing path. Area is directly propotional to power,

thus decreasing the design area will decrease the overall power consumption of

the system. The large-sized cells have larger area, and repectively the small-

sized cell has smaller area. Consequently, there are a compromise among area
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and timing. So, we have to balance between them to acquire the best possible

results, and to meet the given specifications.

After performing the required optimizations, and the design is ready for be-

ing placed on a chip, there is an implicit step to consider, and it has a great

significance to perform. The last step is to insert a testing logic device dis-

tuributed over the entire network of the design. When the chip have already

been manufactured, there is no simulation for verifacation where it’s now a hard-

ware piece, and we do not know if the timing paths is logically and physically

connected or not. Therefore, we need to insert a scan chain that is built-in in

each flip-flop to make a large scale shift register from each input to each output.

This topic will also be discussed in detail in its dedicated section.

Need for EDA tools

By the time, the digital designs were growing in scale and complexity, and

using the traditional methods for making the entire process of design became

competely difficult to achieve. Therefore, the designers thought to find a way

to give the life to the digital world again, and that achieved by inventing the

electronic design automation (EDA) tools.

The EDA tools is simply performing the same tasks that was perfomed in the

past such as performing synthesis, and placing the design into the chip before

completely routing it automaticaly, but dut to the complexity of the large scale

designs, the manual design became more exhaustive, and time-consuming. Due

to these features, the EDA tools were rapidly spreading among the community

of designers, and lastly became the main reliable and handful tools in the world

of digital design.

There are three main types of EDA tools each has its functions and features,

and they are classified as follows: synthesis, place-and-route, and static timing

analysis tools. The synthesis tool is taking your RTL design and setting timing,

area, and logical constraints on it, and then performing the actual synthesis on

it to meet the timing and area requirements. The synthesis process is done by

applying the software algorithms to translate, map, optimize the design, and

then printing out the final, well-optimizated gate-level netlist.

The second tool is typically taking the logical netlist, and contructing the real
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physical chip with real dimensions step-by-step using the appropriate algorithms

for planing and placing the design into the chip, and then routing it with clean

physical design rules.

The last last tool we have is the static timing analysis tool, and it has one

main task is to exploit its strong software engine to perform setup and hold

timing analysis, in addtion to checking timing violations, and then attempting

to fix them.

A.1.2 Standard EDA-based synthesis flow

As we discussed before, the EDA tools have made a revolutionary transition

in the world of digital design. Now, we are going to give the synthesis tool its

full rights of explanation and detailed discussion due to its favor to the digital

designers.

First of all, the synthesis tool can be treated as a multi-input-single-output

system, and Figure A.4 shows the information of these inputs and outputs.

The inputs comprise of RTL design HDL code, timing and logical constraints,

environmental attributes, and at last our technology cell library as an input.

The single ouput represents the logical gate-level netlist. Each of them will

have its opportunity for discussing. As a starting point, our synthesis flow will

begin with technology library.

Figure A.4: Logic synthesis tool inputs and outputs

Technology database library

One of the dominant reasons for success of logic sythesis process is the existance

of logic libraries that is available for various semi-conductor foundries. These
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libraries facilitates attaining of database information about each logic cell known

in the digital world in terms of area, timing, power, and operating conditions.

There are two popular commercial formats for library description, and they

are Liberty from Synopsys and Advanced Library Format (ALF). The library

format can be categorized into two distinct sections. We are going to expose

them and their elements in detail.

The first one is technology data. This involves information such as operating

conditions (in terms of power supply and temperature) and wire-load models.

The wire load model is a statistical estimate for capacitances which is implicity

existed in the typical nets as a function of number of pins and size of the design

in terms of area. It’s used as net capacitances requited for estimating the net

delay between two logic cells in the timing path.

The second category in library characterization is the library cell data. Each

cell in the library is accurately characterized for timing, area and power. The

delay can be estimated from the cell invironmental attributes (i.e. input transi-

tion and output load), process technology attributes such as threshold voltage

and critical dimensions, in addition to operating conditions such as local power,

ground levels and temperature. The timing inforamation also includes con-

straints such as setup and hold constraints. The power data contains internal

switching power and leakage power. It also have the functionality information

of each cell.

Timing Modeling The cell timing models are intended to achieve accurate

timing models for each cell in the design. They are obtained from detailed

circuit simulations of the cell operation. Timing models are specified for each

timing arc of the cell.
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Figure A.5: Timing arc delays for an inverter cell

According to the inverter timing information illustrated in Figure A.5, a

rising transition at the input results in a falling transition at the output and vice

versa. As shown in the figure, there are two kinds of delays, and they are output

rise delay and output fall delay which are annotated by T r and T f respectively.

These delays are defined based on a threshold points typically measured at 50%

Vdd. The delay for the timing arc through the inverter is dependent upon two

main factors which are previously mentioned as input transition and output

capacitance.

Linear timing modeling The simple delay model, but not accurate one,

is considered as a linear function of our two parameters: input transition and

output capacitance.

D = D0 + D1 * S + D2 * C

As shown from the previous relation, the linear delay model is represented

in three terms a parameter-independent delay factor D0, and the input transi-

tion value multiplied by a constant value D1, and the last term consists of the

capacitance value multiplied by a constant value D2. This is a simple delay

model to characterize the delay of the cell but the actual used model is a more

complex one called non-linear delay model (NLDM).

Non-linear delay modeling The non-linear delay model uses a circuit sim-

ulator to characterize the cell’s transistors with different of input slew rates and

output load capacitances. The results form a two-dimensional table. The cell

delay can be addressed from the two previously mentioned factors.
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Figure A.6: NLDM Table

The Figure A.6 shows the resulting delays that are interpolated from a cer-

tain values of input transition and output capacitance. The modeling accuracy

of the delay depends on the precision and range of the simulated values of the

input slew and output load. If the delay value is located within a square, as

shown in the figure, then it can be calculated using interpolation techniques. On

the other hand, if the delay value is located outside the table, then the synthesis

tool uses extrapolation techniques to estimate this value.

Power dissipation modeling

Active power The active power is associated with the activity of the input

and output pin of the cell. This activity can be defined as the charging and

discharging the output capacitance through the drawn current in the CMOS

resistances.

There are two types of active power: output switching power and internal

switching power. The output switching power is independent on the type of

the cell, and it only depends on the output capacitive load and frequency of

switching. The internal switching power is dependent upon the type of cell

and the activity of the input and output pins. Therefore, the values of internal

power can only be found in cell library.
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Leakage power The active power, as discussed before, is due the to cell

activity. But, if there is a power dissipation without any activity of the cell,

it will be only due to non-zero leakage current. The leakage can be due to the

sub-threshold leakage current for MOS devices or current tunneling through the

gate oxide.

By using high threshold voltage, the phenomenon of subthreshold leakage

current can be significantly eliminated. There is a trade-off between the speed

of cell and leakage power. When using high ‘Vt’ cells, the delay of the cell

increases, and hence the speed degrades. The gate-oxide tunneling does not

change significantly when using high ‘Vt’ cells. As a result, the leakage power

can be specified in the cell library as a default value, and for input-activity

conditions.

Wire-load Modeling Wire load models contains information that synthesis

tool uses to estimate the values of interconnect net delays during pre-layout

phase of the design. There are different models of the wire-loads to be ap-

propriate to different sizes of logic cells. These models define capacitance and

resistance and area per unit length of the interconnect wire.

Other attributes in cell library In addition to timing, power information

in the cell library, the cell description in the library specified area, functionality.

Constraining the design

In the previous section, we exposed to the concept of logic cell library, and

the content of the cell library such as timing and power models and other cell

attributes. The synthesis tool needs this technology library as its first step

to setup the data for the given design. After establishing the database of the

technology, the synthesis tool will ask for explicitly reading the RTL design files.

The RTL design that was read has no information about the required timing,

area and power where it’s technology-independent language and constraints-free

design files till now.

The next step is to simply constrain the design in timing, area and power

aspects to meet the required design constraints. In this section, we are going
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to discuss in detail the constraining process of the design from concept and

methodology perspective.

Idea behind constraints The mean of ‘constraint’ word in language is to

set a free-space for something to move or a some-time for something to be done

within the specified time, thus there are boundaries for each attribute to be

constrain with. In the world of digital design, to constrain a design is to give

this design the liberty for moving in dimensions of timing, area and power with

limiting boundaries, or to get certain constraints that cannot be able to move

in that dimension such as constraining the clock with a certain period of time

for design to operate at.

The aim of this operation is that the client would like to have a design with

specific requirements. In order to achieve that, the design must be constrained

in each dimension, and then be optimized.

Timing constraints

Clock attributes and constraints

First of all, design must know its operating frequency as the clock. Therefore,

the clock attributes can be defined in the synthesis tool in terms of time period

and duty cycle.

Figure A.7: Defined Clock

Clock definition in most synthesis tools is done in non-realistic form as illus-

trated in Figure A.7. The clock is defined in ideal form with sharp edges which

cannot be achieved in the real designs.

As a result, we need to model the real clock attributes and variations that

can be occurred in the real life. Therefore, the need for the actual attributes is
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a must. The clock attributes that we need to define are transition, latency and

uncertainty. Each of them will be discussed in detail.

Clock transition The actual clock is not ideal (i.e. it has no sharp edges) as

illustrated in Figure A.8. The reason for that is the circuit of the actual clock

source too difficult to be designed to achieve that purpose. As known in the

engineering concept, the more quality can be acquired, the more money will be

drained. Therefore, the tool can simply define this attribute as a transition time

for the clock so that it can work with realistic clock by setting the time of the

transition caused by the clock.

Figure A.8: Clock Transition

Figure A.9: Clock Latency

Clock latency The Figure A.9 shows the delay in the clock path. The delay

between the clock source and the actual pin where the clock is used to trigger

the device is defined as clock latency. This delay is due to the capacitive load

and the elements existed in the clock tree between the clock source and the clock

pin. There are two components in the clock latency which are source latency

and network latency. The first one is source latency, and that is the delay

between the clock source and the point at which the clock is actually defined.

The network latency is the delay from the defined point to the actual device
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pin that will be triggered. These values are set by the designer in the synthesis

tool command line argument, or by setting them in a script file, and then can

be sourced from the command line argument.

Clock jitter At the clock generating device, as PLL device, the coming, ris-

ing or falling, edge may be not deterministic due to crosstalk or electromagnetic

interference or due to PLL characteristics itself. These non-deterministic vari-

ations in clock periodicity is noted by clock jitter. As a result, these variations

have direct impact on setup and hold timing so that their values will be also

changed with respect to the coming non-deterministic edge. As shown in Fig-

ure A.10, these variations cause the clock edge to slide in time scale thereby

reducing or increasing the required time for meeting the setup and hold require-

ments. Clock jitter cause lack of predictability to when the exact clock edge

will arrive at the point of triggering of the sequential device. These called the

clock uncertainty. This phenomenon can be explicitly modeled in the synthesis

tool as maximum and minimum predictable values, in unit time, that could be

set before and after the expect incoming edge. (e.g. if the edge will arrive at

4, we can define a value of 0.2 for setup to slide the edge backwards to throttle

the setup requirement, similarly, we can define a value of 0.1 for hold time to

slide the edge forwards to make to throttle the hold requirement).

Figure A.10: Clock Uncertainty
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Constraining I/O ports

Figure A.11: Input port delay

Input port delays In order to achieve synchronization between different de-

signs, constraining the input and output ports for timing is a must. To make

that realizable, the synthesis tool assumes another design attached to the cur-

rent design with its inputs and outputs.

In our case, as input ports discussion, the JANE’s design, as illustrated in

Figure A.11, has sequential element and a cloud of logic denoted by ‘M’, and

connected to our design. To achieve synchronization, the two designs must have

the same clock. In our design, the input port ‘A’ attached with a cloud of logic

denoted by ‘N’.

The time budget of the clock period is then divided between the logic ‘M’

and logic ‘N’. To realize the setup and hold requirements for this virtual path,

we need to constrain the input delay coming from the other design. But, un-

fortunately, we do not have access to the other design, and the only access that

we have is our logic delay. Therefore, to achieve the inter-timing requirements

between those designs, we need to constrain the outside delay by constraining

our inside delay. If we set a delay value for logic ‘M’, we then impose a value for

delay ‘N’ not to exceed it. Thus, during logic optimization, the synthesis tool

then has a certain delay value for ‘N’ that must do it best to achieve it.

Min/Max input delays As discussed before, the clock time-period budget

should be equal to or greater than the sum of internal logic and external logic

delays in addition to setup time. Therefore, by setting a maximum value for the
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input delay, then the internal logic delay is also constrained so as not to exceed

the value of clock period subtracted from that maximum input delay value and

setup time. So as to decrease the internal logic delay, we have to specify a larger

maximum delay value on that input port.

On the other hand, the minimum delay value for the input port is mainly

needed for inter-path hold time requirements. We need to specify that value in

order to make sure that path has the minimum delay required for hold time.

When setting that minimum value to be a certain value, and the delay of the

logic ‘N’ has another certain delay value. If the sum of these two values is less

than the time period of the clock cycle, then the synthesis tool will boost the

internal logic delay to meet the hold time requirements for this path.

Figure A.12: Output port delay

Output port delays Similarly, the output port delay has the same concept

as the input port delay in term of minimum and maximum delays. As illustrated

in Figure A.12, the output port ‘B’ attached to another design input port with

a cloud of logic ‘T’ and input flop ‘FF4’. To achieve the maximum output delay,

the logic ‘S’ must be optimized to confine the time into the time period. To

achieve minimum output delay, the logic ‘S’ delay must be boosted to fill the

time period.

Environmental Constraints
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Output capacitive load

Figure A.13: Output capacitive load

The output load is the actual capacitive load for each output port. That load

is existed due to the output parasitic capacitances that is implicitly found in

MOS devices. By default, the synthesis tools define the output capacitance to

be zero. Therefore, the output transition will have sharp edges which is not

realistic at all.

Consequently, one must define an output capacitive value in order to accu-

rately model the actual behavior of the output ports as illustrated in Figure

A.13.

Figure A.14: Input transition to the input port

Input transition Input transition occurs at input ports where the input sig-

nals switching from low to high and from high to low. As known, there are no

idealities in the life. Therefore, the input signal makes its transition with a finite

slope that differs with respect to the type of the driving cell. As illustrated in

Figure A.14, the input transition has a finite value of 0.12 ns, and it can be

directly modeled in the synthesis tool.
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Figure A.15: Driving cells to the input port

Driving cells As discussed before, the input transition can be modeled as a

constant value given for a certain input port. But, if a specific transition time

value is not known at a block-level input port, one cannot model the transition

time with an arbitrary value. Therefore, it must be modeled with an actual

driving cell at that input port. As shown in Figure A.15, the input port has

been driven by an OR gate or a sequential element. Each has a value to give for

the input port to model the transition time. This driving cell can be specified

due to the nature of the input port itself, and the driving cell itself that expected

to be attached at that port in reality.

Logic optimization

Introduction After the design is well-constrained, it’s then ready for being

optimized. The timing and logical constraints that applied to the design may be,

more or less, not fit to the design in timing, area and power aspects. Therefore,

the violations in these three dimensions commence to appear at once as single

block of errors that needs to be handled and reduced till being disappeared,

and finally one can has a clean timing and a well-confined area and low power-

consuming design. Therefore, the only way to achieve that is through logic

optimization techniques.

Technology-independent optimization As we discussed before in the basic

synthesis flow section, there is a step that is called technology-independent logic

optimization. From its name, the logic optimization based on this stage is

about optimizing the design without going into any technological aspects. That

means no area, no power and no timing information will be set during that
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optimization. It only be based on the basic logic minimization techniques that

satisfy the same logic functionality for the optimized circuit.

Two-level logic minimization

There are different types of two-level logic implementations. The most common

one is the SOP implementation where the first level of logic corresponds to AND

gates, and the second level refers to OR gates. There are many structures for

SOP implementations such as NOR-NOR structures, NAND-NAND structures,

OR-AND and AND-XOR structures.

The SOP minimization can be done through the EDA tools through many

algorithmic methods such as “Quine-McCluskey” algorithm that it uses the

Boolean algebra to minimize the logic in the two-level implementation. The

conceptual form for that algorithm can be found in the references section that

will be left in this thesis as we do not have to dive into the detailed SOP

minimization.

Multi-level logic minimization

The two-level logic implementation used for minimization is limited due to not

all logic functions can be implemented in two-level representation. In addition,

the multi-level logic is often faster and smaller than the two-level-based logic.

Therefore, multi-level logic is preferred in very large-scale designs. There are

two basic types of the multi-level logic minimization approaches, rule-based local

transformations and algorithmic transformations.

A rule-based local transformation method transforms a pattern for a set of

local gates and interconnections into another equivalent pattern when this cer-

tain pattern is recognized the logic netlist. These transformations are somehow

limited in optimization capability since they are local in nature, and do not have

a global perspective of the design.

The algorithmic transformations are evolved in parallel with the activity

of two-level-based logic and influenced by it, and it consists of two phases:

technology-independent step based on algorithms for manipulating the Boolean

logic functions, and a technology mapping step where the design is implemented

using generic Boolean functions that can be implemented in design method of
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choice such as (FPGAs, standard cells or macro cells).

Sequential logic minimization

The basis of the sequential logic is strongly dependent on states so that the logic

circuit can transit from one state to another. Therefore, the main minimization

purpose should be applied on the number of states in that circuit, hence the

number of registers in the circuit can be minimized to realize the same function

of that circuit. We can make further logic transformations in the combinational

logic that is embedded in the sequential elements. State minimization, state

encoding, and logic transformations are using unreachable states or state equiv-

alence as don’t cares. These approaches are dedicated to state-based minimiza-

tion in case that we have to know some information about the given sequential

circuit. In contrast, there are structure-based transformations which are carried

out according to the circuit structure and do not rely on state information. Re-

timing and re-synthesis, for example, are practical transformation methods for

sequential logic minimization.

Technology-dependent mapping and optimization As discussed before,

the technology-dependent mapping and optimization is simply based on a given

technology cell library. For a given technology library, the problem of technology

mapping is to find a multi-level circuit equivalent to the given Boolean network

such that it is comprised of gates in the library and has minimum cost, which

can be area, delay, testability or power consumption.

Graph covering algorithm A systematic approach to apply technology

mapping is through graph covering algorithm. With this mechanism, the tech-

nology mapping problem can be viewed as optimization problem of finding the

minimum cost covering of the graph by choosing from the collection of pattern

graphs for all gates in the library. A cover is a collection of pattern graphs such

that each node in the graph is contributing in one or more patterns in the graph.

Furthermore, one restriction in this theory should be taken into consideration

is that the inputs of one pattern must be the outputs of some other patterns in

the covering. Otherwise, the inputs of one pattern could be the outputs of the

internal nodes of some other pattern.
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Figure A.16: Graph covering

As illustrated in Figure ??, the subject graph splits into three pattern graphs.

Each of them has outputs, which is directly connected to the inputs of other

pattern graph as discussed in the graph covering theory.

One-hit magical logic optimization As known, most of the EDA synthesis

tools uses command line arguments to perform any required function or some-

what called one-hit task accomplishment. After constraining the design and

setting the environmental attributes, we then compiling the design. So, what is

the mean of design compilation?

To compile something in software is to debug it versus errors and then to

execute what is written in command line argument. There are a variety of

famous synthesis compilers such as Synopsys design compiler and Cadence RTL

compiler. Furthermore, any compiler can perform a single task is to simply

perform all the steps of the synthesis process in only one single step. These steps

involve technology-independent optimization, technology mapping, technology-

dependent optimization and timing analysis, in addition to DFT scan-chain

insertion. The cost of this process is time. The compilation process is taking

much time to perform and terminate. Therefore, the compilation command in

any synthesis tool deserves the title of “one-hit magical command”.
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A.1.3 Flat Design flow

A quick definition

What is the meaning of word “Flat”? Flat object is an object with no terrains

in its surface. In addition to that it is considered as a one solid piece with no

partitioning, structuring, or hierarchical levels in its nature. For example, a

football pitch can be considered as a flat ground where there are no terrains or

multi-leveling in the ground. It just a coherent piece of earth.

Concepts and methodologies

Concepts of flat design in digital VLSI systems

Flat vs hierarchical RTL coding

We can apply the concept of the flat and hierarchical objects in our VLSI system

designs so that we can determine the difference between each of them and reason

behind preferring one over the other.

Writing a high-quality RTL code in digital designs necessarily required writ-

ing each functional block in a single HDL, Verilog or VHDL, file so as to be able

to easily verify each sub-module for language syntax errors and test it in func-

tionality manner to make sure that it performs its function properly. Therefore,

writing the RTL code in hierarchical manner is a must. But, how do we can

write the RTL code in the hierarchical form? It’s a common method among all

digital designers to write the code of each sub-block, and then test each of them

against functionality and syntax errors.

Figure A.17: Hierarchical Design of full adder
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In the Figure A.17, we can see hierarchical design of the full adder which

consists of two half adder sub-blocks and an OR gate somehow interconnected

with each other. After designing the half adder, we know its functionality,

therefore, we can test it and ensure that it works properly. After that, we can

instantiate this sub-block modules in the top-level HDL file and then somehow

interconnect them, and at last we can test the whole system.

On the contrast, the flat RTL coding style is considered to be only used for

writing HDL codes for small-scale VLSI designs where the design is simple and

easy to code. Flat-based design in RTL coding has an alternative name which

is dataflow design style where the data can flow among the logic gates without

encountering obstacles or blockages.

Figure A.18: Flat-based Design of full adder

As illustrated in Figure A.18, the figure shows the flat-based, or dataflow

design style, of the full adder. The RTL code of such designs is written by

using the Boolean expressions that describe the behavior of the logic circuit.

The problem arises when the design is growing in scale. As a result, these

Boolean expressions is also growing in complexity, and become more difficult

to implement. Another result for writing in flat-based design for large scale

designs is that the probability of making syntax and logical errors will increase

in exponential-wise manner. In addition to difficulty of debugging and fixing

these errors. Furthermore, we can find that the testing and verification of such

design is also difficult and time-consuming.
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Concept of flat-based design in synthesis process

As we discussed above, the RTL code takes the advantage in writing of the

HDL code. Therefore, can expect that the synthesis tool will have an input of

RTL in hierarchical form, thus we need to know the idea behind using flat-based

methodology in synthesis process.

Flattening process of the design is useful for unstructured designs such as

random logic or control logic, since it removes intermediate variables and uses

Boolean distributive laws to remove all parenthesis. It’s not suited for designs

consisting of structured logic such as a multiplier or a look-ahead-adder.

Flattening the design results in a two-level, sum of products from, and re-

sulting in vertical logic (i.e. few logic levels between inputs and outputs). That

does not imply removing the levels of hierarchy by the way. Removing hierarchy

is used to enhance the performance of logic optimization as it will be discussed

later. This design style may have a significant enhancement of logic timing, area

and power.

Methodologies of flat-based design flow

Removing the whole design hierarchy

By default, the synthesis tool maintains the design hierarchy during all the syn-

thesis phases. This hierarchy has a great impact on logic optimization process,

since the synthesis tool considers each functional sub-block in the hierarchy as a

stand-alone design and performs the logic optimization techniques on it without

crossing the logical boundaries between all sub-blocks. This has a large effect on

combinational logic optimization process, because there may be a combination

of logic in some module needs a certain logic element in another some sub-

block to make a great minimization in the logic cloud. But due to the logical

boundaries, the logic optimization process is confined inside each sub-block.
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Figure A.19: Removing hierarchy of the design

As illustrated in Figure A.19, the top-level “BlockT” has two sub-blocks

‘A’ and ‘B’. They have a peer-to-peer combinational logic as shown in Figure

A.19(a), and it’s desirable to remove the logical boundaries between them to

enhance the optimization between them. By removing the hierarchy in Fig-

ure A.19(b), the synthesis tool became able to optimize the logic without any

blockages or boundaries.

Impacts of removing the whole design hierarchy As we explained before,

removing the design hierarchy will facilitate the work of the synthesis tool on

logic handling and optimization, but the problem arises when the design is

growing in scale. Due to memory needs of the synthesis tool, each removed

hierarchy level or any ungrouping operation on the design has to be saved in

tool memory. Therefore, removing a larger hierarchy level that contains large

sub-blocks implies increasing in the memory sized that needed for saving the

new changes in these new sub-blocks. As a result, the synthesis tool will see a

larger design that needs to be handled in timing, area and power aspects, and

the processing time of the design will be larger, hence the optimization will need

much time to be realized. On the other hand, the small designs do not have

a large-scale area, thus they may be strongly benefited from the advantages of

the flat-based design based on removing hierarchy technique.
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To overcome the above problem, we can use a mixture of flat-based and

hierarchical-based design. We have two methods to solve this issue which will

be exposed in this discussion.

Minimizing the levels of design hierarchy

The design hierarchy is considered as a multi-level tree with branching for every

level. Each branch has smaller branches, and each sub-branch has also smaller

sub-branches.

As we discussed before, the main problem of removing the entire hierarchy

located in the tool is the memory needs. Therefore, we can remove only some

levels of this hierarchy. Beginning from the leaf blocks hierarchy level, the

removal of this level may have a small impact on the memory, thus improving

optimization, and also no much time needed. The second step is to step up to

the next higher level and remove it, and then performing a compilation check for

verifying on the compilation time impact of the removed level, and so on. We

can continue to iterate this cycle till the compilation time suffers from a large

step in time. We have to use this method after performing the compilation of

the standard hierarchical method and almost the timing requirements are about

to be realized as we do not want to increase the timing violations due to using

this method.

Structuring and flattening

Figure A.20: Grouping the design sub-blocks

Structuring the design implies grouping some of the sub-blocks existed in a

certain level of hierarchy under the condition that these sub-blocks is adjacent
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to each other. As illustrated in Figure A.20, the sub-blocks ”U1” and “U2” in

the top level, which are here considered as only logic gates due to smallness of

the design scale, are grouped together in a one new sub-block. The sub-blocks,

inside the new sub-block, can then be flattened and optimized for timing and

area with small effect on the memory needs. After successfully optimizing the

sub-blocks, the grouping mask that was inserted, can be removed at last as

illustrated in Figure A.21.

Figure A.21: Unrouping the design sub-blocks

Overall system performance based on flat design flow Due to using

the flat design flow process, the process of removing of any level of hierar-

chy improves the overall system performance where is no constraints on logic

optimization process. Therefore, a successful flat-based design process should

strongly have advantages over a standard hierarchical-based design process in

timing, area and power. The flat-based design process, as we discussed above,

helps the tools to make further logic optimizations which can not be done in

the standard mode. As a result, the delay of the timing paths will extremely

decrease, therefore, the design can operate on a faster clock speed. Another

advantage of using this method is that the area of the design is also can be

reduced due to that further optimization that is minimizing the logic, hence

reducing its corresponding area. The final and the most important factor is

power. The power is directly proportional to the design area. Therefore, the

power consumption will also be lower than before.

But one of disadvantages of this method is typically time-consumption. To

flatten to design and to achieve higher performance of the system, it logically

needs much compilation time to realize. In addition to time-consumption, the

main and limiting factor is the memory needs of the synthesis tool. This factor
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makes us resort to intermediate solutions to maintain almost the same perfor-

mance that we desire to have.
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A.1.4 Design Compiler Topographical flow

In 2005 Synopsys incorporated topographical synthesis technology, Topograph-

ical technology enables you to accurately predict post-layout timing, area, and

power during RTL synthesis without the need for wireload model-based timing

approximations. It uses Synopsys’ placement and optimization technologies to

drive accurate timing prediction within synthesis, ensuring better correlation

to the final physical design. This new technology is built in as part of the DC

Ultra feature set and is available only by using the compile ultra command in

topographical mode.

How Topographical Technology work:-

In ultra deep submicron designs, interconnect parasitics have a major effect on

path delays; accurate estimates of resistance and capacitance are necessary to

calculate path delays. In topographical mode, Design Compiler leverages the

Synopsys physical implementation solution to derive the “virtual layout” of the

design so that the tool can accurately predict and use real net capacitances in-

stead of wireload model-based statistical net approximations. If wireload models

are present, they are ignored. In addition, the tool updates capacitances as syn-

thesis progresses. That is, it considers the variation of net capacitances in the

design by adjusting placement-derived net delays based on an updated “virtual

layout” at multiple points during synthesis. This approach eliminates the need

for overconstraining the design or using optimistic wireload models in synthesis.

The accurate prediction of net capacitances drives Design Compiler to gener-

ate a netlist that is optimized for all design goals including area, timing, test,

and power. It also results in a better starting point for physical implementation.

steps running Topographical mode:-

1. Set up the libraries, Design Compiler requires both logic libraries and

physical libraries. Design Compiler topographical mode uses the same

logic libraries as the Design Compiler wire load mode; it uses the Milkyway

format for physical libraries
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2. Read in the design (Verilog, VHDL, netlist, or .ddc).

3. Specify timing, area, power, and test constraints, set up the design envi-

ronment by specifying the external operating conditions (manufacturing

process, temperature, and voltage), loads, drives, fanouts.

4. Provide floorplan information, The principal reason for using floorplan

constraints in topographical mode is to accurately represent the placement

area and to improve timing correlation with the post-place-and-route de-

sign. You can provide high-level physical constraints that determine core

area and shape, port location, macro location and orientation, voltage

areas, placement blockages, and placement bounds.

5. Visually verify the floorplan, Use the Design Vision layout window to vi-

sually verify that your pre-synthesis floorplan is laid out according to your

expectations. The layout view automatically displays floorplan constraints

read in with the extract physica constraints command.

Figure A.22: topographical flow

Topographical mode target:-

1. Accurate predicts, timing, area and power.

2. Ensures synthesis output correlate to actual layout.

3. Reduce the number of iterations required to close design goals eliminating

the need of load wire models.

4. Early prediction of routing congestion and visualization of congestion hot

spots and timing issues.
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5. Allows RTL designers to fix design issues early, cutting time and improving

scaling predictability.

6. Provide visualization and analysis of congested circuit regions.

7. Perform synthesis optimization to minimize congestion in these areas.

8. Provides significant improvement in design time.

9. Delivers best Quality of Results (QOR) in terms of area, timing, power

and test correlated to physical implementation.

10. Designers fix real design issues while still in synthesis and generate a better

start point for physical design, eliminating costly iterations.

11. Remove timing bottlenecks by creating fast critical paths.

12. Offers more flexibility for users to control optimization on specific areas

of designs.

13. Distributed synthesis with automated chip synthesis.

14. Enables higher efficiency with integrated static timing analysis, test syn-

thesis and power synthesis.

15. Designed for RTL designers and requires no physical design expertise or

change to the synthesis use model.

16. Delivers accurate correlation to post-layout timing, area and power with-

out the need of WLM.
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A.1.5 Hierarchical Design flow

Whenever we start any big work, we try to break down that work into the

small-small work. In software terminology – A big program is divided into the

sub-program and sub-programs into the modules (example - OOPs is based on

similar approach -People those aren’t aware about this approach- skip this line).

Now, similar type of approach, when you are going to implement in the VLSI

design – That Design is known as Hierarchical Design. As the size increases,

complexity increases and then it become very difficult for a single person to

do the routing/timing closure/ optimization etc of such a big-complex design.

Apart of this there are limitation with respect to the Memory of the computer

device and runtime of the EDA tools. So it is good to break/divide such a

complex task into small-small task. For example, Let us suppose, you have to

replace 10 4-input-AND Gates with 20 2- input-AND gates, so for that you

have to load the whole design (which has almost millions of gate). So for such

a small task, you have to waste a big chunk of memory. To resolve these issues,

hierarchical design methods come into picture.

The basic flow of hierarchical design is simple...

� Dividing a design into multiple blocks (sometimes referred to as sub-chips,

sub-blocks, modules, hierarchical blocks, etc.).

� Designers can work on the blocks separately and in parallel from RTL

through physical implementation.

� Working with smaller blocks keeps tool run-time short.

� Block-level timing closure should be relatively easy to achieve compared

to the timing closure for the entire chip.

� Once all blocks are finished, they are integrated to create the final chip.

Here these blocks are treated as Black-box (only few specific information

available at the top level).

� Close the timing of the final chip or you can say that close the timing

between the blocks. If proper work has done in the starting, it should
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be close in first iteration (Ideally). Pictorial view of the Hierarchy based

Design Flow is shown in figure A.23 .

In figure A.23 we have mentioned 2 types of hierarchy.

� Physical Hierarchy: Physical hierarchy is based on back-end considera-

tions such as cell placement, I/O placement,macro placement, intercon-

nect routing and associated timing issues.

� Logical Hierarchy: Based on the function of the design modules/blocks,

which is usually determined by the designers and their HDL coding meth-

ods.

These 2 are different but still there should be a correlation between these 2 so

that we can reduce the time needed to achieve the timing of the chip. Hierar-

chical design Flow benefits:

� Improved Productivity when designing complex chips.

� Run time is fast because you can work over individual block and those

will be small in size in comparison to the full design.

� In case of any timing issue, you can fix individual block.

� Incremental functional and timing fixes is possible after timing closure.

In the traditional flat ASIC flow :

� If there is any problem in the timing after routing, then there are equal

chances that you have to go back to the architecture level design for cor-

recting that.

� Memory limitation can also create problem

� Run time in the case of multi-million gate design is huge.

One thing keep in mind, I am not saying that Full-flat design is useless or Hier-

archical design has replaced that approach completely. But Hierarchical design

offloads the burden of Full-flat flow (traditional flow) during the implementation

phase. Even now, at the signoff stage, most of the companies (even I can say
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Figure A.23: Hierarchical Flow

99% companies) are using Full-flat-flow for rechecking everything and to make

sure nothing is messed up in between. But after using hierarchical approach,

even in implementation phase, designers have saved a significant time.

Now if you pay attention, you come to know that as per the pictorial diagram,

there is only 1 important step in the Hierarchical flow and that is the “Setting

block level constraints”.

Block Level Constraints are of 2 types:

� Physical Constraint: These constraints depend on the floor-plan of the

top level. Means where exactly this block will be placed on the top level.

– Size and shape of the block

– Pin placement with in the block

� Timing Constraint: Block timing Budget allocation or say timing budget-
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ing. Like the delay at the input port / output port and all.

Always remember that these constraints can’t be decided in a single iteration.

For setting these constraints we have to use both the top-down and bottom-up

approaches. Like position of the pin in the block depends on the position of the

pins required in the final chip. In the similar way, if there is any hard macro

(you can’t change the position of the pin in that), so you have to place that

block in such a way that it should be closer to the pin position of the final

chip. So in the complex design with large number of blocks, you have to do few

iteration and you have to use both the approaches in parallel. During deciding

these constraints, in most of the cases we add enough margins so that we can

cover any inaccuracy in estimating (which we have done in early phase of the

design) at the end of design cycle. A uniquely identifiable element.

Physical Constraint List of physical constraints are: (it contain all the top

level and block level constraints)

� Die area

� Core Placement area

� Utilization

� Cell location

� Pin Location

� Placement Blockage

� Wiring keep-out

� Voltage Area

� Site Row

If you have notice, all physical constraints are related to the location. It’s like

when you are designing a layout of your house, then you are applying a lot of

constraints like window should be in left, door should be in North, some corner

is fixed for Kitchen. So similarly in chip designing, you have to place a lot of

constraints as per the requirement/specification of the chip or sometime as per

the specification of the IP blocks.
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Timing Constraint for Block is equivalent to the “Timing Budgeting” or say

“Block timing Budget allocation” for example the delay at the input port /

output port and all.

Timing Budgeting: Timing budgeting is an important step in achieving tim-

ing closure in a physically hierarchical design. The timing budgeting determines

the corresponding timing boundary constraints for each block in a design. If

the timing boundary constraints for each block are met when they are imple-

mented, the top-level timing constraints are satisfied. To understand it clearly

again consider the scenario of your house.

� You want to place your Drawing room close to main entrance (reason

being you don’t want that any new person travel all through the bedroom-

kitchen and then finally sit in drawing room),

� Travel time between Kitchen and Dining room should be as less as possible.

� Bathroom should be as close to your bed room (so that you should not

spend much time before going to office just in to and fro between bedroom

and bathroom.

So, all these are timing constraints during the finalizing of layout of your house.

Think what will happen if Kitchen is in 3 rd floor and Dining room is in ground

floor.

Similarly, in the chip designing, while you divide the design into small blocks,

you have to take care about timing between block’s I/O to other block’s I/O,

block’s I/O to chip I/O. If a data is required by a block A for doing some pro-

cessing and this data is generated by block B, so Block A should know when

it will receive the data from the Block B. Since at the top level these blocks

are Black Box, so during timing budgeting we have to define the constraint at

input of Block A that it will receive the data after X time (this X we have to

estimate correctly on the basic of experience and knowledge of the block, usually

we constraint with X+x amount where x is the margin we are keeping in case

of wrong estimation).

The block-level timing constraints are in the form of one or more “logical timing
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constraint points” at the input and output ports of block-level circuits. Each

logical timing constraint points Using the logical timing constraint point, the

circuit design system performs independent timing analysis and optimization of

each block-level circuit.

Let me explain this timing budgeting concept in other way also. Let us

suppose that you have a design and as per the specification, date should reach

from port x1 to x2 with in 3sec. Now in the flat design you can meet this

timing very easily because you are aware about the no of cells, types of cells

and wire length between the x1 and x2 also. So it’s very easy to estimate the

delay between x1 and x2.

Figure A.24: illustration

Now compare it with the hierarchical design. You have figured out that

there are 3 blocks in between x1 and x2. Now the block owners are different, so

you want to make sure that everyone gets proper information before designing

their own block. Like how much maximum delay should be there for b1/b2/b3

(like we get the specification from x1 to x2 at the top level). So it’s our job to

provide the proper specification to the block owner. If I will miss this, it will

be a near-to impossible task to integrate it at the top level without any itera-

tion. So, dividing this available 3 sec time into these 3 blocks is known as Time

Budgeting in this example (On the big design also the definition is similar –

Distribute the top level timing constraint effectively to the block level is known

as Time Budgeting.)

Now, randomly you have assigned the 1sec delay to each block. But the cell
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delay (cells present inside the blockb1) of block b1 itself is exceeding 1sec ( if

you will add the net delay after layout – it will be much more than 1sec), so

such type of timing budgeting is known as Under-Budgeted Timing. Similarly,

if the cell delay of block b2 is very less (let’s assume 0.2sec), then estimating

the 0.8sec for the net delay may be too much. And in such cases this type of

timing budgeting is known as Over-budgeted Timing. So it’s very important to

estimate the timing very accurately.

Now let’s assume that you have estimated the delay (timing budgeting) cor-

rectly for each block (e.g 1.5sec, 0.5 sec, 1 sec). There is a processing in block

b2 on the data which is coming from the block b1, so for that, block b2 should

know that when it is going to receive the data (after how much time with refer-

ence to system clock it will receive the data). Since both the blocks are handling

by different person and they are closing their blocks independently, so we have

to define few constraints at the input and output ports of each block in terms

of timing and all. These constraints can be with respect to clock or data or both.

For example, we can define one constraint at the input of block b2 that for

all calculation within the block, it can assume that data has a delay of 1.5sec

(in PT it will be like – set input delay ). So this will be the constraint for this

block with respect to this particular data and at this particular port.

Similar logic is applied to all the hierarchical design. And similar type

of timing constraint you have to define for all the sub-blocks. Mostly these

constraints are in the form of SDC (Synopsys delay Constraint). At a bare

minimum, a design will have clock constraints, and input and output delay

constraints. As a design gets more complicated, you may tend to add exception

constraints. However, the fewer the exceptions the better in terms of tool run

time. Anyways the details about the timing constraints are in the different post.
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What should be required to do an efficient timing Budgeting:

� All Cells and blocks should be floor-planned. So that at least you can

figure out the location of the I/O pins. If you can get a globally routed

design, then it is wonderful.

� Timing Constraint for top level should be available.

� If you are using any hard block, the timing constraints/specification should

be properly known.

Challenges in the timing budgeting:

� Chip level constraints must be mapped correctly to block level constraints.

� For allocating the timing budgeting to all the sub-blocks, we have to pre-

dict reasonable delay for global interconnects. Which is difficult before

the design is physically constructed.

� Because of not able to predict accurate delay of global nest, lots of itera-

tions are required to close the timing in the design.

� If you over budgeted any block, you are wasting the timing slack.

� If you under budgeted, you will get negative slack means timing violation.

It may be possible that under budget of one block is because of over-

budgeting the other block. Because at the end timing should be as per

specification of chip.

� Unfortunately, the delay budgeting problem will only become more diffi-

cult as more wires become global wires whose pin-to-pin delays are strongly

dependent on their actual implementation by detailed routing tools.

Once “timing budgeting” is done, each and every block act like a small chip/design.

Once every block is done, these are integrated at the top level and then the tim-

ing of top level is verified. For timing verification at the top level we only need

the timing information corresponding to each block, so we can ignore other

details (which can create a problem in terms of huge memory and runtime).

For this purpose, we use the timing models corresponding to each sub-blocks.

A timing model contains information about the timing characteristics, but not
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the logical functionality, of sub-module/blocks. After generating a timing model

of a block, we use that model in place of the original netlist for timing analy-

sis at higher levels of hierarchy. This technique makes whole-chip analysis run

much faster.

Now in the last, as you know that there is nothing 100% perfect, Hierarchical

Flow also have some limitations.

Limitation in Hierarchical Design:

� When you place the block in top level, they can act as routing obstruction

and due to which it may be that you have to route the wire more than

your estimation and it will create timing violation.

� Nets that interconnect the blocks have to be routed through channels

between blocks. These routes tend to be long and can cause timing and

signal integrity problems.

� Routing Congestion in some place and some place is not utilized properly.

So it may happen that hierarchical design requires more chip area that

flat design.

� Timing of block I/O can’t be changed during top-level optimization. so

blocks must be optimized with a good I/O budget.

� Prediction of I/O budget should be very accurate, else there may be a lot

of iterations between I/O budgeting and closing the timing of block.
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A.2 Formal Equivalence Check

A.2.1 RTL vs Gate-level netlist

As discussed before, the RTL a high-level description of hardware in the level of

data and control signals transfers among registers and functional blocks. The

RTL code is basically written in common HDL languages such as Verilog HDL

and VHDL. The RTL code is a raw and constraints-free hardware description

where no clock period, timing, logical or physical constraints are defined. On the

contrast, the gate-level netlist basically comprises of logic gates that connected

by wires called nets as illustrated in Figure A.25. The net is just a wire that

has a name so that the synthesis tool can distinguish between the different

wires in the logic circuit. The gate-level netlist is also written by the hardware

description languages in the form of basic logic gates (i.e. AND, OR, XOR, . . . ,

etc.). After constraining the design with timing and logical constraints, the tool

performs logic optimizations on the design in timing, area and power aspects.

After that, the result is our gate-level netlist. After synthesis tool finishes its

work, it writes the design in HDL language, Verilog or VHDL, based on user’s

desire. The final synthesized gate-level netlist is optimized in timing, area and

power and satisfies the required technical specifications.

Figure A.25: Gate-level netlist
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A.2.2 RTL-to-netlist logic equivalence checking

Definition

Logic equivalence checking, or LEC, as stands from its name, is the process

of checking and verifying the logical functionality of the entire design. It’s a

piece-by-piece checking which means that this checking involves all test cases

presented in the design.

Why do we use LEC?

Before synthesis process, the RTL code must be completely tested and verified

against syntax errors and logical functionalities. So, why do we make another

step of checking? Is this step redundant? The absolute answer is no. One of

the explicit reasons to perform this operation is the synthesis tool itself. Due

to growing complexity of the designs, the synthesis is, at the end, a software-

developed program which may be make some logical mistakes during logic opti-

mization process. In addition to that reason, sometimes manual editing of the

gate-level netlist may also generate unexpected errors, and also the insertion of

DFT scan chain can make logical errors in the functionality of the circuit.

Working mechanism

The major tools which do formal checking are Synopsys Formality and Cadence

LEC. These tools divide the design into compare points. That tool traces the

circuit back for each of the compare points in both reference and implementation

designs, till it reaches primary inputs or flip-flop outputs. This is called a logic

cone of this specific compare point as illustrated in Figure A.26. The tool

then generates a stimulus values or vectors for those primary inputs or flipflop

outputs, compute the values achieved at that compare point and then checks

whether they are the same or not in both designs. Compare points can be

primary outputs or flipflops/Latches or inputs of black boxes.
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Figure A.26: Logic cone

A.2.3 LEC flow

The synthesized gate-level netlist in most cases is written by synthesis tool in

a random form and in a single. Therefore, we can difficultly perform dynamic

simulations to check the functionality of entire design as a single block testing,

thus most of famous silicon foundries, such as Synopsys and Cadence, developed

their own formal logic equivalence checking tool. We are going to expose the

main steps that is performed in this process.
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Figure A.27: Logic Equivalence checking process flow

The Figure A.27 illustrates the basic steps of the logic equivalence checking

process flow. We are going to discuss each of them as concisely as possible.

Setup

The first step is to simply reading the RTL design files and its corresponding

standard cell libraries that needed to link the design. After that, we can read

the implementation design which is the synthesized gate-level netlist in our case

and also its corresponding libraries. We can add a guidance file generated from

synthesis tool to ease the checking operation. This guidance file contains details

about the optimized registers, and registers which got merged during synthesis

process. If we inserted clock gating structure in the netlist, therefore, we have

to identify it to the tool to know that it is an excess structure which is needless

to be compared.

Once the setup stage is complete, we just have to verify that the list of black

boxes in reference and implementation design is the same in both designs.
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Matching

In matching stage, the LEC tool checks the one-to-one correspondence of the

compare points in both RTL and synthesized netlist designs. Ideally the number

of points should be equal in both designs, but in some cases, the number of

compare points differ. For example, the netlist has extra output ports or either

one of the designs has extra registers. These unmatched points can be ignored

if the next step is completed successfully.

Verification

The final step in LEC process is verification. In this station, the tool checks for

logical equivalence of the design by comparing the results of all specified compare

points. For successful verification, all compare points must be equivalent.

If the verification is failing, we have to check to matching results whether

some expected unmatched points is there or not. If the matching results are

clean, we can manually debug the verification failing points using applied pat-

terns. Verification can fail due to some missing constant declaration. For exam-

ple, if the formal verification is done between non-scanned netlist and scanned

netlist, we have to set the test enable constant as zero. Otherwise, the verifica-

tion will fail with a huge number of failing points.
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A.3 Place and Route

A.3.1 Floorplanning

Floorplanning is the art of any physical design. A well-thought-out floorplan

leads to an ASIC design with higher performance and optimum area. the input

to the floorplanning step is the output of system partitioning and design entry

netlist. At the start of floorplanning we have a netlist describing circuit blocks,

the logic cells within the blocks, and their connections. We can think of the

standard cells as a hod of bricks to be made into a wall. What we have to do

now is to set aside spaces (we call these spaces the channels) for interconnect,

the mortar, and arrange the cells. We still have not completed any routing at

this point that comes later all we have done is placed the logic cells in a fashion

that we hope will minimize the total interconnect length.

The floorplanning steps are: Design planning, pad placement, Power plan-

ning, and Macro placement.

Design planning

Efficient design implementation of any ASIC requires an appropriate style or

planning approach that enhances the implementation cycle time and allows the

design goals such as area and performance to be met.

There are two style small to medium ASIC’s, flattening the design is most

suited; for very large alternatives for design implementation of an ASIC–flat or

hierarchical. For and/or concurrent ASIC designs, partitioning the design into

sub designs, or Hierarchical Flow, is preferred. The flat implementation style

provides better area usage and requires effort during physical design and timing

closure compared to the Hierarchical Flow. The area advantage is mainly due

to there being no need to reserve extra space around each sub design partition

for power, ground, and resources for the routing. Timing analysis efficiencies

245



arise from the fact that the entire design can be analyzed at once rather than

analyzing each sub circuit separately and then analyzing the assembled design

later. The disadvantage of this method is that it requires a large memory space

for data and run time increases rapidly with design size. The hierarchical imple-

mentation style is mostly used for very large and/or concurrent ASIC designs

where there is a need for a substantial amount of performance degradation is

mainly because the components forming the critical path may reside in different

partitions within the design thereby partitioned logically or physically. Logical

partitioning takes place in the early stages of ASIC design (i.e. RTL coding).

The design is partitioned according to its logical functions, as well as physical

constraints, such as interconnectivity to other partitions or sub circuits within

the design. In logical partitioning, each partition is place-and-routed separately

and is placed as a macro, or block, at the ASIC top level. Physical partitioning

is performed during the physical design activity. Once the entire ASIC design

is imported into physical design tools, partitions can be created which combine

several sub circuits, or a large circuit can be partitioned into several sub circuits.

Most often, these partitions are formed sub circuits are designed individually.

However, hierarchical design implementation may degrade the performance of

the final ASIC. This extending the length of the critical path. Therefore, when

using a hierarchical In the hierarchical design implementation style, an ASIC

design can be design implementation style one needs to assign the critical com-

ponents to the same partition or generate proper timing constraints in order

to keep the critical timing components close to each other and thus minimize

the length of the critical path within the ASIC. computing capability for data

processing. In addition, it is used when by recursively partitioning a rectangu-

lar area containing the design using vertical or horizontal cut lines. Physical

partitioning is used for minimizing delay (subject to the constraints applied to

the cluster or managing circuit complexity) and satisfying timing and other de-

sign requirements in a small number of sub circuits. Initially, these partitions

have undefined dimensions and fixed area (i.e. the total area of cells or instance

added to the partition) with their associated ports, or terminals, assigned to

their boundaries such that the connectivity among them is minimized. In order

to place these partitions, or blocks, at the chip level, their dimensions as well
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as their port placement must be defined.

In this phase we define the core height, core width, core utilization ratio,

core aspect ratio, and space between I/O pads and core cells.

core utilization is the ratio between cell area divided by interconnect area for

example at core utilization equal to 0.8 that is mean that cell area is 80% and

interconnect area is 20%.

core aspect ratio is the ratio between height of the core to its width for example

at core aspect ratio equal to 2 that is mean that the length of core height is

double of core width.

the first step is to determine ASIC device and core width and height. In

addition, standard cell rows and I/O pad sites are created. The rows and I/O

pad sites are for standard cell and I/O pad placement. Figure 2-3 shows an

initial ASIC design floorplan. The height of a row is equal to the height of the

standard cells in the library. If there are any multiple-height standard cells in

the library, they will occupy multiple rows. Most of the time, standard rows are

created by abutment. The standard rows are oriented in alternating 180-degree

rotation or are flipped along the X-axis so that the standard cells can share

power and ground busses. If the ASIC core has routing congestion owing to

the limited number of routing layers, one solution is to create routing channels

between rows. These all can be separated individually or as pairs.
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pad placement

Correct I/O pad placement and selection is important for the correct function

of any ASIC design. for a given ASIC design there are three types of I/O

pads. These pads are power, ground, and signal. It is critical to functional

operation of an ASIC design to ensure that the pads have adequate power and

ground connections and are placed properly in order to eliminate electromi-

gration and current-switching noise related problems. Electromigration (EM)

is the movement or molecular transfer of metal from one area to another area

that is caused by an excessive electrical current in the direction of electron flow

(electron “wind”). Electromigration currents exceeding recommended guide-

lines can result in premature ASIC device failure. Exceeding electromigration

current density limits can create voids or hillocks, resulting in increased metal

resistance, or shorts between wires, and can impair ASIC performance.

Switching noise is generated when ASIC outputs make transitions between

states. An inadequate number of power and ground pads will lead to system

data errors due to these switching noise transients. There are two types of

mechanisms that can cause noise:

� dv / dt caused by a capacitive coupling effect

� di / dt caused by an inductive switching effect
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The capacitive coupling effect is the disturbance on the adjacent package

pin caused when switching transients inject pulses via parasitic coupling capac-

itance.

The maximum C (dv / dt) noise occurs when the ASIC output current nears the

maximum current for a given capacitive output load of C. This noise problem

can be resolved by proper pad placement, package pin selection, ASIC output

pad type and drive current, and input pad type.

To reduce or eliminate capacitive coupling effects during I/O pad placement

and selection, one may consider the following guidelines:

� Isolate sensitive asynchronous inputs such as clock or bidirectional pins

from other switching signal pads with power or ground pads.

� Group bidirectional pads together such that all are in the input or output

mode.

� Group slow input pads together positioning them on higher inductance

package pins.

� Use input pads with hysteresis as much as possible.

The inductive switching effect is related to simultaneous switching ASIC

outputs that induce rapid current changes in the power and ground busses.

The inductance in the power and ground pins cause voltage fluctuations in the

ASIC internal power and ground level relative to the external system. These

rapid changes in current can change the ASIC input pads’ threshold and in-

duce logic errors or may cause noise spikes on non-switching output pads that

affect signals connected to other systems. The maximum L (di / dt) occurs

when ASIC output starts to make the transition to another voltage level and

its absolute current increases from zero through a wire with inductance of L.

Factors such as process, ambient temperature, voltage, location of output pads,

and number of simultaneous switching output pads determine the magnitude of

inductive switching noise. To control inductive switching noise, enough power

and ground pads must be assigned and placed correctly. This way the noise

magnitude will be limited. This noise reduction will prevent inputs of ASIC
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design from interpreting the noise as valid logic level.

Successful reduction of inductive switching noise can be accomplished by the

following:

� Reduce the number of outputs that switch simultaneously by dividing

them into groups with each group having a number of delay buffers in-

serted into their data paths.

� Use the lowest rated sink current or low-noise output pads as long as speed

is not an issue.

� Place the simultaneously switching output or bidirectional pads together

and distribute power and ground pads among them according to their

relative noise rating.

� Assign static and low frequency input pads to higher inductance package

pins.

� Reduce the effective power and ground pin inductance by assigning as

many power and ground pads as possible.

power planning

The next step is to plan and create power and ground structures for both I/O

pads and core logic. The I/O pads’ power and ground busses are built into the

pad itself and will be connected by abutment. For core logic, there is a core ring

enclosing the core with one or more sets of power and ground rings. A horizontal

metal layer is used to define the top and bottom sides, or any other horizontal

segment, while the vertical metal layer is utilized for left, right, and any other

vertical segment. These vertical and horizontal segments are connected through

an appropriate via cut. The next consideration is to construct the standard cell

power and ground that is internal to the core logic. These internal core power

and ground busses consist of one or two sets of wires or strips that repeat at

regular intervals across the core logic, or specified region, within the design.

Each of these power and ground strips run vertically, horizontally, or in both

250



directions. Figure 2-5 illustrates these types of power and ground connections.

If these strips run both vertically and horizontally at regular intervals, then

the style is known as power mesh. The total number of strips and interval dis-

tance is solely dependent on the ASIC core power consumption. As the ASIC

core power consumption (dynamic and static) increases, the distance of power

and ground strip intervals increases. This increase in the power and ground strip

intervals is used mainly to reduce overall ASIC voltage drop, thereby improving

ASIC design performance.

In addition to the core power and ground ring, macro power and ground

rings need to be created using proper vertical and horizontal metal layers. A

macro ring encloses one or more macros, completely or partially, with one or

more sets of power and ground rings. Another important consideration is that

when both analog and digital blocks are present in an ASIC design, there is a

need for special care to ensure that there is no noise injection from digital blocks

or core into the sensitive circuits of analog blocks through power and ground

supply connections. Much of this interference can be minimized by carefully

planning the power and ground connections for both digital core and analog

blocks. There are several methods to improve the noise immunity and reduce

interference.
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Figure 2-6 Decoupled Analog and Digital Core Power Supply

The most effective method is to decouple the digital and analog power

and ground by routing the digital power/ground (DP and DG) and analog

power/ground (AP and AG) supply connections separately as shown in Figure

2-6. However, this decoupling will not be complete if there is ground connectiv-

ity from the die substrate through standard cells’ ground (i.e. source). In order

to make sure that analog circuits are completely decoupled from digital circuits,

one needs to separate the substrate from the ground in the standard cells (e.g.

NWELL Process). This is not mandatory but depends on how sensitive the

analog circuit is with respect to noise injection from the digital core area. It is

strongly recommended to check for power and ground connectivity and/or any

physical design rule violations after construction of the entire power and ground

network.

macro placement

Typically, the placement of macros takes place after I/O placement, and after

power and ground bus structure has been defined. Macros may be memories,

analog blocks, or in the case of Hierarchical Flow, an individually placed and

routed subcircuit. Proper placement of these macros has a great impact on the

quality of the final ASIC design. Macro placement can be manual or automatic.
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Manual macro placement is more efficient when there are few macros to be

placed and their relationship with the rest of the ASIC design is known. Auto-

matic macro placement is more appropriate if there is not enough information on

which to base the initial macro placement and/or the number of macros is large.

During the macro placement step, one needs to make sure that there is

enough area between blocks for interconnections. This process (commonly

known as channel allocation or channel definition) can be manual or can be

accomplished by floorplan tools. The slicing tree is used by the floorplan algo-

rithm for slicing floorplan during macro placement and to define routing chan-

nels between the blocks.

Most of today’s physical design tools use a global placer to perform the auto-

matic initial macro placement based on connectivity and wire length reduction.

Wire length optimization is the most prevalent approach in automatic macro

placement. With increases in the number of embedded blocks such as memo-

ries, placing macros of varying sizes and shapes without a good optimization

algorithm can result in fragmentation of placement and routing space that can

prevent a physical design from being able to complete the final route. One of

the basic algorithms used for automatic macro placement considers that macros

are connected to each other by nets and are supposed to exert attractive forces

on each other by means of wire length proportional to the distance between

these macros. Automatic macro placement is an iterative process. During the

macro placement process, macros are free to move until the equilibrium or op-

timum wire length is achieved. It is interesting to note that in this algorithm, if

there is no relationship between the macros, they tend to repel each other and

their placement result may not be optimum. To improve the placement quality

of macros that are not related to each other, one may consider simultaneous

standard cell and macro placement provided the physical design tool can deal

with both macro and standard cell placement at once. In terms of algorithms,

while commercial physical design tools have considerably improved in the past

few years, automatic macro placement is still in the early stages of development

compared to standard cell placement.
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The implementation challenge associated with macro placement is concep-

tually a time and space problem that needs to be solved simultaneously.

A well-developed macro placement algorithm must be able to handle widely

differing shapes and sizes, macro orientation, congestion, and timing-driven

placement. Although many improvements have been incorporated into the

macro placement algorithms to ensure the quality of their placement, one might

need to modify the resulting location and/or orientation in order to achieve an

optimum floorplan based on the physical quality of measurement. When it is

not an easy task to measure the macro placement quality of an ASIC design

containing a large number of blocks, there are some basic physical measurements

that one can adopt.

Given a placement solution, the physical measurements could be wire length,

data flow direction (e.g. the macro placement relative to each other as well as

to standard cell placement), or macro, port accessibility and related timing.

The total wire length for a given placement is a good indicator when com-

paring different placements of the same physical design. In order to decrease

overall wire length, ensure that the chip area is not segmented by the macro’s

placement.

To avoid area segmentation, macros should be positioned such that the stan-

dard cell area is continuous. An area with close to 1:1 aspect ratio is recom-

mended as it allows standard cell placers to utilize the area more efficiently and

thereby reduce total wire length.

The segmented floorplan leads to an excess of wire length interconnections

from the standard cells located at the bottom of the die to those at the top of

the die. Thus, it is necessary that the macros be kept along the ASIC core area

in order to avoid a floorplan segmentation problem. Figure 2-7 shows a prob-

lematic segmented floorplan that may lead to long interconnections between the

bottom and top of the die.
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Figure 2-7 Segmented Floorplan

Another aspect of increased wire length is related to macro placement with

respect to their orientation and pin placements. Depending on the macro ori-

entation and their actual pin location, the length of the nets connecting to the

macros can be different, and can have significant impact on the routing op-

timization process. With respect to wire length reduction, macros should be

oriented such that their ports are facing the standard cells, or core area, and

their orientation should match the available routing layers. Thus, any macro

placement algorithm requires computing the macro’s interconnect distance by

including proper orientation and pin positions. Figure 2-8 shows a floorplan

with macro ports facing the standard cell region, thereby minimizing localized

increase in wire length.
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Figure 2-8 Floorplan with Macros Facing Standard Cells Region

Another aspect of physical measure is that of macro placements relative to

each other, as well as to the standard cell placement, and the macro port acces-

sibility has a direct impact on the chip’s final routing. The macro placement,

and thereby the quality measure, can be determined by the analysis of routing

congestion produced by a global router.

Most global routers are capable of producing both graphical and text sta-

tistical reports. The graphical report, also referred to as the congestion map,

provides a visual aid to see where routing congestion exists (e.g. hot spots). The

statistical report is a good indication of how much a physical design is congested.

The most common scenarios that cause physical design routing congestion

are: there may not be enough space between the macros to provide routing

channels–especially for I/O connections and macros (if these macros are placed

at the ASIC periphery and over the macro); routing is prohibited; or standard

cell trap pockets may be around the edges of macros or within the corners

of the floorplan. Standard cell trap pockets are long, thin channels between

macros. If many cells are placed in these channels, routing congestion can

result. Therefore, these channels need to be kept free for most standard cells

and should be available for repeater or buffer insertion (if this type of insertion
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is supported by the physical design tool). Figure 2-9 shows a floorplan with a

standard cell trap pocket.

After macro placement and before performing global routing, most physical

designs require keep-out or buffer-only regions to be defined by drawing a block-

age layer over an area containing macros to prevent the placer from moving any

standard cells into those regions. Naturally, the wires that are used in keep-out

regions have a tendency to be long. By allowing buffer insertion in those areas

by using a buffer-only region (or blockage), the placer will taper these long nets

and thus avoid the long transition times associated with them. These blockage

layers are created over pre-placed macros such that their power and ground

rings are covered.

Blockage layers are also used to relieve routing congestion around the macro’s

corners. When a macro is blocked on many routing layers, wires have a ten-

dency to detour around corners and connect to nearby standard cells thereby

creating routing congestion at the corner of the macros.

To reserve more resources for the router, one can draw a blockage layer at

these corners. These blockage regions can be simple or gradual as illustrated in
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Figure 2-10.

After refinement of floorplan and macro placement, standard cells are placed

and connectivity analysis is performed. Connectivity analysis is the process of

studying the connections between macro pairs, macro, I/O pads, and related

standard cell instances. Connectivity analysis is also used to identify macros

that have substantial direct connectivity and to refine their locations accord-

ingly.

This analysis is conducted by using what is known as fly lines. When fly lines

are activated through physical design or place-and-route tools, Graphic User

Interface (GUI) displays the lines that mark the connections between currently

selected instances (e.g. standard cells, macros, or I/O pads). Using fly lines,

one can analyze and identify situations where moving or rotating macros will

yield shorter wire lengths that improve the overall ASIC routability during the

floorplanning stage of the physical design cycle.
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A.3.2 placement

Standard cell placement is the most important and challenging phase in ASIC

physical design.

The goal of standard cell placement is to map ASIC components, or cells,

onto positions of the ASIC core area, or standard cell placement region, which

is defined by rows. The standard cells must be placed in the assigned region

(i.e. rows) such that the ASIC can be routed efficiently and the overall timing

requirements can be satisfied. Standard cell placement of an ASIC physical de-

sign has always been a key factor for achieving physical designs with optimized

area usage, routing congestion, and timing behavior. Almost all of today’s phys-

ical design tools use various algorithms to place standard cells automatically.

Although these placement algorithms are very complex and are being improved

frequently, the basic idea has remained the same.

In the early days of physical design, the total area for placing standard cells

consisted of the area required for the standard cell rows and the area required

for channel routing. With advancement in place-and-route tools, standard cell

channel routing has almost vanished because all place-and-route tools today are

capable of routing over the standard cells. Over-standard-cell routing utilizes

all empty space above the standard cells. This allows physical designers to cre-

ate an ASIC that is as compact as possible without creating extra channels for

routing purposes.

With the disappearance of routing channels, the routing congestion problem

has become more important. During standard cell placement, excessive con-

gestion resulting in a local shortage of routing resources must be avoided. In

over-standard-cell routing, the objective of most place-and-route tools has been

to utilize all the available core area to prevent routing overflow. This routing

overflow accounts for an increase in ASIC device size and results in performance

degradation.

Standard cell placement may be thought of as an automatic process that
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requires less physical designer intervention. However, a number of design con-

straints that can be applied during standard cell placement to achieve optimal

ASIC design with respect to area, performance, and power. These constraints

can be congestion, timing, power, or any combination thereof.

Most place-and-route tools use a two-step approach to place standard cell in-

stances. These steps are global and detail placement. The objective of the global

placement algorithm is to minimize the interconnect wire lengths, whereas the

objective of the detail placement algorithm is to meet design constraints such

as timing and/or congestion, and to finalize the standard cell placement.

Global Placement

When the floorplan is first created, standard cells are in a floating state. This

means that they are placed arbitrarily in the ASIC core and have not been as-

signed to a fixed location within the standard cell rows. At this time one can

partition the standard cell area and assign a group of cells to these partitions,

or simply group a set of standard cells.

Almost every place-and-route tool supports cluster and region options. These

two options are used to guide placement algorithms during standard cell place-

ment.

Cluster refers to a group of standard cells that, during placement, are placed

near each other. The location of the cluster is undefined until all standard cells

have been placed. This option is mainly used to control the closeness of timing-

critical components during placement and resembles a module definition in the

structural netlist. Since the development of placement algorithms (e.g. inter-

connect driven), this option has been rarely used – except in very special cases.

An example of a standard cell cluster is shown in Figure 3-1.
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Region is very similar to the cluster method with the exception that the

location of the region is defined prior to standard cell placement. The way this

option is implemented is that a cluster or group of standard cells is created and

then assigned to a particular area on the core ASIC.

Regions can be soft or hard. Soft region, is physical constraint where logical

module is assigned to a location in the core and boundary of the region, it is

subject to change during standard cell placement. Hard region, however, is more

rigorous than the soft region and defines a physical partition for modular design.

It has “hard” boundaries that prevent standard cell crossing during placement.

Using the hard region option, one must define the location as well as the shape

of the region. This option is used primarily for timing related issues such as

grouping clock, voltage, or threshold voltage domains.

In addition, a region can be exclusive or non-exclusive. An exclusive region

only allows standard cells assigned to the region to be placed within the re-

gion. On the other hand, a non-exclusive region will allow standard cells that

do not belong to the region to be placed within it. A hard region (or an ex-

clusive region with a predefined physical boundary) might be used to enforce
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a floorplan consisting of separate blocks. This approach is useful for dividing

the ASIC core area into regions that have different functions or physical aspects.

For example, a hard region can be used to partition the ASIC core area so

one region has a different voltage from the rest of the design or other regions as

shown in Figure 3-2.

After clusters and regions are defined, global placement algorithms begin

distributing standard cell instances uniformly across the available ASIC core

and use a method of estimation to minimize wire lengths.

During this time, ASIC design is recursively partitioned along alternatively

horizontal and vertical cut lines, and standard cell instances are assigned to

rectangular bins, or slots, taking partitioning into account. Then, instances in

each bin will be moved across each cut line in order to minimize the number of

connections between each partition.
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The procedure of partitioning and moving standard cell instances across cut

lines terminates when certain stop criteria are satisfied (e.g. total number of

standard cell instances in each bin). After design partitioning is completed, a

legalization step is executed to remove any standard cell overlap and fit current

placement into row structures.

These types of global placement algorithms are classified as partition-based.

There are two main cost functions associated with partition-based algorithms:

to reduce the total wiring or routing length and to distribute the standard cell

instances homogeneously in the ASIC core area such that optimal equilibrium

among vertical and horizontal routing is achieved.

As mentioned earlier, the global placement algorithm defines the initial, or

preliminary, standard cell instance location. During this time, one can use

buffering optimization to overcome problems associated with high fan-out nets,

long wires, and logic restructuring if the initial timing indicates that the critical

timing paths have large timing violation.

In addition, if the ASIC design uses scan testing methodology, the original

data output port of a register that connects to the next scan data input port of

a register may be reordered, depending upon their locations.

The scan reordering improves the routing congestion if two connected reg-

isters are located far from each other. Because this scan-chain reordering is

purely connectivity based, it can lead to hold violations at some of the scan

data input ports with respect to the input clock. These types of violations are

usually resolved after clock tree synthesis.

The problem with nets that have a large number of fan-outs, such as a reset

signal, is that one source drives many standard cells across the ASIC core. Al-

though these nets are not critical from a timing perspective, they have a strong

impact on the core routing area due to their global nature. Thus, reducing the
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total number of these fan-outs will improve the overall routing of the ASIC core

area. Reducing the number of fan-outs (or connections) to between 40 and 50,

to which one standard cell connects, is reasonable.

Long wires are not the same as high fan-out nets as they are not global in

nature. They have very small fan-outs, but the driver instance is located far

from the receiver. Often this situation is a result of the receiver having very

strong connectivity to instances other than the driver.

These types of long wires are highly resistive and can create large input tran-

sition times at the input port of the receiver cell. This large input transition

time increases the receiver cell’s propagation delay. Therefore, it is beneficial to

segment these long wires using buffers.

Another timing optimization that is used during global placement is logic re-

structuring. Logic restructuring is mainly supported by physical synthesis tools

that combine several primary logic functions into a few standard cells, decom-

pose functional gates into their equivalent primary logic gates, and/or duplicate

combinational logic (cloning).

The logic restructuring algorithm used during global placement mainly fo-

cuses on logic reconstruction of critical paths that are not meeting required

timing constraints. The objective of the algorithm is to rearrange logic in the

critical paths such that the timing constraints are met.

Detail Placement

Once all standard cell instances are placed globally, a detail placement algo-

rithm is executed to refine their placement based on congestion, timing, and/or

power requirements.

Congestion refinement or congestion-driven placement is more beneficial to

ASIC designs with very high density, and the objective of the detail placer is to
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distance standard cell instances from each other such that more routing tracks

are created among them.

The quality of congestion placement directly relates to how well the global

placer partitions the design and could have a negative impact on the device size

and performance.

For minimal device size, one may use more routing layers. In determining

the total number of routing layers to use, it is imperative to consider the trade-

off between increasing the device size and using extra routing layers. In some

instances, it may be more economical to increase the device size rather than

adding extra routing layers (i.e. extra mask).

Timing-driven placement algorithms have been classified as either net or

path based. Net-based schemes try to control the delay on a signal path by im-

posing an upper-bound delay or by assigning a weight to each net. Path based

approaches apply constraints to delay paths of small sub-circuits (the disadvan-

tage of path-based algorithms is the fact that it is impossible to enumerate all

paths within a design).

The major challenge in timing-driven placement is to optimize large sets of

path delays without enumerating them in the ASIC design. This optimization

is accomplished by interleaving weighted connectivity-driven placements with

timing analysis that annotates individual instances, nets, and path delays with

design constraint information.

To meet these types of design constraint, various placement techniques have

been proposed or used. The most well-known detail placement method is sim-

ulated annealing. Not only is simulated annealing efficient, it can also handle

complex design constraints.
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A.3.3 clock tree synthesis

Clock Tree Synthesis (CTS) is a process which make sure that the clock gets

distributed evenly to all sequential elements in a design.

CTS is the process of insertion of buffers or inverters along the clock paths of

ASIC design in order to achieve minimum skew or balanced skew.

In ICs, clock consumes around half of the total power consumption. Here clock

gating technique helps to reduce power consumption by the clocks.

Goals of CTS:

� To meet clock tree design rule constraints such as maximum transition,

maximum load capacitance and maximum fanout.

� To meet clock tree targets such as minimum skew and minimum insertion

delay.

Checklist before CTS:

� Placement is completed and optimized.

� Power & Ground (PG) nets are pre-routed.

� Estimated congestion – Acceptable.

� Estimated Max trans/Cap - No violations.

� High Fan-out Nets are synthesized with buffers (clocks are not buffered

still).

Checklist after CTS:

� Skew report.

� Clock tree report.

� Timing reports for setup and hold.

� Power and area report.

After placement stage, all the cells including macros and standard cells are

placed. But the clock is still ideal. We only optimize the data paths at placement
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stage with buffer insertion and cell sizing, but no change is done in the clock

net.

Just look into the above figure. Here the clock port connects all the syn-

chronous elements in the design. The fanout of the particular port driver is too

high and also the clock is not reaching all the flops at a time. The clock network

delays are different. So, the skew value is very high, which is not recommended

in a design. That’s why CTS is performed to balance the clock net by adding

buffers and minimize the skew as much as possible (ideally the skew value is

zero). After the clock tree synthesis. the clock net is buffered and the NDR rule

is also applied as shown in the below figure.
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Difference between HFNS and CTS?

HENS (High Fanout Net Synthesis) used in placement stage which uses buffers

and inverters of relaxed rise and fall times. But in CTS (Clock Tree Synthesis),

buffers and inverters of equal rise and fall times are used. NDR rules are also

used for clock tree routing.

Note: The reason why the clock is defined as ideal in placement stage is, if we

don’t define clock as ideal, the HFNS will insert buffers, inverters and other

optimizations in clock net also. But the clock nets need buffers and inverters of

equal rise and fall times, not the normal buffers used by HENS.

Difference between Clock buffers and Normal buffers:

� Clock buffers have equal rise and fall time.

� Normal buffers have unequal rise and fall time.

� Clock buffers are usually designed such that an input signal with 50% duty

cycle produces an output signal with 50% duty cycle.

Note: Buffers have unequal rise and fall times is because of the difference

in PMOS and NMOS resistances. Normally the resistance of the PMOS is two

times more than that of NMOS. So, the time taken for charging the load capaci-

tor (rise time) through PMOS is more than the discharging time through NMOS

(fall time). For designing clock buffers, we should make both the resistances of

PMOS and NMOS equal. We have to increase the width of PMOS such that its

resistance become equal to NMOS resistance. These clock buffers are specially

designed for clock path. The main disadvantage of clock buffer is its big size

because of increased width of PMOS. So, these buffers will lead to increase the

chip area.

Non-Default Clock Routing (NDR)

Non-Default Routing (NDR) rules are double spacing, double width and shield-

ing. These are used to applied on the clock nets to make it less sensitive to

crosstalk and electromigration effects.
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A.3.4 Routing

Routing is the stage after CTS where the interconnections are made by deter-

mining the precise paths for each net. This includes the interconnection of the

standard cells, the macro pins, the pins of the block boundary or the pads of

the chip boundary. After CTS, the tool will be having the information about

the exact locations of the standard cells, the pins, the 10 pons and the pads.

The logical connectivity is defined by the netlist and the design rules are

defined in the technology files are available to the tool. In routing stage, metal

and vias are used to create the electrical connection in layout so as to complete

all connections defined by the netlist.

So, in short, routing can be termed as allocating set of wires in the routing

space that connects all the nets in the netlist by using certain design rules for

the metals and vias used in doing so.
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Goals of Routing:

� Establishing the entire connectivity of the design with minimum number

of vias and optimized total wire length. To meet the timing constraints.

� No WS errors (Layout vs Schematic) i.e., the all the connections described

in the netlist are completed physically.

� No DRC (Design Rules Check) violations in doing so.

� Complete routing within the area of the design.

Inputs:

Design which is done with placement, CTS and optimization.

output:

Design with completed interconnection and geometric layout of the nets.

Prerequisites and Checks:

� Timing DRC and QoR post CTS must be acceptable.

� Acceptable global routing congestion.

� HFNS should be less than the specified limit.

� Check for overlapping cells, if any.

� Check for any blocked pins, ports or PG connection.

Stages of Routing:

� Global Routing.

� Track Assignment.

� Detailed Routing.

� Search and Repair.

Each stages of routing are described below.
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Global Routing

In global routing, the region to be routed are divided into sectors (tiles/rectangles)

called global routing cells or gcells.

Then it decides tile to tile path for the nets and simultaneously trying to opti-

mize the length, without actually making any physical connection.

The routing capacity of each gcell depends on the blockages, routing tracks, pin

density inside it.

This rough routing is done on the basis of available tracks in the region.

If the required routing resources are greater than the available routing resources,

then it will lead to congestion.

So, it is called coarse grain routing assignment.

Objectives of global routing:

� Minimize total overflow.

� Minimize total wire length.

� Minimize total run time for carrying out routing process.

Track Assignment

After the gcell estimation, tracks are assigned to each global route.

The tracks are assigned in vertical and horizontal direction for each partition.

The direction of routing is dependent on the metal used, which has preferred

routing direction. For e.g. If Metal 1 has routing direction Horizontal, then

Metal 2 has direction in this stage, the global routes are replaced with metal

layers, which has many DRC violations, Signal Integrity (SI) and timing viola-

tions.

Detailed Routing

In detailed routing, the router uses the scheme made in the global routing and

track assignment phases to lay metals to connect the nets to the pins.

The violations that were created in the previous stage, will be fixed by multiple
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iterations of routing, so that no connections will be left short, open or spacing

violations.

First, the block is divided into specific areas called the Sboxes (switch boxes)

which comprises of multiple gcells.

These boxes are in alignment with the gcell boundary.

Search and Repair

It is done along with detailed routing, specifically after the primary iteration.

The shorts and spacing violations are sorted and is fixed.
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A.3.5 Chip Finish

chip finish stage comes after routing optimization, where filler cells and metal

fills are added and also wire spreading to meet the DRC rules. three steps are

mainly performed in this stage.

1. Adding Filler Cells.

2. Adding Metal Fills.

3. wire spreading.

Adding Filler Cells

Filler cells are used for rail continuity and to fill up gaps between standard cells

in the rows, and thereby reducing the DRC violations created by the base layers.

Filler cells are physical-only cells designed in such a way that they contain only

n-well, p-well & power rails.

It is also possible to reduce the IR drop by inserting de-cap filler cells, but this

comes at a cost of higher leakage currents.

Adding Metal Fills

The metal fills also known as dummy metal layers, are small, floating metal

nets, inserted in empty spaces in the design after post-route optimization in

order to maintain uniformity in metal layer density.

These are added to meet the metal density DRC rules (density violations) which

are mandatory by most manufacturing processes.
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wire spreading

Random particle defects during manufacturing may cause shorts or opens during

the fabrication process.

Wires at minimum spacing are most susceptible to shorts.

Minimum-width wires are most susceptible to opens.

Wire spreading is one of the most effective solutions to reduce the previous

problems, hence reduce yield loss. It relates to a new physical design that is

able to increase the spacing between metal wires in the layout effectively and

efficiently without violating any design rules.
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A.4 Static Timing Analysis verification

What is Static Timing Analysis?

Static Timing Analysis (also referred as STA) is one of the many techniques

available to verify the timing of a digital design. An alternate approach used

to verify the timing is the timing simulation which can verify the functionality

as well as the timing of the design. The term timing analysis is used to refer

to either of these two methods static timing analysis, or the timing simulation.

Thus, timing analysis simply refers to the analysis of the design for timing issues.

The STA is static since the analysis of the design is carried out statically

and does not depend upon the data values being applied at the input pins. This

is in contrast to simulate based timing analysis where a stimulus is applied on

input signals, resulting behavior is observed and verified, then time is advanced

with new input stimulus applied, and the new behavior is observed and verified

and so on.

Given a design along with a set of input clock definitions and the definition

of the external environment of the design, the purpose of static timing analysis

is to validate if the design can operate at the rated speed. That is, the design

can operate safely at the specified frequency of the clocks without any timing

violations. The following flow chart shows the basic functionality of static tim-

ing analysis. The DUA is the design under analysis. Some examples of timing

checks are setup and hold checks. A setup check ensures that the data can arrive

at a flip-flop within the given clock period. A hold check ensures that the data is

held for at least a minimum time so that there is no unexpected pass-through of

data through a flip-flop: that is, it ensures that a flip-flop captures the intended

data correctly. These checks ensure that the proper data is ready and available

for capture and latched in for the new state.
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The more important aspect of static timing analysis is that the entire design

is analyzed once and the required timing checks are performed for all possible

paths and scenarios of the design. Thus, STA is a complete and exhaustive

method for verifying the timing of a design.

The design under analysis is typically specified using a hardware descrip-

tion language such as VHDL or Verilog. The external environment, including

the clock definitions, are specified typically using SDC or an equivalent format.

SDC is a timing constraint specification language. The timing reports are in

ASCII form, typically with multiple columns, with each column showing one

attribute of the path delay.

Why Static Timing Analysis?

Static timing analysis is a complete and exhaustive verification of all timing

checks of a design. Other timing analysis methods such as simulation can only

verify the portions of the design that get exercised by stimulus. Verification

through timing simulation is only as exhaustive as the test vectors used. To

simulate and verify all timing conditions of a design with 10-100 million gates
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are very slow and the timing cannot be verified completely. Thus, it is very

difficult to do exhaustive verification through simulation.

Static timing analysis on the other hand provides a faster and simpler way

of checking and analyzing all the timing paths in a design for any timing viola-

tions. Given the complexity of present-day ASICs, which may contain 10 to 100

million gates, the static timing analysis has become a necessity to exhaustively

verify the timing of a design.

The design functionality and its performance can be limited by noise. The

noise occurs due to crosstalk with other signals or due to noise on primary in-

puts or the power supply. The noise impact can limit the frequency of operation

of the design and it can also cause functional failures. Thus, a design imple-

mentation must be verified to be robust which means that it can withstand the

noise without affecting the rated performance of the design. Verification based

upon logic simulation cannot handle the effects of crosstalk, noise and on-chip

variations.

Design flow

STA is rarely done at the RTL level as, at this point, it is more important to

verify the functionality of the design as opposed to timing. Also, not all timing

information is available since the descriptions of the blocks are at the behavioral

level. Once a design at the RTL level has been synthesized to the gate level,

the STA is used to verify the timing of the design. STA can also be run prior

to performing logic optimization - the goal is to identify the worst or critical

timing paths. STA can be rerun after logic optimization to see whether there

are failing paths still remaining that need to be optimized, or to identify the

critical paths.

At the start of the physical design, clock trees are considered as ideal, that

is, they have zero delay. Once the physical design starts and after clock trees are

built, STA can be performed to check the timing again. In fact, during physical
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design, STA can be performed at each and every step to identify the worst paths.

In physical implementation, the logic cells are connected by interconnect

metal traces. The parasitics RC (Resistance and Capacitance) of the metal

traces impact the signal path delay through these traces. In a typical nanome-

ter design, the parasitic of the interconnect can account for the majority of the

delay and power dissipation in the design. Thus, any analysis of the design

should evaluate the impact of the interconnect on the performance character-

istics (speed, power, etc.). As mentioned previously, coupling between signal

traces contributes to noise, and the design verification must include the impact

of the noise on the performance.

At the logical design phase, ideal interconnect may be assumed since there

is no physical information related to the placement; there may be more interest

in viewing the logic that contributes to the worst paths. Another technique

used at this stage is to estimate the length of the interconnect using a wireload

model. The wireload model provides estimated RC based on the fanouts of a cell.

Before the routing of traces are finalized, the implementation tools use an

estimate of the routing distance to obtain RC parasitics for the route. Since the

routing is not finalized, this phase is called the global route phase to distinguish

it from the final route phase. In the global route phase of the physical design,

simplified routes are used to estimate routing lengths, and the routing estimates

are used to determine resistance and capacitance that are needed to compute

wire delays. During this phase, one cannot include the effect of coupling. After

the detailed routing is complete, actual RC values obtained from extraction are

used and the effect of coupling can be analyzed. However, a physical design tool

may still use approximations to help improve run times in computing RC values.
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Figure A.28 shows how to use static timing analysis during design flow:

Figure A.28: The design Flow
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Limitations of Static Timing Analysis

While the timing and noise analysis do an excellent job of analyzing a design

for timing issues under all possible situations, the state-of-the-art still does not

allow STA to replace simulation completely. This is because there are some as-

pects of timing verification that cannot yet be completely captured and verified

in STA.

Some of the limitations of STA are:

i. Reset sequence: To check if all flip-flops are reset into their required logical

values after an asynchronous or synchronous reset. This is something that can-

not be checked using static timing analysis. The chip may not come out of

reset. This is because certain declarations such as initial values on signals are

not synthesized and are only verified during simulation.

ii. X-handling: The STA techniques only deal with the logical domain of

logic-0 and logic-1 (or high and low), rise and fall. An unknown value X in

the design causes indeterminate values to propagate through the design, which

cannot be checked with STA. Even though the noise analysis within STA can an-

alyze and propagate the glitches through the design, the scope of glitch analysis

and propagation is very different than the X handling as part of the simulation-

based timing verification for nanometer designs.

iii. PLL settings: PLL configurations may not be loaded or set properly.

iv. Asynchronous clock domain crossings: STA does not check if the correct

clock synchronizers are being used. Other tools are needed to ensure that the

correct clock synchronizers are present wherever there are asynchronous clock

domain crossings.

v. IO interface timing: It may not be possible to specify the IO interface

requirements in terms of STA constraints only. For example, the designer may

choose detailed circuit level simulation for the DDR1 interface using SDRAM
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simulation models. The simulation is to ensure that the memories can be read

from and written to with adequate margin, and that the DLL2, if any, can be

controlled to align the signals if necessary.

vi. Interfaces between analog and digital blocks: Since STA does not deal

with analog blocks, the verification methodology needs to ensure that the con-

nectivity between these two kinds of blocks is correct.

vii. False paths: The static timing analysis verifies that timing through the

logic path meets all the constraints, and flags violations if the timing through

a logic path does not meet the required specifications. In many cases, the STA

may flag a logic path as a failing path, even though logic may never be able

to propagate through the path. This can happen when the system application

never utilizes such a path or if mutually contradictory conditions are used during

the sensitization of the failing path. Such timing paths are called false paths

in the sense that these can never be realized. The quality of STA results is

better when proper timing constraints including false path and multicycle path

constraints are specified in the design. In most cases, the designer can utilize

the inherent knowledge of the design and specify constraints so that the false

paths are eliminated during the STA.

viii. FIFO pointers out of synchronization: STA cannot detect the problem

when two finite state machines expected to be synchronous are actually out

of synchronization. During functional simulations, it is possible that the two

finite state machines are always synchronized and change together in lock-step.

However, after delays are considered, it is possible for one of the finite state

machines to be out of synchronization with the other, most likely because one

finite state machine comes out of reset sooner than the other. Such a situation

cannot be detected by STA.

ix. Clock synchronization logic: STA cannot detect the problem of clock gen-

eration logic not matching the clock definition. STA assumes that the clock

generator will provide the waveform as specified in the clock definition. There
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could be a bad optimization performed on the clock generator logic that causes,

for example, a large delay to be inserted on one of the paths that may not have

been constrained properly. Alternately, the added logic may change the duty

cycle of the clock. The STA cannot detect either of these potential conditions.

x. Functional behavior across clock cycles: The static timing analysis can-

not model or simulate functional behavior that changes across clock cycles.
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