
A Graduation Project Report Submitted to

 Faculty of Engineering Cairo University

Natural and Fully Multimodal Interaction with the

Vehicle and its Surroundings

 In Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science in

Electronics and Electrical Communications Engineering Department

Faculty of Engineering, Cairo University Giza, Egypt

Under the Supervision of Associate

Prof. Hassan Mostafa & Prof. Mohsen Rashwan

Submitted by:

Doaa Hussein Mohammed

Esraa Mohammed Abdelfattah

Mahmoud Ahmed Mohamed

Moataz Mohamed Nasr

Omar Talal AbdElaziz

Samar Imbaby Ismail

 Academic Year 2019-2020

Chapter 1
Introduction

ii

This thesis is submitted to the Electronics and Electrical Communications Engineering

Department Faculty of Engineering, Cairo University Giza, Egypt for the Degree of

Bachelor of Science. The thesis is equivalent to 20 weeks of full-time studies.

Contact Information:

Authors:

Doaa Hussein Mohammed

Esraa Mohammed Abdelfattah

Mahmoud Ahmed Mohamed

Moataz Mohamed Nasr

Omar Talal AbdElaziz

Samar Imbaby Ismail

Department of Electronics and Electrical

Communications Engineering

E-Mail: doaahussein831@gmail.com

E-Mail: Mahmoudelzeiny96@gmail.com

Mentor advisor:

Mohammed Abdou

Senior Algorithms Engineer and Deep Learning

Researcher at Valeo

E-mail: Mohammed.abdou@valeo.com

Abdelrahman Hussein

Teaching Assistant in Computer engineering, Cairo

University

E-mail: abdelrahman.sobeih@gmail.com

University Supervision:

Name: Dr. Hassan Mostafa

E-mail: hassanmostafahassan@gmail.com

Department of Electronics and Electrical

Communications Engineering Cairo University

Name: Dr. Mohsen Rashwan

E-mail: mrashwan@rdi-eg.com

Department of Electronics and Electrical

Communications Engineering Cairo University

mailto:%20Mohammed.abdou@valeo.com
mailto:%20abdelrahman.sobeih@gmail.com

Chapter 1
Introduction

iii

Abstract

In vehicles a new control system technology it’s called "Natural Interaction", which

allows drivers to use Natural approaches to interact with their vehicle. "Customers should

be able to communicate with their intelligent connected vehicle in a totally natural way,"

Christoph Grote, Senior Vice President, BMW Group Electronics said in a statement.

Natural Interaction technology allows the driver to combine voice, gesture, and

gaze to interact with their vehicle. The driver decides how they want to interact with the

vehicle by using either voice or gestures, based on their personal preferences or the

current situation.

So, this project aims to provide a safer way for the driver to interact with the vehicle

to prevent distractions during driving and to facilitate the gathering of surrounding

information.

Keywords: Natural Interaction, Gestures Control, Voice Commands, Gaze Tracking.

Chapter 1
Introduction

iv

Acknowledgments

We have taken efforts in this project. However, it would not have been possible

without the kind support and help of many individuals. We would like to extend our sincere

thanks to all of them.

First, we want to thank our major advisor Dr. Hassan Mustafa and Dr. Mohsen

Rashwan, it has been a great pleasure and honor being our supervisors. You were

continuously encouraging us, even before we decided to work on this project.

We want to thank Engineer Mohammed Abdou, our mentor from Valeo and

Engineer Abdelrahman Hussein, Teaching Assistant in Computer engineering, Cairo

University, for providing their time and experience to help us overcome some obstacles

we faced during some stages.

Finally, we want to thank our families for their support, tolerance, and love during

this year especially during the hard times they were always there having faith in what we

do. We are grateful to our families, colleagues, and friends for always motivating us,

without them we wouldn’t have come so far.

Chapter 1
Introduction

v

Glossary

 Gaze – When someone lays eyes on you and keeps looking, it is a gaze or a stare.

 Drowsiness – Ready to fall asleep.

 Gesture – A movement usually of the body or limbs that expresses or emphasizes an

idea, sentiment, or attitude.

 Kinect – A 3D camera that allows skeleton tracking with depth perception.

 User – A user here might represent a subject who is using our application with Kinect.

A user here can be either a male or a female.

 Postures – The postures or dynamic poses are a set of movements which are

performed by the user to get results and recommendation regarding their joints and weak

links.

 Assistant – A voice assistant is a digital assistant that uses voice recognition, natural

language processing, and speech synthesis to provide aid to users through phones

and voice recognition applications.

 Dropout layer – A regularization technique used to minimize overfitting by reducing the

complexity of the model where randomly selected neurons are ignored during training,

where they are “dropped-out” randomly.

 Dense layer – A classic fully connected neural network layer where each input node is

connected to each output node of the previous layer.

 Softmax layer – A type of squashing function limiting the output of the function into the

range 0 to 1, where this allows the output to be interpreted directly as a probability, so

they are used in determining the probability of multiple classes at once.

Chapter 1
Introduction

vi

Table of Contents

Abstract .. iii

Acknowledgments .. iv

Glossary .. v

Table of Contents ... vi

List of Tables .. ix

List of Figures.. x

List of Acronyms ... xi

 Introduction .. 1

1.1. Motivation .. 1

1.2. Problem statement .. 2

1.3. Solution approach .. 3

1.3.1. Facial Recognition ... 3

1.3.2. Speech Recognition... 3

1.3.3. Eye Movement-Gaze detection .. 4

1.3.4. Gesture direction Detection ... 4

1.4. Organization .. 4

 Background and Related work .. 6

2.1. Convolutional Neural Networks .. 6

2.1.1. Convolutional ... 7

2.1.2. Pooling .. 7

2.1.3. Fully Connected ... 7

2.1.4. ResNet .. 8

2.1.5. Applications ... 9

2.1.5.1. Image recognition .. 9

2.1.5.2. Video analysis ... 9

2.2. TensorFlow .. 9

2.3. Face Recognition... 10

4.2.1. OpenCV... 10

4.2.2. Dlib .. 11

2.4. Gesture Recognition .. 12

2.4.1. Kinect Sensor .. 12

2.4.2. libfreenect2 .. 13

2.4.3. OPENNI2 ... 13

2.4.3.1. OpenNI Framework ... 13

2.4.4. NITE2 .. 14

2.4.5. OpenPose ... 14

2.4.6. OpenPose Features... 14

2.4.6.1. Functionality: ... 14

2.4.6.2. Input: ... 15

2.4.6.3. Output: .. 15

Chapter 1
Introduction

vii

2.4.6.4. Operating System: ... 15

2.5. Voice Recognition .. 15

2.5.1. SoX Library .. 15

2.5.2. FFmpeg Package .. 15

2.5.3. Speech Recognition Package .. 16

2.5.4. Pyttsx3 Library ... 16

2.5.4.1. Supports three TTS engines .. 16

2.5.5. Selenium WebDriver .. 16

2.6. Hardware Implementation .. 17

2.6.1. NIVIDIA Jetson .. 17

2.6.2. Software .. 18

2.6.2.1. Linux ... 18

2.6.2.2. QNX .. 18

2.7. Related Work ... 18

2.7.1. BMW Natural Interaction .. 20

2.7.2. Environmental Interaction through Connectivity ... 21

 Face Recognition & Drowsy Detection and Alarming System 23

3.1. Face Recognition... 23

3.1.1. Introduction .. 23

3.1.2. Face Recognition Modules .. 23

3.1.3. Overview of the system ... 25

3.2. Drowsy Detection & Alarming System ... 26

3.2.1. Introduction .. 26

3.2.2. The drowsiness detector algorithm .. 26

3.2.3. Overview of the system ... 28

3.3. Summary ... 29

 Voice Recognition .. 30

4.1. Introduction .. 30

4.2. Model Architecture Construction .. 30

4.2.1. Deep Speech model .. 30

4.2.2. First Collection of Data .. 30

4.2.3. First Trained Model .. 31

4.2.4. Second Trained Model ... 32

4.2.5. Second Collection of Data ... 32

4.2.6. Third Trained Model... 33

4.2.7. Fourth Trained Model .. 33

4.2.8. Final Model .. 33

 Intelligent Personal Assistant ... 34

5.1. Introduction .. 34

5.2. Building a Digital Assistant in Python ... 34

5.2.1. Speech Recognition Package .. 35

5.2.2. Text-to-speech package .. 35

Chapter 1
Introduction

viii

5.2.3. Wikipedia Package .. 35

5.2.4. Selenium WebDriver Package ... 36

5.3. Overview of the system ... 36

5.4. Summary ... 38

 Gesture Recognition .. 39

6.1. Introduction .. 39

6.2. The Implementation Approach ... 39

6.2.1. Hand tracking using Bounding box detection model 39

6.2.2. Key Point Detection: Multi-view bootstrapping ... 42

6.2.2.1. Caffe Framework Implementation .. 45

6.2.2.2. CPM TensorFlow Implementation ... 46

6.2.3. Kinect V2 Joint Detection and Tracking Models ... 47

6.2.3.1. Kinect Device Models .. 47

6.2.4. Human Pose Estimation in OpenCV using OpenPose MobileNet 50

6.2.4.1. Pose Estimation .. 51

6.2.4.2. Key-points Detection Datasets .. 51

6.2.4.3. Pre-trained Models .. 52

6.2.4.4 Make Predictions and Parse Key-points ... 53

 Natural Interaction ... 54

7.1. Functionality .. 54

7.1.1. Internal Interaction ... 54

7.1.1.1. Face Recognition Interaction ... 54

7.1.1.2. Gaze Tracking Interaction ... 55

7.1.1.3. Gesture Recognition & Voice Commands Interaction 55

7.1.1.4. Intelligent Personal Assistant & Wikipedia Interaction................................ 56

7.1.2. External Interaction .. 56

7.2. Summary ... 57

 Results .. 58

8.1. Face Recognition... 58

8.2. Gaze Tracking ... 58

8.3. Voice Recognition .. 59

8.4. Gesture Recognition .. 59

8.5. Internal Interaction ... 59

8.5.1. Question answering ... 59

8.5.2. Internal Commands ... 60

8.6. External Interaction .. 61

 Conclusion and future work .. 62

9.1. Conclusion... 62

9.2. Future work ... 63

References ... 64

Chapter 1
Introduction

ix

List of Tables

Table 1: Advantages and Disadvantages of SSD Model ... 41

Table 2: Overall Procedure for Multiview Bootstrapping ... 43

Table 3: Caffe model and model Version comparison in Key Point Detection 46

Table 4: Face recognition results ... 58

Table 5: Gaze tracking results .. 58

Table 6: Voice recognition accuracy and performance .. 59

Table 7: Gesture recognition accuracy and performance .. 59

Table 8: Angles referring to each device ... 60

Table 9: Radio commands .. 60

Table 10: AC commands ... 61

Table 11: Window commands .. 61

Chapter 1
Introduction

x

List of Figures

Figure 1: Convolutional Neural Networks.. 6

Figure 2: ResNet Architecture .. 8

Figure 3: Kinect V2 .. 12

Figure 4: NIVIDIA Jetson Modules ... 17

Figure 5: NIVIDIA Jetson TX2 Developer Kit ... 17

Figure 6: BMW Gaze & Gesture Mode Interaction ... 19

Figure 7: BMW Natural Interaction ... 20

Figure 8: BMW gesture Controlling.. 21

Figure 9: Facial recognition via deep metric learning involves a “triplet training
step” .. 24

Figure 10: The 6 facial landmarks associated with the eye 27

Figure 11: Top-left: A visualization of eye landmarks when then the eye is open.
Top-right: Eye landmarks when the eye is closed. Bottom: Plotting
the eye aspect ratio over time. .. 28

Figure 12: Apply facial landmark localization to extract the eye regions from the
face.. 28

Figure 13: Compute the eye aspect ratio to determine if the eyes are closed 29

Figure 14: Sound an alarm if the eyes have been closed for a sufficiently long
enough time .. 29

Figure 15: MFCC process ... 32

Figure 16: Neural Network Block Diagram .. 32

Figure 17: System overview ... 36

Figure 18:Intelligent Personal Assistant ... 37

Figure 19: Hand Detection using Neural Networks (SSD) on TensorFlow 39

Figure 20: The Architecture of Single Shot MultiBox Detector (SSD) Model 40

Figure 21: Convolutional Pose Machines architecture ... 44

Figure 22: (a) Input image with 21 detected key-points. (b) Selected confidence
maps produced by the proposed detector ... 45

Figure 23: Skeleton Tracking Feature in Kinect .. 47

Figure 24: Angle Calculations with Kinect .. 48

Figure 25: Angle among three joints.. 49

Figure 26: Human Pose Estimation Challenge .. 51

Figure 27: COCO Key-points vs MPII Key-points .. 52

Figure 28: Pointing to a nearby building to get more information 55

Figure 29: Vehicle Environment Interaction .. 56

Figure 30: Pointing to a nearby building to get more information 57

Chapter 1
Introduction

xi

List of Acronyms

AI Artificial Intelligence.

ANN Artificial Neural Network.

API Application Programming Interference.

ARM Advanced RISC Machine.

BVLC Berkeley Vision and Learning Center.

CNN or ConvNet Convolutional Neural Network.

Conv Convolution.

CPM Convolutional Pose Machine.

CPU Central Processing Unit.

CUDA Compute Unified Device Architecture.

DTW Dynamic time warping.

 EAR Eye Aspect Ratio.

etc et cetera.

FPS Frame Per Second.

GPU Graphics Processing Unit.

gTTS google Text To Speech.

iOS iPhone OS.

MFCCs Mel-frequency cepstral coefficients.

MNIST Modified National Institute of Standards and Technology.

http://bvlc.eecs.berkeley.edu/

Chapter 1
Introduction

xii

ML Machine Learning.

MLP Multi-Layer Perceptron.

NN Neural Network.

NORB NYU Object Recognition Benchmark.

L4T Linux for Tegra.

LDA Linear Discriminant Analysis.

LFW Labeled Faces in the Wild.

LSTM Long short-term memory.

OpenCV Open Source Computer Vision.

OpenNI Open Natural Interaction.

OS Operating System.

PCA Principle Component Analysis.

ReLU Rectified Linear Unit.

ResNet Residual Neural Network.

RGB Red Green Blue.

SDK Software Development Kit.

SIANN Space Invariant Artificial Neural Networks

SSD single-shot detector.

TPU Tensor Processing Unit.

URL Uniform Resource Locator.

Chapter 1
Introduction

1

Introduction

In this thesis, we will propose an approach to implement a natural interaction

system with a vehicle that allows the driver to use voice, gesture, and gaze in various

ways to interact with their vehicle to make the driving experience more productive and

safer.

1.1. Motivation

“Computer vision and machine learning (ML) have started to take off, but for most

people, the whole idea of what a computer is seeing when it’s looking at an image is

relatively obscure.” Mike Kreiger

If you're talking about "real" artificial intelligence (AI), it's much more than just "If."

The development of artificial intelligence has historically been divided into two areas;

Symbolic artificial intelligence and machine learning.

Symbolic Artificial Intelligence is the field where intelligent systems are artificially

designed with an if-else logic. Programmers will try to identify every possible scenario for

the system to deal with. Until the late 1970s, this was the predominant form of developing

the AI system. Experts in this field have strongly argued that machine learning will never

last and that AI can only be written in this way.

In the last few years, Artificial intelligence and deep learning make great impacts

on the automotive industry and become the new keys to success in this industry from

enabling autonomous and semi-autonomous vehicles to providing advanced capabilities

to several processes like design and manufacturing.

These advanced capabilities, coupled with rising consumer expectations and

provided new technology for manufacturers to reduce costs and give drivers more of what

they want.

Chapter 1
Introduction

2

AI is defined as the ability of a computer program or machine to think, learn and

make decisions so AI aim is to create an intelligent system can automatically extract

features and recognize a particular pattern and after having trained with datasets it can

learn how to recognize this particular pattern and also take different actions, so intelligent

vehicles would bring several benefits in the social, environmental, and economical fields,

it able to estimate the driving scenario and react in case of danger which eliminates up to

90% of traffic accidents that are caused by human errors and saving human lives, also

these vehicles can have some systems used for entertainment purposes and making the

driving experience more productive such as voice assistants and ability to get information

from the internet or any network.

1.2. Problem statement

Thousands of people across the world are losing their lives due to car accidents

and road disasters every year and the related lost costs due to medical expenses and

general maintenance and repairs costs of the road and highway systems are very large.

Another big problem we face because of accidents is the traffic crowd, many people lose

their time on roads due to car accidents.

The most common reasons for these accidents are human errors and distracted

driving which lead to the need for a safer way for the driver to interact with the vehicle to

prevent distractions while driving and to facilitate the gathering of surrounding information.

This could decrease the rate of road accidents and the need to rely on manual interactions.

With AI, we get computer programs and machines to do what humans do. We feed

these programs and machines with an enormous amount of data that is analyzed and

processed for logical reasoning and ultimately mimic human actions.

One of the difficult problems in implementing AI systems is to save human lives on

the road by eliminating or reducing unnecessary actions that a person takes that can

distract him. It should also be used as an alarm that warns the driver of any near or

expected danger.

Chapter 1
Introduction

3

1.3. Solution approach

The project aims to use Natural interaction including sound, gestures and gazes

to help make using the full vehicle options of the driver easier and safer with less

distraction while driving which leads to safer driving and fewer accidents, so the driver is

now safer and more comfortable.

At times when the driver needs to keep his eyes on the road, the system can

respond to sound and gestures for safety. This helps facilitate using the full options of the

car for a driver more easily and safely with less dispersion while driving leading to a safer

drive.

The use of outside interaction helps in gathering more beneficial information with

the help of Machine learning models and making useful decisions based on them which

helps in improving the society.

Natural interaction consists of the following main blocks:

1.3.1. Facial Recognition

One use of the system is driver authentication. Once a driver enters the vehicle,

the front-facing camera snaps a photo. If the driver is recognized, their personalized data

is synced to the vehicle. If they are not recognized, a notification is sent to the primary

owner of the vehicle.

1.3.2. Speech Recognition

 This module provides a common interface between the driver and his

vehicle using speech recognition that converts the spoken words into an electronic signal

that can be categorized and processed into action using devices like microphones, a

special algorithm is used to establish the most likely word(s) that match the given spoken

word to understand the voice command which the driver said, then do the action.

Chapter 1
Introduction

4

1.3.3. Eye Movement-Gaze detection

The camera focuses on one or both eyes and records eye movement, then the

aspect ratio (EAR) is measured directly, and this feature is used to make sure that the

driver is awake to prevent accidents.

1.3.4. Gesture direction Detection

Arm Joints tracking is used to detect the angel of action, and the place where the

driver is pointing. Users can use their gestures and arms to interact and control devices

without the need to touch them physically. The camera can capture joint and hand in three

dimensions throughout the driver’s entire operating environment and determine a precise

directional vector.

1.4. Organization

The following chapters discuss the approaches have been used to implement each

part of the interaction system by software, the way that we follow to integrate all

subsystems and the simulation of the overall system on the hardware, so this thesis is

organized as follows:

Chapter 2 explains the background of this project and gives examples of some

related works to it.

Chapter 3 provides the implementation of the Face Recognition and Eye tracking

subsystems and how they are designed for security purposes as driver identification and

keeping his eyes on the road, also provides an explanation of the algorithms which have

been used and estimate the performance and accuracy of this subsystem.

Chapter 4 explains the different models used to implement the voice recognition

system and how this system is used to give the driver the ability to interact with the vehicle

using several voice commands.

Chapter 5 explains the Intelligent Personal Assistant system and how it supports

the internal interaction and external interaction with the driver and giving him information

from different sources.

Chapter 1
Introduction

5

Chapter 6 provides a discussion on the different approaches used to implement

the gesture control subsystem, explains the model of each approach, its advantages,

disadvantages, and clarifies the method used to calculate the angle which the driver

makes when pointing to the objects during the external interaction.

Chapter 7 explains the method used to integrate all subsystems to support both

internal and external interaction with the vehicle.

Chapter 8 provides the results of each block and the whole system concluding the

accuracy and performance.

Chapter 9 provides a brief conclusion of the system and suggestions for future

work.

Chapter 2
Background and Related work

6

Background and Related work

This Chapter Contains the Necessary Background and Knowledge for the Reader

to understand the following chapters.

2.1. Convolutional Neural Networks

A convolutional neural network (CNN, or ConvNet) is a class of deep neural

networks, most commonly applied to analyzing visual imagery. [1][2] They are also known

as shift invariant or space invariant artificial neural networks (SIANN), based on their

shared-weights architecture and translation invariance characteristics. They have

applications in image and video recognition, recommender systems, image classification,

medical image analysis, natural language processing, and financial time series.

CNNs are regularized versions of multilayer perceptron’s. Multilayer perceptron’s

usually mean fully connected networks, that is, each neuron in one layer is connected to

all neurons in the next layer. The "fully-connectedness" of these networks makes them

prone to overfitting data. Typical ways of regularization include adding some form of

magnitude measurement of weights to the loss function. CNNs take a different approach

towards regularization: they take advantage of the hierarchical pattern in data and

assemble more complex patterns using smaller and simpler patterns. [3] Therefore, on the

scale of connectedness and complexity, CNNs are on the lower extremity.

Figure 1: Convolutional Neural Networks

Chapter 2
Background and Related work

7

2.1.1. Convolutional

When programming a CNN, the input is a tensor with shape (number of images) x

(image width) x (image height) x (image depth). Then after passing through a convolutional

layer, the image becomes abstracted to a feature map, with shape (number of images) x

(feature map width) x (feature map height) x (feature map channels). [4]

Convolutional layers convolve the input and pass its result to the next layer. This

is similar to the response of a neuron in the visual cortex to a specific stimulus. Each

convolutional neuron processes data only for its receptive field. Although fully connected

feedforward neural networks can be used to learn features as well as classify data, it is

not practical to apply this architecture to images. [5] A very high number of neurons would

be necessary, even in a shallow (opposite of deep) architecture, due to the very large

input sizes associated with images, where each pixel is a relevant variable. For instance,

a fully connected layer for a (small) image of size 100 x 100 has 10,000 weights for each

neuron in the second layer. [6] The convolution operation brings a solution to this problem

as it reduces the number of free parameters, allowing the network to be deeper with fewer

parameters. [7]

2.1.2. Pooling

Convolutional networks may include local or global pooling layers to streamline the

underlying computation. Pooling layers reduce the dimensions of the data by combining

the outputs of neuron clusters at one layer into a single neuron in the next layer. Local

pooling combines small clusters, typically 2 x 2. Global pooling acts on all the neurons of

the convolutional layer. Also, pooling may compute a max or average. Max pooling uses

the maximum value from each of a cluster of neurons at the prior layer. Average pooling

uses the average value from each of a cluster of neurons at the prior layer. [8]

2.1.3. Fully Connected

Fully connected layers connect every neuron in one layer to every neuron in

another layer. It is in principle the same as the traditional multi-layer perceptron neural

network (MLP). The flattened matrix goes through a fully connected layer to classify the

images.

Chapter 2
Background and Related work

8

2.1.4. ResNet

Figure 2: ResNet Architecture

A residual neural network (ResNet) is an artificial neural network (ANN) of a kind

that builds on constructs known from pyramidal cells in the cerebral cortex. Residual

neural networks do this by utilizing skip connections, or shortcuts to jump over some

layers. Typical ResNet models are implemented with double- or triple- layer skips that

contain nonlinearities (ReLU) and batch normalization in between. An additional weight

matrix may be used to learn the skip weights; these models are known as Highway Nets.

Models with several parallel skips are referred to as DenseNets. In the context of residual

neural networks, a non-residual network may be described as a plain network. [9]

One motivation for skipping over layers is to avoid the problem of vanishing

gradients, by reusing activations from a previous layer until the adjacent layer learns its

weights. During training, the weights adapt to mute the upstream layer and amplify the

previously-skipped layer. In the simplest case, only the weights for the adjacent layer's

connection are adapted, with no explicit weights for the upstream layer. This works best

when a single nonlinear layer is stepped over, or when the intermediate layers are all

linear. If not, then an explicit weight matrix should be learned for the skipped connection

(a Highway Net should be used). Skipping effectively simplifies the network, using fewer

layers in the initial training stages. This speeds learning by reducing the impact of

vanishing gradients, as there are fewer layers to propagate through. The network then

gradually restores the skipped layers as it learns the feature space. Towards the end of

the training, when all layers are expanded, it stays closer to the manifold and thus learns

faster.

Chapter 2
Background and Related work

9

2.1.5. Applications

2.1.5.1. Image recognition

CNNs are often used in image recognition systems. In 2012 an error rate of 0.23

percent on the MNIST database was reported. Another paper on using CNN for image

classification reported that the learning process was "surprisingly fast"; in the same paper,

the best-published results as of 2011 were achieved in the MNIST database and the

NORB database. Subsequently, a similar CNN called AlexNet won the ImageNet Large

Scale Visual Recognition Challenge 2012. [10]

When applied to facial recognition, CNNs achieved a large decrease in error rate.

Another paper reported a 97.6 percent recognition rate on "5,600 still images of more than

10 subjects". CNNs were used to assess video quality objectively after manual training;

the resulting system had a very low root mean square error. [11]

2.1.5.2. Video analysis

Compared to image data domains, there is relatively little work on applying CNNs

to video classification. Video is more complex than images since it has another (temporal)

dimension. However, some extensions of CNNs into the video domain have been

explored. One approach is to treat space and time as equivalent dimensions of the input

and perform convolutions in both time and space. Another way is to fuse the features of

two convolutional neural networks, one for the spatial and one for the temporal stream.

Long short-term memory (LSTM) recurrent units are typically incorporated after the CNN

to account for inter-frame or inter-clip dependencies. Unsupervised learning schemes for

training Spatio-temporal features have been introduced, based on Convolutional Gated

Restricted Boltzmann Machines and Independent Subspace Analysis. [12]

2.2. TensorFlow

TensorFlow is a free and open-source software library for dataflow and

differentiable programming across a range of tasks. It is a symbolic math library and is

also used for machine learning applications such as neural networks. It is used for both

research and production at Google. [13]

Chapter 2
Background and Related work

10

TensorFlow was developed by the Google Brain team for internal Google use. It

was released under the Apache License 2.0 on November 9, 2015. TensorFlow can run

on multiple CPUs and GPUs (with optional CUDA and SYCL extensions for general-

purpose computing on graphics processing units). TensorFlow is available on 64-bit Linux,

macOS, Windows, and mobile computing platforms including Android and iOS. Its flexible

architecture allows for the easy deployment of computation across a variety of platforms

(CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and edge

devices. TensorFlow provides stable Python (for version 3.7 across all platforms) and C

APIs, and without API backward compatibility guarantee: C++, Go, Java, JavaScript, and

Swift (early release). Third-party packages are available for C#, Haskell, Julia, MATLAB,

Scala, Rust, OCaml, and Crystal.

2.3. Face Recognition

4.2.1. OpenCV

OpenCV (Open Source Computer Vision Library) is an open-source computer

vision and machine learning software library. OpenCV was built to provide a common

infrastructure for computer vision applications and to accelerate the use of machine

perception in commercial products. Being a BSD-licensed product, OpenCV makes it easy

for businesses to utilize and modify the code.[14]

The library has more than 2500 optimized algorithms, which includes a

comprehensive set of both classic and state-of-the-art computer vision and machine

learning algorithms. These algorithms can be used to detect and recognize faces, identify

objects, classify human actions in videos, track camera movements, track moving objects,

extract 3D models of objects, produce 3D point clouds from stereo cameras, stitch images

together to produce a high-resolution image of an entire scene, find similar images from

an image database, remove red eyes from images taken using flash, follow eye

movements, recognize scenery and establish markers to overlay it with augmented reality,

etc. OpenCV has more than 47 thousand people of the user community and an estimated

number of downloads exceeding 18 million. The library is used extensively in companies,

research groups, and governmental bodies.

Chapter 2
Background and Related work

11

Along with well-established companies like Google, Yahoo, Microsoft, Intel, IBM,

Sony, Honda, Toyota that employ the library, there are many starts ups such as Applied

Minds, VideoSurf, and Zeitera, that make extensive use of OpenCV. OpenCV’s deployed

uses span the range from stitching street view images together, detecting intrusions in

surveillance video in Israel, monitoring mine equipment in China, helping robots navigate

and pick up objects at Willow Garage, detection of swimming pool drowning accidents in

Europe, running interactive art in Spain and New York, checking runways for debris in

Turkey, inspecting labels on products in factories around the world on to rapid face

detection in Japan.

It has C++, Python, Java, and MATLAB interfaces and supports Windows, Linux,

Android, and Mac OS. OpenCV leans mostly towards real-time vision applications and

takes advantage of MMX and SSE instructions when available. A full-featured CUDA and

OpenCL interfaces are being actively developed right now. There are over 500 algorithms

and about 10 times as many functions that compose or support those algorithms. OpenCV

is written natively in C++ and has a templated interface that works seamlessly with STL

containers.

4.2.2. Dlib

Dlib is a general-purpose cross-platform software library written in the programming

language C++.[15] Its design is heavily influenced by ideas from a design by contract and

component-based software engineering. Thus, it is, first and foremost, a set of independent

software components. It is open-source software released under a Boost Software License.

Since development began in 2002, Dlib has grown to include a wide variety of

tools. As of 2016, it contains software components for dealing with networking, threads,

graphical user interfaces, data structures, linear algebra, machine learning, image

processing, data mining, XML and text parsing, numerical optimization, Bayesian

networks, and many other tasks. In recent years, much of the development has been

focused on creating a broad set of statistical machine learning tools, and in 2009 Dlib was

published in the Journal of Machine Learning Research. Since then it has been used in a

wide range of domains.

Chapter 2
Background and Related work

12

2.4. Gesture Recognition

2.4.1. Kinect Sensor

Kinect is a set of motion sensors that was first produced and released by Microsoft

in 2010. The technology includes a set of devices originally developed by PrimeSense,

which includes RGB cameras, infrared displays, and depth detection detectors with either

regulated light or time calculation Journey, a microphone suite, along with Microsoft

software and artificial intelligence) to allow the device to perform real-time gesture

recognition, speech recognition, and body skeletons of up to four people, among other

capabilities. This enables Kinect to be used as a regular user interface without using hands

to interact with the computer system. Kinect is a peripheral device that sits above the

user's webcam-style screen. [16]

Kinect originated as a means to eliminate the game controller from Microsoft's

Xbox video game hardware, competing with the Nintendo Wii's own motion-sensing

capabilities, hoping to draw a larger audience beyond traditional video game players to

the Xbox. Kinect first launched as an add-on for the Xbox 360 in November 2010, and

within a few months, more than 10 million units had been sold, making it one of the fastest-

selling computer hardware products at the time. However, video games had to be

developed to specifically incorporate the Kinect's features, and the bulk of games released

with Kinect support were family-friendly titles.

Figure 3: Kinect V2

Chapter 2
Background and Related work

13

2.4.2. libfreenect2

Libfreenect2 is an open-source cross-platform driver for Kinect for Windows.[17]

 It has the following features:

 Color image processing

 IR and depth image processing

 Registration of color and depth images

 Multiple GPU and hardware acceleration implementations for image

processing.

2.4.3. OPENNI2

OpenNI or Open Natural Interaction is an industry-led non-profit and open-source

software project that focuses on adopting and improving interoperability for natural user

interfaces and organic user interfaces for natural interaction devices (NI) and applications

that use those devices and middleware that facilitate the access and use of such

devices.[18]

OpenNI2 is an open-source software development kit for the RGB-D sensor

primarily developed by PrimeSense Inc. OpenNI2 is still widely used in many RGB-D

sensors even after development is over by PrimeSense Inc. Because OpenNI2 can be

used for commercial purposes and works on cross-platform.

2.4.3.1. OpenNI Framework

The OpenNI framework provides a set of open-source APIs. These APIs aim to

become a standard for apps to access natural reaction devices. The API framework itself

is sometimes referred to as the OpenNI SDK.

The APIs support:

 Voice command recognition.

 Hand gestures.

 Body movement tracking.

Chapter 2
Background and Related work

14

2.4.4. NITE2

NITE2 is an OpenNI2 based broker developed by PrimeSense Inc. It has features

like detecting people, positioning, hand tracking, and gesture detection. [19] NiTE2 is a

closed source and its distribution has already ended. However, you can use the already

distributed NiTE2.

2.4.5. OpenPose

OpenPose represents the first real-time multi-person system to jointly detect

human body, hand, facial, and foot key-points (in total 135 key-points) on single images

written in C++ using OpenCV and Caffe, authored by G. Hidalgo, Z. Cao, T. Simon, S.E.

Wei, H. Joo, and Y. Sheikh (Robotics Institute of Carnegie Mellon University). The code

has been released for full reproducibility and it is maintained and developed by the authors

with the help of an active community of contributors on GitHub. [20]

2.4.6. OpenPose Features

2.4.6.1. Functionality:

 2D real-time multi-person key-points detection: [21][22]

 15, 18 or, 25-keypoint body/foot key-points estimation. Running time-

invariant to the number of detected people.

 6-keypoint foot key-points estimation. Integrated with the 25-keypoint

body/foot key-points detector.

 2x21-keypoint hand key-points estimation. Currently, running time

depends on the number of detected people.

 70-keypoint face key-points estimation. Currently, running time

depends on the number of detected people.

 3D real-time single-person key-points detection:

 3-D triangulation from multiple single views.

 Synchronization of Flir cameras handled.

 Compatible with Flir/Point Grey cameras, but provided C++ demos

to add your custom input.

https://github.com/CMU-Perceptual-Computing-Lab/openpose

Chapter 2
Background and Related work

15

 Calibration toolbox: Easy estimation of distortion, intrinsic, and extrinsic

camera parameters.

 Single-person tracking: for more speed or visual smoothing.

2.4.6.2. Input:

Image, video, webcam, Flir/Point Grey, and IP camera. Included C++ demos to
add your custom input.

2.4.6.3. Output:

Basic image + keypoints display/saving (PNG, JPG, AVI ...), keypoints saving
(JSON, XML, YML ...), and/or keypoints as array class.

2.4.6.4. Operating System:

Ubuntu (14, 16), Windows (8, 10), Mac OSX, Nvidia TX2.

2.5. Voice Recognition

2.5.1. SoX Library

SoX is a cross-platform (Windows, Linux, MacOS X, etc.) command-line utility that

can convert various formats of computer audio files into other formats. It can also apply

various effects to these sound files, and, as a bonus, SoX can play and record audio files

on most platforms. [23]

2.5.2. FFmpeg Package

FFmpeg is the leading multimedia framework, able to decode, encode, transcode,

mux, demux, stream, filter, and play pretty much anything that humans and machines have

created. It supports the most obscure ancient formats up to the cutting edge. No matter if

they were designed by some standards committee, the community, or a corporation. It is

also highly portable: FFmpeg compiles, runs, and passes our testing infrastructure FATE

across Linux, Mac OS X, Microsoft Windows, the BSDs, Solaris, etc. under a wide variety

of build environments, machine architectures, and configurations. [24]

Chapter 2
Background and Related work

16

2.5.3. Speech Recognition Package

Library for performing speech recognition with support for several engines and

APIs, online and offline, Google Speech Recognition, Wit.ai, IBM Speech to Text, and

AT&T Speech to Text.

2.5.4. Pyttsx3 Library

Pyttsx3 is a Python text-to-speech library. Unlike alternative libraries, it works

offline and is compatible with both Python 2 and 3. An application calls the factory function

pyttsx3.init () to get a reference to pyttsx3. Engine instance. It is a very easy-to-use tool

that converts entered text into speech. The pyttsx3 module supports two female voices

and the second is male which is provided by "sapi5" for windows. [25]

2.5.4.1. Supports three TTS engines

 sapi5 - SAPI5 on Windows

 nsss - NSSpeechSynthesizer on Mac OS X

 espeak - eSpeak on every other platform.

2.5.5. Selenium WebDriver

Selenium WebDriver is a web framework that permits you to execute cross-

browser tests. This tool is used for automating web-based application testing to verify that

it performs expectedly. [26]

Selenium WebDriver allows you to choose a programming language of your choice

to create test scripts.

Chapter 2
Background and Related work

17

2.6. Hardware Implementation

2.6.1. NIVIDIA Jetson

Figure 4: NIVIDIA Jetson Modules

Nvidia Jetson is a series of embedded computing boards from Nvidia. The Jetson

TK1, TX1, and TX2 models all carry a Tegra processor (or SoC) from Nvidia that integrates

an ARM architecture central processing unit (CPU).[27] Jetson is a low-power system and

is designed for accelerating machine learning applications.

In our project, we use the Nvidia Jetson TX2. The Nvidia Jetson TX2 board bears

a Tegra X2 of microarchitecture GP10B (SoC type T186 or very similar). This board and

the associated development platform were announced in March 2017 as a compact card

design for low power scenarios, e.g. for the use in smaller camera drones.

Figure 5: NIVIDIA Jetson TX2 Developer Kit

Chapter 2
Background and Related work

18

2.6.2. Software

Various operating systems and software might be able to run on the Jetson board series:

2.6.2.1. Linux

JetPack is a Software Development Kit (SDK) from Nvidia for its Jetson board

series. It includes the Linux for Tegra (L4T) operating system and other tools

2.6.2.2. QNX

The QNX operating system is also available for the Jetson platform, though it is

not widely announced. There are success reports of installing and running specific QNX

packages on certain Nvidia Jetson board variants. Namely, the package qnx-V3Q-

23.16.01 that is seemingly in parts based on Nvidia's Vibrante Linux distribution is reported

to run on the Jetson TK1 Pro board.

2.7. Related Work

At Mobile World Congress 2019 in Barcelona from 25 – 28 February 2019, BMW

Group presented BMW Natural Interaction for the first time. The new system combines

the most advanced voice command technology available with expanded gesture control

and gaze recognition to enable genuine multimodal operation for the first time. The first

BMW Natural Interaction functions will be available in the BMW iNEXT from 2021. Just

like in interpersonal dialogue, BMW Natural Interaction allows the driver to use their voice,

gestures, and gaze at the same time in various combinations to interact with their vehicle.

[28] The preferred mode of operation can be selected intuitively, according to the situation

and context. Voice commands, gestures, and the direction of gaze can be reliably detected

by the vehicle, combined and the desired operation executed. This free, multimodal

interaction is made possible by speech recognition, optimized sensor technology, and

context-sensitive analysis of gestures. Driver's entire operating environment. Spoken

instructions are registered and processed using Natural Language Understanding.

Chapter 2
Background and Related work

19

Figure 6: BMW Gaze & Gesture Mode Interaction

An intelligent learning algorithm, which is constantly being refined, combines and

interprets complex information so that the vehicle can respond accordingly. This creates

a multimodal interactive experience geared towards the driver's wishes. By combining

different modalities, vehicle functions can be initiated in different ways.

The driver decides how they want to interact, based on their personal preferences,

habits, or the current situation. So, when the driver is engaged in conversation, they would

probably choose gesture and gaze control; when their eyes are on the road, better to rely

on speech and gestures.

In this way, for example, car windows or the sunroof can be opened or closed, air

vents adjusted or a selection made on the Control Display. If the driver wants to learn

more about vehicle functions, they can also point to buttons and ask what they do. With

enhanced gesture recognition and the car’s high level of connectivity, the interaction space

is no longer confined to the interior. For the first time, occupants will be able to interact

with their direct surroundings, such as buildings or parking spaces. Even complex queries

can be answered quickly and easily by pointing a finger and issuing a voice command.

“What’s this building? How long is that business open? What is this restaurant called?

Chapter 2
Background and Related work

20

Figure 7: BMW Natural Interaction

2.7.1. BMW Natural Interaction

BMW has always played a pioneering role in the development of systems

promoting intuitive operation. In 2001, the BMW Group became the world's first car

manufacturer to introduce a new control logic for vehicles, with the iDrive Controller.

The combination of a controller mounted on the center console with a

multifunctional Control Display replaced a variety of switches, buttons, and indicators –

and is still considered a ground-breaking innovation in the automotive industry. Since

2015, through the use of a 3D camera, BMW gesture control has enabled easy, non-

contact operation of various vehicle functions. With the launch of the BMW Operating

System 7.0 in 2018, personalized, customizable operation has reached a whole new level,

thanks to fully digital displays, optimized speech recognition, and enhanced gesture

control. Depending on their personal preferences and situation, the driver can choose

between the iDrive controller, steering wheel buttons, touch display or voice, and gesture

control. The importance of voice control as the most natural form of interaction is further

underlined by the BMW Intelligent Personal Assistant.

Chapter 2
Background and Related work

21

2.7.2. Environmental Interaction through Connectivity

Thanks to intelligent networking, the area of BMW Natural Interaction extends

beyond the vehicle interior. For example, the driver can point a finger at objects in their

field of vision and give related voice commands, such as asking for information about

opening hours or customer ratings or reserving a table at a restaurant. Thanks to the

vehicle’s depth of connectivity, extensive environmental data, and artificial intelligence

enable BMW Natural Interaction to transform the vehicle into a well-informed, helpful

passenger.

As part of a sophisticated mixed-reality installation, BMW will immerse visitors to

Mobile World Congress 2019 in application scenarios where they can experience the

customer benefits of BMW Natural Interaction for themselves hands-on. A specially-

designed spatial concept and virtual-reality goggles are used to create a thoroughly

realistic experience that showcases the new possibilities during a virtual ride in the BMW

Vision iNEXT.

Visitors discover the previously unknown freedom of gesture control throughout

the area detected by the gesture camera, which extends across the entire width of the

front vehicle interior. Initially, in training mode, directional detection of the pointing gesture

is visualized by a dynamic light pulse that follows the direction. Objects the driver can

interact with via pointing are then highlighted. Just how natural this interaction is becoming

apparent in the simple combination of gesture and language.

Figure 8: BMW gesture Controlling

Chapter 2
Background and Related work

22

For example, if the driver points to a side window, this is visually highlighted with

a frame and the voice command "Open" will then open the chosen window. These new

possibilities for interaction with the immediate environment are revealed during an

automated journey through a futuristic city the driver is unfamiliar with. The vehicle takes

over driving and the visitor embarks on a sightseeing tour of a very different kind – simply

pointing at buildings to obtain all the information they need about events and exhibitions.

Towards the end of the ride, the user reserves tickets for a cinema they drive by along

their route and streams the trailer for the film directly into the vehicle.

Chapter 3
Face Recognition & Drowsy Detection and Alarming System

23

Face Recognition & Drowsy Detection and Alarming
System

Face recognition is a key component of future smart car applications with many

uses such as determining whether a person is allowed to operate the vehicle or not. Driver

drowsiness is the leading cause of accidents in the world. Due to a lack of sleep and

fatigue, drowsiness can occur while driving.

3.1. Face Recognition

3.1.1. Introduction

The challenge is to build a fast and accurate system that can detect, recognize,

and verify driver identity. The technology used is a low-cost webcam to take front photos.

The system consists of two parts. The first is face detection, which is based on a mixture

of classic and fast NN methods. The second is facial recognition and verification, which is

based on a combination of Principle Component Analysis (PCA) and Linear Discriminant

Analysis (LDA) techniques. Lighting correction techniques are applied to improve overall

performance. The proposed system was tested in a vehicle environment, and its

recognition rate was 99.38% with a wrong acceptance rate of 0.62%. The face is detected

within 1.5 - 2 seconds.

3.1.2. Face Recognition Modules

Face recognition is performed with OpenCV, Python, and deep learning.

Additionally, we made use of Davis King’s dlib library and Geitgey’s face_recognition

module which wraps around dlib’s deep metric learning, making facial recognition easier

to accomplish. [29]

Our network architecture for face recognition is based on ResNet-34 from the Deep

Residual Learning for Image Recognition paper by He et al, but with fewer layers and the

number of filters reduced by half.

http://dlib.net/
https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition

Chapter 3
Face Recognition & Drowsy Detection and Alarming System

24

Keep in mind that we are not training a network here. The network itself was trained

by Davis King to create 128-d embeddings on a dataset of ~3 million images. On the

Labeled Faces in the Wild (LFW) dataset the network compares to other state-of-the-art

methods, reaching 99.38% accuracy.

Both Davis King (the creator of dlib) and Adam Geitgey (the author of the

face_recognition module we’ll be using shortly) have written detailed articles on how deep

learning-based facial recognition works:

 High-Quality Face Recognition with Deep Metric Learning (Davis).

 Modern Face Recognition with Deep Learning (Adam).

The triplet consists of 3 unique face images, 2 of the 3 are the same person and

the third image is a random face from our dataset and is not the same person as the other

two images. The NN generates a 128-d vector for each of the 3 face images. For the 2

face images of the same person, we tweak the neural network weights to make the vector

closer via distance metric.

Figure 9: Facial recognition via deep metric learning involves a “triplet training step”

Chapter 3
Face Recognition & Drowsy Detection and Alarming System

25

Our network quantifies the faces, constructing the 128-d embedding for each.

From there, the general idea is that we’ll tweak the weights of our neural network so that

the 128-d measurements of the two Will Ferrel will be closer to each other and farther from

the measurements for Chad Smith.

To perform face recognition with Python and OpenCV we need to install two

additional libraries:

 Dlib

The dlib library, maintained by Davis King, contains our implementation of

“deep metric learning” which is used to construct our face embeddings

used for the actual recognition process.

 Face_recognition

The face recognition library, created by Adam Geitgey, wraps around dlib’s

facial recognition functionality, making it easier to work with.

3.1.3. Overview of the system

A low-cost webcam on the driver's side dashboard is used to capture the face. [30]

During the authentication process, the driver must look straight ahead in front of the

camera. The computer is used as a platform for the facial recognition system. The system

processes the received data and compares it with the data stored in the template, and in

case of recognizing the person as an authorized person, it will send control signals to the

input components, which are the latch and ignition keys, and if this person is not

recognized, the front image will be taken again, and if the system fails On getting to know

this person 3 times, notifications “Unknown Login!!!” will be sent to the car owner telling

him that an unknown person is in the car, this message will be sent using an application

we developed which needs an internet connection.

 Note that we have applied face recognition to images.

http://dlib.net/
https://pyimagesearch.com/2017/03/13/an-interview-with-davis-king-creator-of-the-dlib-toolkit/
https://github.com/ageitgey/face_recognition

Chapter 3
Face Recognition & Drowsy Detection and Alarming System

26

3.2. Drowsy Detection & Alarming System

Driver drowsiness detection is a vehicle safety technology that helps to prevent

accidents caused by driver drowsiness. Various studies have suggested that about 20%

of all road accidents are linked to fatigue and up to 50% on certain roads. [31] [32]

3.2.1. Introduction

Driver exhaustion is a major variable in a large number of vehicle accidents. Late

visions, assessment attributed to 1,200 deaths annually and 76,000 injuries that can be

attributed to fatigue-related incidents.

All drowsiness accidents have all the factors that make them more dangerous, due

to the high speed involved in distraction and the driver's inability to perform any avoidance

activity, or even brake, before the accident occurs. [33]

The best way to avoid accidents caused by drowsiness of drivers is to detect the

driver's sleepiness and warn him before bed. To detect drowsiness, several techniques

have been used such as retinal detection and facial landmarks. Here in this chapter, we

suggest a way to detect eye blinking in video streams using facial landmarks detection

and Eye aspect ratio.

3.2.2. The drowsiness detector algorithm

To build our blink detector, we’ll be computing a metric called the eye aspect

ratio (EAR), introduced by Soukupová and Čech in their 2016 paper, Real-Time Eye Blink

Detection Using Facial Landmarks.

We can apply face detection to localize important areas of the face, including the

eyes, eyebrows, nose, ears, and mouth. This also means that we can extract specific face

structures by knowing the indexes of specific face parts. In terms of flash detection, we

are only interested in two sets of facial structures (eyes).

Each eye represented by 6 (x, y) - coordinated, starts from the left corner of the

eye (as if you were looking at the person), then works clockwise around the rest of the

area.

http://vision.fe.uni-lj.si/cvww2016/proceedings/papers/05.pdf
http://vision.fe.uni-lj.si/cvww2016/proceedings/papers/05.pdf

Chapter 3
Face Recognition & Drowsy Detection and Alarming System

27

Figure 10: The 6 facial landmarks associated with the eye

Based on this image, we must take a major point, there is a relationship between

the width and height of these coordinates.

Based on the work Soukupová and Čech did in the 2016 paper, Real-Time Eye

Blink Detection using facial features, we can then derive an equation that reflects this

relationship called the EAR:

 𝑬𝑨𝑹 =
‖𝑷𝟐−𝑷𝟔‖+ ‖𝑷𝟑−𝑷𝟓‖

𝟐‖𝑷𝟏−𝑷𝟒‖
 (1)

Where 𝑃1… 𝑃6 are 2𝐷 facial landmark locations.

The numerator in this equation calculates the distance between the vertical eye

circumference while the denominator calculates the distance between the horizontal eye

circumference, and the denominator is appropriately distributed as there is only one set of

horizontal points but two sets of vertical points.

This equation is interesting as the aspect ratio of the eye is almost constant while

the eye is open, but it will quickly drop to about zero when flashing occurs.

Using this simple equation, we can avoid image processing techniques and simply

rely on the ratio of historical eye distances to determine whether a person blinking.

Chapter 3
Face Recognition & Drowsy Detection and Alarming System

28

Figure 11: Top-left: A visualization of eye landmarks when then the eye is open. Top-right:
Eye landmarks when the eye is closed. Bottom: Plotting the eye aspect ratio over time.

3.2.3. Overview of the system

The general flow of our drowsiness detection algorithm is fairly straightforward.

First, we’ll set up a camera that monitors a stream for faces. If a face is found, we apply

facial landmark detection that is expanded and used to determine the duration of a

person's eye closure and extract the eye regions. If their eyes are closed for a certain

period, we will assume that they are beginning to fall asleep and start an alarm to wake

them up and attract their attention and if this didn’t wake him up for another certain period

the auto parking system will be activated and a notification will be sent clarifying that the

driver is in danger.[34]

Figure 12: Apply facial landmark localization to extract the eye regions from the face

Chapter 3
Face Recognition & Drowsy Detection and Alarming System

29

Figure 13: Compute the eye aspect ratio to determine if the eyes are closed

Figure 14: Sound an alarm if the eyes have been closed for a sufficiently long enough time

3.3. Summary

In this chapter, I explained how to create a face recognition and blinking detector

using OpenCV, Python, and dlib. The first step in building a blink detector is to perform a

facial landmark to locate the eye in a specific frame of the video stream.

Chapter 4
Voice Recognition

30

Voice Recognition

4.1. Introduction

The importance of voice control as the most natural form of interaction has been

emphasized by the smart personal assistant. This digital assistant supports the driver in a

variety of situations and recognizes his routine and habits with every voice command,

making it easy to operate the vehicle and access functions and information by voice, where

using your voice in your interactions and commands may be one of the easiest ways if not

the easiest way to interact and say the commands without the need of nearly any effort

neither any risks of getting the driver’s attention away from the road, so it increases the

driver’s both luxury and safety.

4.2. Model Architecture Construction

To construct a speech commands recognition system let’s go through some steps,

as of the first step is to specify the words needed for our command to train a model which

can recognize them, which in our case there were 20 words which were: {open, close, up,

down, increase, decrease, forward, backward, right, left, start, pause, window, first,

second, third, fourth, roof, volume, ac}, so to train a model to recognize these words there

are two steps, first to collect the data and recordings of these 20 words and second to

train the model on these 20 words.

4.2.1. Deep Speech model

Mozilla Deep Speech model was used, giving word error rate of about 7.5%, but

after testing it was clarified that it wasn’t suitable neither for our accent or for one-word

(command) recognition systems.

4.2.2. First Collection of Data

The first trial of collecting the data was that each member of the team was to record

each of the 20 words in different conditions, where the data was recorded 10 times with

car noises in the background, 10 times with different random noises(Tv, gaussian, people

Chapter 4
Voice Recognition

31

talking, etc.) in the background, where we are 6 members and 10 times with clear

background (noise-free), the team consisted of 6 members each one recording 30 records

of each word of the 20 words so we had a total of about 3600 records of these 20

commands under the different condition to train our model on them.

4.2.3. First Trained Model

After collecting the data it was time to start constructing a model to be trained on

these dataset but before even constructing the model the data must go through the

preprocessing stage, where number of 360 recordings were chosen as a reference where

each word of the 20 was taken 9 times (6 of each condition of the 3 conditions they were

recorded under), now there are 360 recordings used as references and the rest of the data

is about 3420 ,now before starting the training phase the preprocessing will be as following

each of the recordings of the dataset will have its features extracted using the MFCC

technique where 20 features were collected from each record with sampling rate of 22050

Hz then it will be compared using the DTW technique with each of the features of the 360

references so each record will now have an array of 360 values which are the DTW values

between it and each of the reference recordings and then these arrays will be passed to

the neural network to train on them, but this method didn’t give satisfying results, then the

reference was changed into 180,120 and only 20 recordings but all of these gave

unsatisfying results.

Chapter 4
Voice Recognition

32

Figure 15: MFCC process

Figure 16: Neural Network Block Diagram

4.2.4. Second Trained Model

It was concluded that the last method caused the network to be as if it was like f

memorizing the values of the DTW of each record and it was forcing it to use this method

in comparing the features using the DTW and not letting it learn by itself so instead of

feeding the network with the array of DTW let’s try feeding it with MFCC vector itself which

depending on the length of the record was 20xL where the number of features taken at

each instant was 20 features and L varied from a record to another so it was fixed on the

longest record and any smaller record was zero-padded so that the size will be fixed then

this vector was flattened as we used dense layers not convolutional layers, using this

method we started seeing the difference in the results but we suffered from overfitting.

4.2.5. Second Collection of Data

To solve the overfitting problem that occurred it was required to increase the

collected data so another phase of collecting the data from random people under random

and various cases and conditions was done so that the number of the recordings was

about 9000 records which were more than double the dataset collected before.

Softmax Layer

Dropout Layer

Dense Layer

Dropout Layer

Dense Layer

Dropout Layer

Dense Layer

Dropout Layer

Input Layer

Chapter 4
Voice Recognition

33

4.2.6. Third Trained Model

Now let’s try training our model using the same method but using the new dataset

which is by far greater than the last time, after the training phase the results were greater

than before but it was still not enough and still suffered from some overfitting where the

validation accuracy was too stuck at about 70-80% and the training accuracy was to

exceed 96%.

4.2.7. Fourth Trained Model

After the last results it was clear that using this dataset wasn’t enough to train the

model on all the cases and all the types of noise ,so this time it will be tried to do start-end

point detection for each record before training and also clearing the noise which were done

using the sox and ffmpeg libraries, where each record will only contain the command

required without any silence or noise in it, training the model using the optimized data

gave magnificent results using both the dense layers constructed before and also when

tried on convolutional layers and an accuracy about 95% was reached this time and the

model had a performance of about 4-5 seconds working on a 2𝑛𝑑 generation CPU which

of course will be better if used on better capable GPU, but this model couldn’t perform well

under all kinds of noise and all sounds where of course due to training with no noise and

most of the records being of only the 6 team members caused it to be overfitted on some

cases but it was a good model as a proof of concept.

4.2.8. Final Model

The last model gave good results and accuracy but only as a proof of concept

model but it wasn’t capable as it couldn’t work under all the conditions, so Google Speech-

to-Text API was used due to its high accuracy and capability under different conditions as

it can convert audio to text by applying powerful neural network models in an easy-to-use

API. The API recognizes more than 120 languages and variants.

Chapter 5
Intelligent Personal Assistant

34

Intelligent Personal Assistant

Drivers and passengers will be able to use the "Wake up Assistant" command to

activate the system. Drivers will be able to connect with their cars and access their

functions and information simply by speaking.

5.1. Introduction

Intelligent Personal Assistant is the automated equivalent of Amazon's Alexa or

Google Home, while each assistant may specialize in slightly different tasks, they don't

have to search for a keyboard to find answers to questions like "What is the weather

today?" Or "Where is Switzerland?”. Where each seeks to facilitate the user's life through

verbal interactions. Artificial intelligence that relies on the cloud voice command system

that enables you to do things like moving the window or changing the cabin temperature

without raising your hands off the wheel.

In short, the intelligent personal assistant is the perfect auxiliary driver and comes

especially useful during daily driving ("Wake up Assistant, find the nearest gas station on

our way"). But Intelligent Personal Assistant is an entertainment expert as well. So, he can

immediately search for stations about the type of music required ("Play Classic Music

Please") and search for any information you want ("Search for Barack Obama") and return

the information to speak to you.

The Intelligent Personal Assistant will also be able to get information for the driver

from outside his vehicle, and it can also provide information about the vehicle, from

questions about how to operate the systems or the condition of the vehicle.

5.2. Building a Digital Assistant in Python

This section will guide you in the basics of building a smart digital personal

assistant in Python, with voice activation as well as responding. From there, we can

customize it to perform any tasks we need.

Chapter 5
Intelligent Personal Assistant

35

5.2.1. Speech Recognition Package

When you ask a question, we will need something to take. The Speech

Recognition Package allows Python to access audio from your device's microphone,

transfer audio, save the audio to an audio file, and other similar tasks. The

SpeechRecognition library is used to activate the device's microphone, then convert the

audio into text in a string. We find it reassuring to print a phrase when the microphone is

activated, in addition to the text above the microphone hears, so we know it is working

properly. We also include conditions to cover common errors that may occur if there is a

lot of background noise, or if the Google Cloud Speech API request fails.

5.2.2. Text-to-speech package

Our assistant will need to convert your question to text. After that, once the

assistant searches for an answer online, it will need to convert the response into an audible

phrase. For this purpose, we will use pyttsx3 that is a Python text-to-speech library. Unlike

alternative libraries, it works offline and is compatible with both Python 2 and 3.

The pyttsx3 module supports two female voices and the second is male which is

provided by "sapi5" for windows. It is a very easy-to-use tool that converts entered text

into speech.

5.2.3. Wikipedia Package

Wikipedia, the largest free encyclopedia in the world. It is a land full of information.

I mean who would have used Wikipedia all their life (if you haven't used it, then you are

most likely lying). The python library called Wikipedia allows us to easily access and

analyze data from Wikipedia. In other words, you can also use this library as a small

scraper as you can only scrape limited information from Wikipedia.

Wikipedia-API is an easy-to-use Python wrapper for Wikipedia’s API. It supports

extracting texts, sections, links, categories, translations, etc. The goal of Wikipedia-API is

to provide a simple and easy-to-use API for retrieving information from Wikipedia. For an

essay summary, The WikipediaPage chapter contains a Property Summary, which

displays a description of the Wiki page.

Chapter 5
Intelligent Personal Assistant

36

Also, the Wikipedia API provides us with an option to change the language in which

we want to read articles. All you have to do is set the language to the one you want.

Wikipedia currently supports 444 different languages.

5.2.4. Selenium WebDriver Package

Selenium WebDriver is a collection of open source APIs used to automate web

application testing. This tool is used to automate the testing of a web application to verify

that it works as expected. It supports many browsers like Safari, Firefox, IE, and Chrome.

We use Chrome so we installed the geckodriver.

5.3. Overview of the system

Figure 17: System overview

System is
activated using
wake up word

speech
recognition and
convert speech

to text

Compare the
questions in the

text file with
saved questions

in the system

Suitable action
will be taken
based on the

driver’s
question

System is
deactivated
using sleep

word

Chapter 5
Intelligent Personal Assistant

37

Our system starts working as the driver starts using the vehicle, it periodically

checks if the wake up word has been said correctly to activate the assistant, after

activation the assistant asks for the voice question and activate the recorder for 5 second

to save the voice, in case of any error occurs due to noise in the environment the assistant

reply with message “Could not understand your audio, Please try again”, then after saving

the audio successfully the speech recognition process starts and converts it to text, this

text is processed to extract the driver question and take the suitable action, finally the

system checks if the sleep word has been said to deactivate the assistant.

We ask a lot about the places near my site. This usually means that I open a new

tab in the browser and search for it on Google Maps. Of course, if my new digital assistant

can do it for me, it will save me. To implement this feature, we will add a new function to

our digital assistant. The new function will be identified in the case of "What is this

building?" In the voice search query and append the following word to the Google Maps

URL, the assistant responds and issues the OS to open Chrome with the specified URL.

My Location will open in Chrome, displaying latitude and longitude, and the Google API

uses Latitude and Longitude to get information about the nearby location you inquired

about.

Figure 18: Intelligent Personal Assistant

Chapter 5
Intelligent Personal Assistant

38

5.4. Summary

Through speech recognition, improved sensor technology, and context-sensitive

gesture analysis, multimedia interactivity is possible. Spoken instructions are recorded

and processed using natural language understanding. The constantly revised smart

learning algorithm integrates and interprets complex information so that the vehicle can

respond accordingly. This creates an interactive multimedia experience geared towards

the driver's desires. We are using Google speech recognition API and google text to

speech for voice input and output respectively. The implemented assistant can open up

the application (if it’s installed in the system), search Google, Wikipedia, and YouTube

about the query, etc. by just giving the voice command. We can process the data as per

the need or can add functionality.

Chapter 6
Gesture Recognition

39

Gesture Recognition

6.1. Introduction

Gestures are an important aspect of human interaction, both interpersonally and

in the context of man-machine interfaces. There are many faces to the modeling and

recognition of human gesture, gestures can be expressed through hands, faces, or the

entire body. Gesture recognition is an important skill for machines which human interacts

with since gestures help to clarify spoken commands and are a compact means of

communicating geometric information. It provides a redundant form of communication

between the user and the machine. When command and gesture are used together, the

machine needs only recognize one of two commands, which is crucial in situations where

speech may be garbled or drowned out (e.g., in space, underwater, on the battlefield).

Gestures are also an easy way to give geometric information to the machine/Vehicle.

Rather than give coordinates to where the machine should move or use the command on,

the user can simply point to an object or a certain place.

6.2. The Implementation Approach

In this section, we will discuss the different models which we used to implement

the Gesture direction Detection subsystem.

6.2.1. Hand tracking using Bounding box detection model

Figure 19: Hand Detection using Neural Networks (SSD) on TensorFlow

Chapter 6
Gesture Recognition

40

As the first step in this block, we used a bounding box method to track the hand of

the driver as shown in Figure18, it simply tracks the hand movement and surrounds it with

a box. The deep learning model which has been used is SSD model.

SSD model has a significant improvement in speed for high-accuracy detection

than other detection models. [35]

The main idea of SSD is predicting scores of the category and box offsets for a

fixed set of default or reference bounding boxes using small convolutional filters applied

to feature maps, also the model produces predictions in different scales from different

scales feature maps, and separate predictions by aspect ratio to provide high accuracy

detection.

The SSD model as shown in Figure 19 is based on a feed-forward convolutional

network which based on a standard architecture used for image classification followed by

a non-maximum suppression step, the first feed-forward convolutional network produces

a fixed-size collection of bounding boxes and scores for the presence of object class

instances in the boxes and non-maximum suppression step is used to produce the final

detections.

Figure 20: The Architecture of Single Shot MultiBox Detector (SSD) Model

Chapter 6
Gesture Recognition

41

The key features which model used to produce the detection are:

Multi-scale feature maps for detection

SSD model adds some feature layers to the end of the network which decreases

in size progressively and predicts the offsets to default boxes of different scales and aspect

ratios and the confidences. The convolutional model for predicting detections is different

for each feature.

Convolutional predictors for detection

Any feature layer in the added layers or optionally in the base network uses a set

of convolutional filters to produce a fixed set of detection predictions.

Default boxes and aspect ratios

The model associates a set of default bounding boxes with each feature map cell,

for multiple feature maps at the top of the network and each box has a fixed position

relative to its corresponding cell because of the default boxes tile the feature map in a

convolutional manner. Apply these default boxes to several feature maps of different

scales discretize the space of possible output box shapes.

Table 1: Advantages and Disadvantages of SSD Model

Performance 25 FPS

Accuracy ~98%

Advantage

1. High performance.

2. High Accuracy.

3. Easier Code implementation.

Disadvantage Unbeneficial in angle determination

Chapter 6
Gesture Recognition

42

 Note that the performance is measured as the time which the model takes to

process one frame, so whenever this time is short the model will be fast and

more suitable for real-time applications, also can be is measured as the number

of frames which had been processed in one second (unit FPS).

6.2.2. Key Point Detection: Multi-view bootstrapping

 While many approaches to image-based face and body key-point localization exist,

there are no marker-less hand key-point detectors that work on RGB images in the wild.

This method enables real-time 2D hand tracking in single view video and 3D hand motion

capture. Unlike the face and body, large datasets of annotated key-points do not exist for

hands. Generating such datasets presents a major challenge compared to the face or

body. Due to heavy occlusions, even manual key-point annotations are difficult to get right.

For the key-points that are occluded, the annotated locations are at best an educated

guess. This method is called Multiview bootstrapping which is based on the following

observation, if a particular image of the hand has significant occlusion, there often exists

an un-occluded view.

 Multiview bootstrapping systematizes this insight to produce a more powerful hand

detector which is demonstrated. It allows a weak detector, trained on a small annotated

dataset, to localize subsets of key-points in good views and uses robust 3D triangulation

to filter out incorrect detections. Images, where severe occlusions exist, are then labeled

by reprojections of the triangulated 3D hand joints. By including these newly generated

annotations in the training set, we iteratively improve the detector, obtaining more and

more accurate detections at each iteration. This approach generates geometrically

consistent hand key-point annotations using Multiview constraints as an external source

of supervision. In this way, we can label images that are difficult or impossible to annotate

due to occlusion.

 Training:

 Table2 describes the overall procedure for Multiview bootstrapping, by using

{𝐼𝑣
𝑓: 𝑣 ∈ [1 … 𝑉], 𝑓 ∈ [1 … 𝐹]} as an input set of unlabeled Multiview image frames, with v

iterating over the V camera views, and f iterating over F distinct frames (i.e., time instants,

so one frame represents V images).

Chapter 6
Gesture Recognition

43

Table 2: Overall Procedure for Multiview Bootstrapping

 Algorithm 1

Inputs

Unlabeled images: { {𝐼𝑣
𝑓: 𝑣 ∈ views, 𝑓 ∈ frames}

Key-point detector: 𝑑𝑜(𝐼) → {(𝑥𝑝, 𝑐𝑝)𝑓𝑜𝑟 𝑝 ∈ 𝑝𝑜𝑖𝑛𝑡𝑠}

Labeled training data: 𝜏𝑜

For iteration I in 0 to K:

1. Triangulate key-points from weak detections

For every frame f:

a. Run detector 𝑑𝑖(𝐼𝑣
𝑓)𝑜𝑛 𝑎𝑙𝑙 𝑣𝑖𝑒𝑤𝑠 𝑣

b. Robustly triangulate key-points.

2. Score and sort triangulated frames

3. Retrain with N-best reprojections

𝑑𝑖+1 ← 𝑡𝑟𝑎𝑖𝑛(𝜏𝑜 ∪ 𝜏𝑖+1)

Outputs Improved detector 𝑑𝐾(.)𝑎𝑛𝑑 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝜏𝐾

 Convolutional Pose Machine (CPMs):

 For the detectors 𝑑𝑖, the architecture of Convolutional Pose Machines (CPMs) [36],

with some modification. CPMs predict a confidence map for each key-point, representing

the key-point location as a Gaussian centered at the true position. The predicted

confidence map corresponds to the size of the input image patch, and the final position

for each key-point is obtained by finding the maximum peak in each confidence map.

Figure 20 describes the CPM architecture [36], it shows a convolutional architecture and

receptive fields across layers for a CPM with any T stages. The pose machine [37] is shown

in insets (a) and (b), and the corresponding convolutional networks are shown in insets

(c) and (d). Insets (a) and (c) show the architecture that operates only on image evidence

in the first stage. Insets (b) and (d) shows the architecture for subsequent stages, which

operate both on image evidence as well as belief maps from preceding stages. The

architectures in (b) and (d) are repeated for all subsequent stages (2 to T). The network

is locally supervised after each stage using an intermediate loss layer that prevents

Chapter 6
Gesture Recognition

44

vanishing gradients during training. Below in inset (e), we show the effective receptive

field on an image (centered at the left knee) of the architecture, where the large receptive

field enables the model to capture long-range spatial dependencies such as those

between head and knees.

 It is proposed to use the convolutional stages of a pre-initialized VGG-19 network

up to conv4_4 as a feature extractor, with two additional convolutions producing 128-

channel features F. For an input image patch of size 𝑤 × ℎ, the resulting size of the feature

map F is 𝑤′ × ℎ′ × 128, with 𝑤′ =
𝑤

8
 and ℎ′ =

ℎ

8
. There are no additional pooling or

downsampling stages, so the final stride of the network is also 8.

This feature map extraction is followed by a prediction stage that produces a set of P

confidence or score map 𝑆1 = {𝑆1
1 … 𝑆1

𝑃}, one score map 𝑆𝑃
1𝜖𝑅𝑤′×ℎ′

for each key-point p.

Each stage after the first takes as input the score maps from the previous stage 𝑆𝑡−1,

concatenated with the image features F, and produces P new score maps 𝑆𝑡, one for each

key-point. We use 6 sequential prediction stages, taking the output at the final stage 𝑆6.

We resize these maps to the original patch size (𝑤 × ℎ) using bicubic resampling and

extract each key-point location as the pixel with maximum confidence in its respective

map. [38] [39] [40]

Figure 21: Convolutional Pose Machines architecture

Chapter 6
Gesture Recognition

45

Figure 22: (a) Input image with 21 detected key-points. (b) Selected confidence maps produced by
the proposed detector

 To get rough estimates of the hand key-points, a huge multi-view system is set up

to take images from different viewpoints or angles consists of 31 HD cameras. This model

produces 22 key-points where the hand has 21 points and the 22nd point signifies the

background.

 In our project, the proposed gesture model is used and tested with 2 different

frameworks to get the best results from both methods. One method is to use the Caffe

framework and the second method is the TensorFlow implementation of convolutional

pose machine. [41]

 6.2.2.1. Caffe Framework Implementation

 Caffe is a deep learning framework developed by the Berkeley Vision and Learning

Center (BVLC). The model is trained by executing one Caffe command from the terminal.

After training the model, we will get the trained model in a file with the extension

“.caffemodel”. The “.caffemodel” trained model is used to make predictions of new unseen

data. [42]

 The Caffe model weights are used with ‘OpenCV’ where the output has 22

matrices with each matrix being the Probability Map of a key-point. For finding the exact

key-points, the probability map is scaled to the size of the original image. Then it finds the

location of the key-point by finding the maxima of the probability map. This is done using

the minmaxLoc function in OpenCV. We draw the detected points along with the

numbering on the image.

http://bvlc.eecs.berkeley.edu/

Chapter 6
Gesture Recognition

46

 6.2.2.2. CPM TensorFlow Implementation

It is an implementation of the Caffe model but is used with TensorFlow, with the

addition of some features such as the Kalman filter to smooth the pose estimation.

Table 3 describes the advantage and disadvantages of both implementations.

Table 3: Caffe model and model Version comparison in Key Point Detection

Implementation Caffe Version TensorFlow Version

Performance Approx. 0.4 FPS Approx. 4 FPS

Advantage 1. Easy direction determination

2. High Accuracy

3. Easier Code implementation

1. Easy direction determination

2. High accuracy

Disadvantage 1. Very Bad Performance

2. Unbeneficial in angle

determination

1. Bad Performance

2. Unbeneficial in angle

determination

Issues OpenCV gemm function

used in convolution is weak

and it is very slow with the

CPM model.

 Pipelining makes sizing

errors.

 Slow frame processing due

to the large model used.

 Key-points are sometimes

centralized, due to error in

the frozen graph used for

hand tracking.

Chapter 6
Gesture Recognition

47

6.2.3. Kinect V2 Joint Detection and Tracking Models

The main problem in the previous approaches was the insufficiency of pointing

direction determination and only focusing on the hand gesture recognition or tracking, so

it is decided to try a different approach which concentrates on tracking the driver arm not

only his hand, then detects the position of the arm joints (I.e. Shoulder, elbow and wrist)

and finally calculate the angle with these points using simple Trigonometric Functions

6.2.3.1. Kinect Device Models

Kinect device which is a motion-sensing input device as mentioned in chapter 2

has a great feature called Skeleton tracking that provides very accurate tracking of the

human body skeleton and determines the position of all body joints with high performance

up to 30 FPS as shown in figure 22.

In the following section, we develop several models using the Kinect device in

different software environments to assert the functionally of this approach using different

Kinect software libraries depends on the nature of the operating environment.

Figure 23: Skeleton Tracking Feature in Kinect

file:///C:/Users/DOAA/Downloads/GP_thesis_ges1.docx%23_Gesture_Recognition

Chapter 6
Gesture Recognition

48

6.2.3.2. Microsoft Kinect SDK model

As Microsoft produces Kinect, it releases an SDK which enables developers to

create gesture and voice recognition applications on computers that run the Windows

operating system.

6.2.3.3. Kinect with Linux

Kinect v2 got good support on Windows with Kinect SDK but no good support on

Linux. Rovers are working at the Italian Society of Mars and Space Suits at the Austrian

Space Forum already on Ubuntu 14.04, and it is recommended that the project be

implemented on a Linux machine. Linux has up to now stable and standard support for

Kinect v2 but there are two options available. Below are the libraries that can be

considered for the Kinect v2 hack.

1. Libfreenect2 from OpenKinect

2. Openni2

3. PyKinect

After checking all the libraries, libfreenect2 gave good results and it will be usable

with Linux to keep it working. It can be used generally with C ++ but Pylibfreenect2

provides a Python interface for that. The ability of Kinect to track the hand helped us to

implement gestures and get angle among shoulder, elbow and wrist using skeleton joints

[43]. The ability of the software in combination with the hardware can easily identify the

human movements, and this helped us to create Touch-fewer interfaces [44]. The user can

follow the gestures independent of their language and control the car.

Figure 24: Angle Calculations with Kinect

Chapter 6
Gesture Recognition

49

Figure 25: Angle among three joints

The angle is a combination of two lines. To measure the angle, all you need is 3

points in the 3D or 2D space: a starting point, a midpoint and an endpoint. Kinect's power

is the ability to calculate the locations of 25 joints in the human body.

The joint is a structure that includes:

 The position in the three-dimensional space.

 Type/name of the joint.

 Tracking accuracy.

The position of the joint in 3D is expressed as CameraSpacePoint. To properly

position the 3D position in the 2D position, you need to use Coordinate Mapping.

To measure your elbow angle. This angle consists of 3 joints (shoulder, elbow,

and wrist). The middle point of the angle is of course the elbow. The starting point of the

angle is the shoulder. The endpoint of the angle is the wrist. Mathematical calculations

are extremely helpful when you need to compare the relative positions between a few

points. Gesture detection, sign language identification, or even facial expressions. [45]

𝐷𝑥12 = 𝑋1 − 𝑋2

𝐷𝑦12 = 𝑌1 − 𝑌2

𝐷𝑧12 = 𝑍1 − 𝑍2

𝑫𝒏𝒐𝒓𝒎𝟏𝟐 = √𝑫𝒙𝟏𝟐
𝟐 + 𝑫𝒚𝟏𝟐

𝟐 + 𝑫𝒛𝟏𝟐
𝟐
 (2)

𝐷𝑥32 = 𝑋3 − 𝑋2

𝐷𝑦32 = 𝑌3 − 𝑌2

Chapter 6
Gesture Recognition

50

𝐷𝑧32 = 𝑍3 − 𝑍2

𝑫𝒏𝒐𝒓𝒎𝟑𝟐 = √𝑫𝒙𝟑𝟐
𝟐 + 𝑫𝒚𝟑𝟐

𝟐 + 𝑫𝒛𝟑𝟐
𝟐 (3)

𝑃 = 𝐿12 . 𝐿32 = 𝐷𝑥12 ∗ 𝐷𝑥32 + 𝐷𝑦12 ∗ 𝐷𝑦32 + 𝐷𝑧12 ∗ 𝐷𝑧32

 𝑵𝒐𝒓𝒎 𝒗𝒂𝒍𝒖𝒆 =
𝑷

𝑫𝒏𝒐𝒓𝒎𝟏𝟐∗𝑫𝒏𝒐𝒓𝒎𝟑𝟐
 (4)

𝑤ℎ𝑒𝑟𝑒 𝑁𝑜𝑟𝑚 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 {−1,1}

 𝒂𝒏𝒈𝒍𝒆 𝒓𝒂𝒅 = 𝒄𝒐𝒔−𝟏(𝑵𝒐𝒓𝒎 𝒗𝒂𝒍𝒖𝒆) (5)

 𝒂𝒏𝒈𝒍𝒆 𝒅𝒆𝒈𝒓𝒆𝒆 = 𝒂𝒏𝒈𝒍𝒆 𝒓𝒂𝒅 ∗
𝟏𝟖𝟎

𝝅
 (6)

Where

𝑫𝒙𝒏𝒎: The difference between x values of joint n and joint m.

𝑫𝒚𝒏𝒎: The difference between y values of joint n and joint m.

𝑫𝒛𝒏𝒎: The difference between z values of joint n and joint m.

𝑫𝒏𝒐𝒓𝒎𝒏𝒎: The normalized difference between joint n and joint m.

𝑷: The dot product between 𝐿12 𝑎𝑛𝑑 𝐿32.

𝑳𝒏𝒎: The vector between joint n and joint m

𝒂𝒏𝒈𝒍𝒆 𝒓𝒂𝒅: Angle in radian

𝒂𝒏𝒈𝒍𝒆 𝒅𝒆𝒈𝒓𝒆𝒆: Angle in degree

6.2.4. Human Pose Estimation in OpenCV using OpenPose
MobileNet

The problem of estimating the human condition can be defined as computer vision

techniques that predict the location of different human major points (joints and features)

such as elbows, knees, neck, shoulder, hips, chest, etc.

It is a very difficult problem due to various factors such as small, hard to see parts,

blockages, and major joint changes. The figure below illustrates the challenges:

Chapter 6
Gesture Recognition

51

Figure 26: Human Pose Estimation Challenge

6.2.4.1. Pose Estimation

OpenPose is a library to discover real-time multi-person key points and multiple

interfaces written in C ++ with Python shell available. OpenPose won the key point

challenge at Coco 2016. OpenCV has integrated OpenPose into the new Deep Neural

Network (DNN) unit. This means that you will need OpenCV version 3.4.1 or higher to run

the Estimate Code.

This convolutional neural network-based approach attacks the problem using a

multi-stage classifier where each stage improves the results of the previous one. [46]

6.2.4.2. Key-points Detection Datasets

Until recently, little progress had been made in assessing the situation due to the

lack of high-quality data sets. This is the enthusiasm in artificial intelligence these days

that people think every problem is just a good dataset out of demolition. Some difficult

data sets have been released in the past few years, making it easier for researchers to

attack the problem with all their intellectual strength.

Some of the data sets are:

1. COCO Key-points Challenge.

2. Datagram of human form MPII.

3. VGG Pose dataset.

Chapter 6
Gesture Recognition

52

6.2.4.3. Pre-trained Models

Figure 27: COCO Key-points vs MPII Key-points

One model was trained in a multi-person data set (MPII) and the other was trained

on a COCO dataset. The COCO model produces 18 points, while the MPII model

produces 15 points. The outputs drawn on a person are shown in the previous figure.

MobileNet

Based on the MobileNet paper [47], 12 convolutional layers are used as feature-

extraction layers. To improve on a small person, minor modification on the architecture

have been made.

Three models were learned according to network size parameters.

 Mobilenet

368x368: checkpoint weight download

 mobilenet_fast

 mobilenet_accurate

https://www.dropbox.com/s/09xivpuboecge56/mobilenet_0.75_0.50_model-388003.zip?dl=0

Chapter 6
Gesture Recognition

53

TensorFlow Graph File (pb file)

Keras saves its weight in a hierarchical data format (.hdf5) file which slows the

loading of the model on Nvidia Jetson TX2, we have created an optimized (converted it to

a frozen graph base model; here the value of all variables are embedded in the graph itself

thus the protocol buffers (.pb) file cannot be retrained) frozen file of our Keras model based

on Tensorflow. Keras does not include by itself any means to export a Tensorflow graph

as a (. pb) file, but we could do it using regular Tensorflow utilities. [48]

Before running the demo, you should download graph files. You can deploy this

graph on your mobile or other platforms.

 cmu (trained in 656x368).

 mobilenet_thin (trained in 432x368).

6.2.4.4 Make Predictions and Parse Key-points

Once the image is passed to the model, predictions can be made using a single

line of code. The forward method for the DNN class in OpenCV makes a forward pass

through the network and is another way of saying it is predicting.

We check whether each key-point is present in the image or not. We obtain the

location of the key-point by finding the maxima of the confidence map of that key-point.

We also use a threshold to reduce false detections. Since we know the indices of the

points before-hand, we can draw the skeleton when we have the key-points by just joining

the pairs. [49]

Chapter 7
Natural Interaction

54

Natural Interaction

Computing aims to provide an effective and natural interaction between humans

and computers. The important goal is to enable computers to understand the situations

people have expressed so that personal responses can be provided accordingly. In this

chapter, we explore the interaction between the driver and his car from continuous speech

and suggest a real-time speech recognition system. The system consists of voice activity

detection, speech splitting, feature extraction, gesture recognition, and gaze discovery.

7.1. Functionality

The natural interaction technology allows the driver to combine sound, gesture,

and gazing in various ways to interact with their car. The driver decides how he wants to

interact with the car using either sound or gestures, based on their personal preferences

or current situation.

The system combines the most advanced voice command technology available

with expanded gesture control and gesture recognition to enable multimedia operation.

7.1.1. Internal Interaction

7.1.1.1. Face Recognition Interaction

Facial recognition can interact with the car as the system login information where

a picture was taken through the car's webcam and compared to other images in the

database if the driver's face is known to the system, now the driver can enter the car

system and control a car.

But if the driver’s face is unknown to the system, the system will allow another

opportunity to uncover the driver’s face if the system fails 3 times in a row to recognize

the driver’s face. The system will remain closed and a notification will be sent to the

owner's Android phone "Unknown login!!!" telling him that an unknown person is in the

car.

Chapter 7
Natural Interaction

55

7.1.1.2. Gaze Tracking Interaction

Detect drowsiness by tracking the ratio of the eye, if it drops to less than 0.3 for

more than 3 seconds, the system will start alerting to try to wake the driver but if it does

not wake up and open its eyes for more than 6 seconds after the alarm starts.

The system will switch to automatic parking mode and a notification message that

uses the same application in the facial recognition block will be sent to the trusted person

as the driver is at risk.

7.1.1.3. Gesture Recognition & Voice Commands Interaction

By accurately detecting hand and finger movements, the driver can control most

of the internal functions. The driver can point to control and ask what to do. This feature

can be used to open or close windows or sunroof. The system uses a gesture camera to

capture the hand and finger movements of the inhabitants in three dimensions. [50]

The driver can react by pointing his fingers at what he wants to control. Indicates

a window that stands out and can be moved up or down using gestures and voice

commands.

For example, if the driver points to a side window, the window will open with the

voice command "open".

Figure 28: Pointing to a nearby building to get more information

Chapter 7
Natural Interaction

56

7.1.1.4. Intelligent Personal Assistant & Wikipedia Interaction

The system can be combined with an intelligent personal assistant. As the next

logical development.

Driver entry conversation with the car through an intelligent personal assistant to

retrieve information from Wikipedia about what you asked about

For example, the driver asked "Search for Python" or "Search for Barack Obama?"

once the assistant searches for an answer online from Wikipedia, it will convert the

response into an audible phrase.

7.1.2. External Interaction

Natural Interaction offers the ability to use gestures just by pointing your finger.

Drivers can now interact with their immediate surroundings, such as buildings or parking

spaces. Pointing a finger at things in his field of vision and issuing a voice command can

quickly and easily answer complex queries.

For example, the driver might point and say "What is this building?" "What is the

name of this restaurant?" The system will identify the vehicle's position as latitude and

longitude using Selenium WebDriver, so with the location coordinates, right elbow angle,

and Google API key, the assistant will respond in an audible phrase with information about

what the driver asked about.

Figure 29: Vehicle Environment Interaction

Chapter 7
Natural Interaction

57

Figure 30: Pointing to a nearby building to get more information

7.2. Summary

Natural Interaction paves the way for the next stage of natural operation in the

vehicle and beyond. The free combination of voice instructions, gestures and gaze creates

multimodal interaction, based on interpersonal communication.

Natural interaction is also an important step for the future of self-driving cars when

interior concepts will no longer be geared solely to the driver's position and passengers

will gain more freedom.

Chapter 8
Results

58

Results

The performance of all these results of the whole system was calculated using

Intel(R) Core (TM) i7-2670QM CPU @ 2.20GHz.

8.1. Face Recognition

Table 4: Face recognition results

 Known person Case Unknown person Case

Accuracy 99.38%

Performance About 4-5 sec About 13 sec

System login Allowed
Denied and Notification send to the

car owner

8.2. Gaze Tracking

Table 5: Gaze tracking results

Drowsiness Time 1 sec 2.5 sec

Accuracy 99.3833%

System Response Starting the alarm
Auto park the car & Send

emergency notification

Chapter 8
Results

59

8.3. Voice Recognition

Table 6: Voice recognition accuracy and performance

Accuracy 95%

Performance About 1 sec.

8.4. Gesture Recognition

Table 7: Gesture recognition accuracy and performance

 Kinect V2 OpenPose model

Accuracy 95% 94.54%

Performance 30 fps 3-4 fps

8.5. Internal Interaction

8.5.1. Question answering

The wake word for this part of the system is “start”, and the sleep one is “end”,

where after saying the wake word the system microphone will work similar to before but

opening for 5 seconds each instead of only 3 seconds, and when the command search is

said the system will search the web “Wikipedia” for the sentence or word after it and return

with the acquired results.

Chapter 8
Results

60

8.5.2. Internal Commands

To start or stop this part of the system there 2 commands. First, there is the wake

word which is “voice”, and the sleep word which is “mute”, after the wake word the

microphone will enter a loop opening frequently for 3 seconds each to catch the command

to be executed.

Table 8: Angles referring to each device

Angle Device

[20∘, 40∘] Radio

]40∘, 65∘] AC

[70∘, 90∘] Right window

[−90∘, −70∘] Left window

Table 9: Radio commands

Command Action

“on” Open the radio

“off” Close the radio

“forward” Go to the following channel

“backward” Go to the preceding channel

“go channel number” Go to the specified channel number

Chapter 8
Results

61

Table 10: AC commands

Command Action

“on” Open the AC

“off” Close the AC

“increase” Increase the temperature by 1 degree

“decrease” Decrease the temperature by 1 degree

“set temperature” Set the temperature to the desired one

Table 11: Window commands

Command Action

“open” Open the window slightly

“close” Close the window slightly

8.6. External Interaction

This part of the system has a wake word of “wake up”, and asleep one of “sleep”,

after the wake word the system microphone works exactly like the last block for opening

frequently for 5 seconds, where when the driver points to a location and says “what is this

building” the system will search for it and return with its details including its name of this

place, ratings, availability, phone number, reviews, and prices.

Chapter 9
Conclusion and future work

62

Conclusion and future work

9.1. Conclusion

In conclusion, the current market trend toward artificial intelligence and machine

learning. While virtual assistants have been here for quite some time now due to low model

accuracy, the hardware used for precision models was complex and the device was

power-hungry and expensive. So, the models were cloud-based which were ineffective

when it comes to applications in real-time. As hardware becomes cheaper and more

energy-efficient. It became possible to put a powerful processor in a moving object while

keeping the cost in check, models also became more accurate for acceptable

performance. Most car companies are looking to provide an independent car assistant

soon to help with the driving experience, save time and money.

Our new system combines the most advanced voice command technology

available with expanded gesture control and gaze recognition to enable true multimedia

operation for the first time. To quickly and reliably interpret voice instructions as well as

gestures, the information that the driver sends to the vehicle is combined in a multimedia

manner and evaluated with the help of artificial intelligence. The algorithm responsible for

interpreting and improving data inside the vehicle is constantly being improved by using

machine learning and evaluating different operating scenarios.

Spoken commands are recorded and processed using Natural Language

Understanding (NLU). NLU is a smart learning algorithm, constantly improving. NLU

collects and interprets complex speech information, so the vehicle can respond

accordingly. Natural Interaction including voice, gestures, and gaze can help facilitate

using the full options of the car for a driver more easily and safely with less dispersion

while driving leading to a safer drive with a smaller number of accidents, so the driver is

now safer and more comfortable.

Thanks to the depth of the vehicle's connections, extensive environmental data,

and artificial intelligence natural interaction between the vehicle and the driver were

successfully achieved.

Chapter 9
Conclusion and future work

63

9.2. Future work

The development of the interaction between the driver and the vehicle will further

advance in parallel. In the future, with the help of artificial intelligence, the system will

continue to learn and improved sensor technology will be able to take passengers'

emotions into account and integrate them into interaction in a meaningful way. In this way,

the interaction between the driver and the vehicle will become more custom and general-

purpose. Based on experience and depending on the situation and mood, the smart

assistant will be able to decide whether to wait for instructions or offer suggestions to

interact proactively.

By connecting digital services, it will be possible to expand the scope of the

interaction in the future. For example, when a driver detects a parking spot, he will easily

be able to see whether he is allowed to park there or not and how much it costs, then book

it and pay it directly without pressing a button.

The smart digital companion is familiar with all vehicle functions and can operate

them as needed. Intelligent Personal Assistant also learns routines and habits so that it

can be applied in the appropriate context in the future. With each voice command,

question, and setting, Intelligent Personal Assistant improves and learns more and more

preferences and preferences.

A good way to work on it is to integrate with the autonomous driving system that

enables users to get the maximum comfort while enabling the vehicle to fix driver errors.

This will create a new platform of smart devices that can connect different types of

applications to the surface in the coming years.

Chapter 9
Conclusion and future work

64

References

[1] https://en.wikipedia.org/wiki/Convolutional_neural_network

[2] https://academic.microsoft.com/topic/81363708

[3]https://mc.ai/understanding-cnn-in-python%E2%80%8A-%E2%80%8Ablood-cell-

classification/

[4] http://acsjob.com/c8a5f/cnn-input-shape.html

[5] "Concepts and Programming in PyTorch: A way to dive into the technicality",Chitra

Vasudevan, BPB Publications, Jun 27, 2018

[6] https://harangdev.github.io/deep-learning/convolutional-neural-networks/22/

[7] "Practical Convolutional Neural Networks: Implement advanced deep learning models using

Python", Mohit Sewak, Md. Rezaul Karim, Pradeep Pujari, Packt Publishing Ltd, Feb 27, 2018

[8] "Artificial Intelligence",17th Russian Conference, RCAI 2019, Ulyanovsk, Russia, October 21–

25, 2019, Proceedings

[9] https://en.wikipedia.org/wiki/Residual_neural_network

[10] https://tok.fandom.com/wiki/Convolutional_neural_network# "Convolutional neural

network | Tree of Knowledge Wiki"

[11] "The International Conference on Advanced Machine Learning Technologies and

Applications (AMLTA2019)", Aboul Ella Hassanien, Ahmad Taher Azar, Tarek Gaber, Roheet

Bhatnagar, Mohamed F. Tolba, Springer, Mar 16, 2019

[12] "Convolutional lstm for next frame prediction", http://firass-002-

site6.ftempurl.com/nlsoeik3jrhfd/hlnksj35jdssa.php?dftjf326dfhd=convolutional-lstm-for-next-

frame-prediction

[13] https://en.wikipedia.org/wiki/TensorFlow

[14] https://opencv.org/about/

[15] https://en.wikipedia.org/wiki/Dlib

[16] https://en.wikipedia.org/wiki/Kinect

[17] https://openkinect.github.io/libfreenect2/

[18] https://github.com/UnaNancyOwen/OpenNI2Sample

[19] https://github.com/UnaNancyOwen/NiTE2Sample

[20] "CMU-Perceptual-Computing-Lab/openpose - GitHub", https://github.com/CMU-

Perceptual-Computing-Lab/openpose

[21] "Towards a multi-scenario clinical gait characterization system for neurological diseases

JCM Rodrigues" (PDF), repositorio-aberto , 2019

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://academic.microsoft.com/topic/81363708
https://mc.ai/understanding-cnn-in-python%E2%80%8A-%E2%80%8Ablood-cell-classification/
https://mc.ai/understanding-cnn-in-python%E2%80%8A-%E2%80%8Ablood-cell-classification/
http://acsjob.com/c8a5f/cnn-input-shape.html
https://www.google.com.au/search?tbo=p&tbm=bks&q=inauthor:%22Chitra+Vasudevan%22
https://www.google.com.au/search?tbo=p&tbm=bks&q=inauthor:%22Chitra+Vasudevan%22
https://harangdev.github.io/deep-learning/convolutional-neural-networks/22/
https://www.google.com.eg/search?tbo=p&tbm=bks&q=inauthor:%22Mohit+Sewak%22
https://www.google.com.eg/search?tbo=p&tbm=bks&q=inauthor:%22Md.+Rezaul+Karim%22
https://www.google.com.eg/search?tbo=p&tbm=bks&q=inauthor:%22Pradeep+Pujari%22
https://en.wikipedia.org/wiki/Residual_neural_network
https://tok.fandom.com/wiki/Convolutional_neural_network
http://firass-002-site6.ftempurl.com/nlsoeik3jrhfd/hlnksj35jdssa.php?dftjf326dfhd=convolutional-lstm-for-next-frame-prediction
http://firass-002-site6.ftempurl.com/nlsoeik3jrhfd/hlnksj35jdssa.php?dftjf326dfhd=convolutional-lstm-for-next-frame-prediction
http://firass-002-site6.ftempurl.com/nlsoeik3jrhfd/hlnksj35jdssa.php?dftjf326dfhd=convolutional-lstm-for-next-frame-prediction
https://en.wikipedia.org/wiki/TensorFlow
https://opencv.org/about/
https://en.wikipedia.org/wiki/Dlib
https://en.wikipedia.org/wiki/Kinect
https://openkinect.github.io/libfreenect2/
https://github.com/UnaNancyOwen/OpenNI2Sample
https://github.com/UnaNancyOwen/NiTE2Sample
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://repositorio-aberto.up.pt/bitstream/10216/123784/3/364789.1.pdf

Chapter 9
Conclusion and future work

65

[22] https://cmu-perceptual-computing-lab.github.io/openpose/html/index.html

[23] "igece/SoxSharp: .NET wrapper for SoX. – GitHub", https://github.com/igece/SoxSharp

[24] https://www.ffmpeg.org/about.html

[25] https://www.geeksforgeeks.org/python-text-to-speech-by-using-

pyttsx3/#:~:text=pyttsx3%20is%20a%20text%2Dto,a%20reference%20to%20a%20pyttsx3.

[26] "Selenium Webdriver Tutorial with Examples | BrowserStack",

https://www.browserstack.com/guide/selenium-webdriver-tutorial

[27] "Nvidia Jetson – Wikipedia", https://en.wikipedia.org/wiki/Nvidia_Jetson

[28]https://www.press.bmwgroup.com/global/article/detail/T0292196EN/natural-and-fully-

multimodal-interaction-with-the-vehicle-and-its-surroundings-bmw-group-presents-bmw-

natural-interaction-for-the-first-time-at-mobile-world-congress-2019?language=en

[29] https://github.com/ageitgey/face_recognition

[30]https://github.com/kevinam99/capturing-images-from-webcam-using-opencv-

python/blob/master/webcam-capture-v1.01.py

[31] "DRIVER FATIGUE AND ROAD ACCIDENTS A LITERATURE REVIEW and POSITION

PAPER" (PDF). Royal Society for the Prevention of Accidents. February 2001. Archived from the

original (PDF) on 2017-03-01. Retrieved 2017-02-28.

[32] "4.1.03. Driver Drowsiness Detection System for Cars". Retrieved 2015-11-05.

[33][37] Driver’s Drowsiness Detecting and Alarming System (PDF). H.M Chandrasena1, D.M.J.

Wickramasinghe2 1,2 Faculty of Science, University of Peradeniya, Sri Lanka.

[34] https://www.pyimagesearch.com/2017/05/08/drowsiness-detection-opencv/

[35]https://github.com/victordibia/handtracking?fbclid=IwAR0A2r687rnWTwHDOvRCI-

iPpgorDT3mOD7hIUvf5mGUrj9eNgjelW39jwU

[36] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose machines. In CVPR,

2016.

[38]https://github.com/timctho/convolutional-pose-machines-

tensorflow/blob/master/run_demo_hand_with_tracker.py

[39] https://github.com/CMU-Perceptual-Computing-Lab/openpose

[40] https://github.com/ortegatron/hand_standalone

[41] https://github.com/MrEliptik/HandPose

[42] https://github.com/StrongRay/Openpose-Hand-Detection

[43] Petr Altman /"Using MS Kinect Device for Natural User Interface"/ University of west

Bohemia/ Department of computer science and engineering/ Master’s thesis. (2013).

https://cmu-perceptual-computing-lab.github.io/openpose/html/index.html
https://github.com/igece/SoxSharp
https://www.ffmpeg.org/about.html
https://www.geeksforgeeks.org/python-text-to-speech-by-using-pyttsx3/#:~:text=pyttsx3%20is%20a%20text%2Dto,a%20reference%20to%20a%20pyttsx3.
https://www.geeksforgeeks.org/python-text-to-speech-by-using-pyttsx3/#:~:text=pyttsx3%20is%20a%20text%2Dto,a%20reference%20to%20a%20pyttsx3.
https://www.browserstack.com/guide/selenium-webdriver-tutorial
https://en.wikipedia.org/wiki/Nvidia_Jetson
https://www.press.bmwgroup.com/global/article/detail/T0292196EN/natural-and-fully-multimodal-interaction-with-the-vehicle-and-its-surroundings-bmw-group-presents-bmw-natural-interaction-for-the-first-time-at-mobile-world-congress-2019?language=en
https://www.press.bmwgroup.com/global/article/detail/T0292196EN/natural-and-fully-multimodal-interaction-with-the-vehicle-and-its-surroundings-bmw-group-presents-bmw-natural-interaction-for-the-first-time-at-mobile-world-congress-2019?language=en
https://www.press.bmwgroup.com/global/article/detail/T0292196EN/natural-and-fully-multimodal-interaction-with-the-vehicle-and-its-surroundings-bmw-group-presents-bmw-natural-interaction-for-the-first-time-at-mobile-world-congress-2019?language=en
https://github.com/ageitgey/face_recognition
https://web.archive.org/web/20170301005823/http:/www.ibrarian.net/navon/paper/DRIVER_FATIGUE_AND_ROAD_ACCIDENTS_A_LITERATURE_RE.pdf?paperid=1229744
https://web.archive.org/web/20170301005823/http:/www.ibrarian.net/navon/paper/DRIVER_FATIGUE_AND_ROAD_ACCIDENTS_A_LITERATURE_RE.pdf?paperid=1229744
http://www.ibrarian.net/navon/paper/DRIVER_FATIGUE_AND_ROAD_ACCIDENTS_A_LITERATURE_RE.pdf?paperid=1229744
http://www.ibrarian.net/navon/paper/DRIVER_FATIGUE_AND_ROAD_ACCIDENTS_A_LITERATURE_RE.pdf?paperid=1229744
http://81.47.175.201/compass/index.php?option=com_content&view=article&id=506:413-driver-drowsiness-detection-system-for-cars&catid=22:smart-cars

Chapter 9
Conclusion and future work

66

[44] Bob Corish, Antonio Criminisi, Kenton O'Hara, Abigail Sellen/ Touchless Interaction in

Medical Imaging/ Lancaster University/ May 2012.

[45] https://vitruviuskinect.com/angle-calculations/

[46] https://cv-tricks.com/pose-estimation/using-deep-learning-in-opencv/

[47] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias

Weyand, Marco Andreetto, Hartwig Adam/ "MobileNets: Efficient Convolutional Neural Networks

for Mobile Vision Applications"/ 17 Apr 2017.

[48]Plamen Angelov, Robert Kozma/"Proceedings of the 21st EANN(Engineering Applications of

Neural Networks) 2020 Conferance" Book/ Jul 26, 2020

[49]https://poolangelofficial.com/2020/02/23/deep-learning-based-human-pose-estimation/

[50] https://www.futurecar.com/3021/BMW-Debuts-a-Natural-Interaction-Assistant-Allowing-

Drivers-to-Use-Voice-Gestures-or-Gaze-to-Control-Vehicle-Functions

https://vitruviuskinect.com/angle-calculations/
https://cv-tricks.com/pose-estimation/using-deep-learning-in-opencv/
https://poolangelofficial.com/2020/02/23/deep-learning-based-human-pose-estimation/
https://www.futurecar.com/3021/BMW-Debuts-a-Natural-Interaction-Assistant-Allowing-Drivers-to-Use-Voice-Gestures-or-Gaze-to-Control-Vehicle-Functions
https://www.futurecar.com/3021/BMW-Debuts-a-Natural-Interaction-Assistant-Allowing-Drivers-to-Use-Voice-Gestures-or-Gaze-to-Control-Vehicle-Functions

