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Abstract 

Deep Convolutional Neural Networks (CNNs) are the state of the art systems for image 

classification and scene understating. The target in this field nowadays is its acceleration 

to be used in real time applications. The solution was using graphics processing units 

(GPU) but many problems arise due to its high-power consumption which prevents its 

usage in daily used equipment. The Field Programmable Gate Array (FPGA) became a 

new solution due to its low power consumption and flexible architecture although the 

architectures suggested till now have lower speed than GPU due to the limited resources 

on the kit facing the large number of operations executed in the network. This thesis 

discusses this problem and providing a solution which compromises between the speed 

of the network and the power consumption on FPGA. 

Keywords:  Convolutional Neural Networks; Accelerating CNN; FPGA; Virtex7;  
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Introduction 

In this thesis, we are going to propose some techniques to map the deep 

convolutional neural networks into hardware (FPGAs) in order to be accelerated to fit real 

time applications which need high speed and less power consumption. 

1.1. Motivation 

In recent years, artificial intelligence and deep learning have shown their utility and 

effectiveness in solving many real-world computation-intensive problems. The motivation 

of these is to eliminate the need of direct programming and create an intelligent system 

can automatically extract features and recognize a particular pattern and after having 

learned to recognize a particular pattern, extend that capability to objects that it hasn’t 

actually seen before. In other words, it doesn't have to be trained on every single situation 

that could possibly exist, that makes deep-learning algorithms better suited in variable, 

situation-dependent decisions as in self-driving cars than traditional, rules-based 

approach. It learns the entire processing pipeline needed to steer an automobile as in [1] 

by creating models that meet or exceed the ability of a human driver which could save 

thousands of lives a year. 

Among various deep learning algorithms, CNN (convolutional neural networks) is 

one of the key algorithms for visual content understanding and classification, with 

significantly higher accuracy than traditional algorithms in many applications, such as 

image/video processing, face recognition, machine language translation, advances in 

medicine, autonomous driving and more. 

 Convolutional neural network (CNN) is first inspired by research in neuroscience, 

as it’s a subset of neural networks (NNs). Neural Network (NN) is a computational model 

inspired by the way the brain operates, artificial NNs use vast amounts of simple 

computational elements that are organized in interconnected layers. Modern NNs usually 

have multiple layers, exceeding 100 in [2] and thus are called deep neural networks 

(DNNs). 
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In order to better interpret local features of multi-dimensional inputs such as 

images, convolutional neural networks (CNNs) are commonly used. CNNs have been 

shown to be efficient in image-related problems such as classification or scene parsing 

because the convolution operation captures the 2D nature of images. Also, by using the 

convolution kernels to scan an entire image, relatively few parameters need to be learned 

compared to the total number of operations. Their adoption has exploded in the last few 

years because of two recent developments. First, large, labeled data sets such as the 

Large Scale Visual Recognition Challenge (ILSVRC) [3] have become available for 

training and validation. Second, CNN learning algorithms have been implemented on the 

massively parallel graphics processing units (GPUs) which tremendously accelerate 

learning and inference.  

To achieve accurate results, CNNs need many parameters (over 100M parameters 

reported in [4]) and require huge amounts of computational resources and memory, they 

also offer significant potential for massive parallelization and extensive data reuse. 

As a result, expensive and power-hungry accelerators as GPUs are needed to 

efficiently process these networks, recently many applications such as embedded systems 

in self-driving cars need high energy efficiency and real-time performance. Therefore, 

there is a need to reduce the computational resources to reduce the used power and 

speed up the calculations. 

FPGA implementations of CNN have seen an increased amount of interest in 

recent years due to the customizability of FPGAs; Designers can create dedicated 

pipelines with parallel processing elements, customized bit width, etc. on FGPAs. 

Therefore, there is a rapid increase in popularity of using FPGAs as accelerators. They 

also have advantages of good performance, high energy efficiency, fast development 

round, and capability of reconfiguration.  

On the other hand, the limitations of the computational resources and memory 

bandwidth of an FPGA platform must be considered. In fact, if an accelerator structure is 

not carefully designed, its computing throughput cannot match the memory bandwidth 

provided by the FPGA platform. It means that the performance is degraded due to the 

bottleneck of the memory bandwidth.  
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Both CNN algorithms and FPGA aggravate the problem of achieving the best 

performance. As a result, it’s a must to seek ways in order to reduce the number of the 

computations and the energy consumption (specially at convolutional layers that require 

a huge number of operations) and match the computing throughput to the memory 

bandwidth (this problem specially appears at fully connected layer as its operations is 

simple and does not require much time so the latency would be caused from memory 

bandwidth). Acceleration approaches can be categorized into two main parts; (1) General 

approaches (hardware independent) as reduction in precision, Shared weights and data 

reuse. (2) Customize the FPGA architecture to be suitable for the algorithm using 

pipelining, parallelism and increase the memory bandwidth. 

1.2. Problem statement 

CNN requires a huge number of computations to process a single image due to 

the convolution operation on the multiple dimensional arrays which represents a 

computational challenge for general purpose processors and consume a large amount of 

power. Also, deep-learning systems thrive on data. The more data an algorithm sees, the 

better it’ll be able to recognize and generalize about, the patterns it needs to understand. 

This required huge memory resources and consume a large amount of power. However, 

the high energy consumption is no big concern during the network’s training phase - which 

typically takes place on a computer cluster - it poses a problem when the network needs 

to be evaluated on mobile hardware like smartphones, smart glasses, and other wearable 

devices.  

As a result, hardware accelerators such as Graphic Processing Units (GPU), Field 

Programmable Gate Arrays (FPGA), and Application Specific Integrated Circuits (ASIC), 

have been utilized to improve the throughput of the CNN. 

Among these accelerators, GPUs are the most widely used to improve both 

training and classification process of CNN, thanks to their high throughput and memory 

bandwidth. However, GPUs consume a considerable amount of power which is another 

important evaluation metric in the modern digital systems. 

ASIC design, on the other hand, has achieved high throughput with low power 

consumption by assigning dedicated resources and customizing memory hierarchy. But 
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the development time and cost are significantly high compared to other solutions. As 

alternative, FPGA-based accelerators provide high throughput, low power consumption, 

superior energy efficiency (Performance/Watt) compared to high-end GPUs, and 

configurability at a reasonable price [5].  

 The capacity of hardware resources in the FPGA increases continuously, which 

provides more than a thousand floating computing units in one FPGA chip and provide 

low power consumption. Also, CNN offers significant potential for massive parallelization 

and extensive data reuse which make FPGAs suitable for customizing the designs of 

CNNs to achieve low power consumption and high throughput. 

One limitation for the design of efficient accelerators on FPGAs is the limited 

amount of external memory bandwidth. The current bottleneck in available platforms for 

efficient utilization of parallelism is data transfer as CNN requires large memory bandwidth 

due to FC layers. Without on-chip buffers all accesses are to the external memory, 

requiring huge memory bandwidth and consuming a lot of energy. The number of external 

accesses can be reduced by on-chip memory that exploits data reuse due to the heavily 

pipelined circuits in FPGA implementations [6]. 

The most challenging problem for CNN is the Real-time classification, that accepts 

live data input from different devices and satisfy the real-time performance requirements 

while constraining energy usage, because of the need to run the multiple layers of a 

convolutional neural network in real time (as in embedded computer platforms for 

autonomous cars which are expected to be one of the key beneficiaries of deep learning 

and neural networks) [7]. 

1.3. Solution approach 

FPGAs are customizable and programmable to deliver low latency and flexible 

precision, with higher performance per watt for deep learning inference. In order to reduce 

the number of the computations and the energy consumption, several techniques of 

optimization and approximation can be used on FPGAs to accelerate the algorithm. 

First is Data Reuse; As each input layer influences all output layers in a CNN 

convolution layer it is possible to process multiple input layers simultaneously. This would 
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increase the external memory bandwidth required for loading layers. The data is cached 

in FPGA memory allowing each pixel to be reused multiple times [8]. 

Second are approximate computing techniques: 

I- The Precision Reduction 

Typically, CNN run on high precision machines using 32-bit floating point number 

representations or 16-bit fixed point. However, such high precision is not always 

necessary. The energy spent in high precision computations, does not lead to more 

accurate classification by the algorithm. To reduce the energy consumption of the CNN’s 

computations, the main strategy is to quantize its weights and the inputs to its layers. Such 

quantization leads to a network that is only an approximation of the original network. The 

unique flexibility of the FPGA fabric allows the logic precision to be adjusted to the 

minimum that a particular network design requires [9]. 

The reduction in precision allows the FPGA accelerator to process increasingly 

more images per second. This can be achieved in various ways, leading to either a static 

(fixed after design-time) or a dynamic (adaptable after design-time). The work in [9] shows 

how the reduction in precision can be done for different network architecture with minimal 

loss in accuracy and without the need to retrain the network which leads to reduce the 

energy consumption. 

 There are two types of the precision reduction as discussed in [9] 

1- Uniform quantization which uses the same quantization setting (the number 

of quantization bits) for all the network layers. 

2- Pre-layer quantization where each layer is quantized separately which lead 

to better results. 

II- Pruning which is the mean of eliminating all relatively small weights of 

neurons, which decreasing a significant number of operations, resulting in a high 

throughput. 

Third is computational skipping: 
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Due to the appearance of the Rectified Linear Unit layers (RELU layers) in many 

modern convolutional neural networks. These put all negative inputs to zero and pass on 

positive values unchanged, Output = max (0, Input). Since many layers in CNN 

classification algorithms only output positive values when certain features are present, a 

large amount of RELU outputs will be zero and do not have to be used for further 

computations. The RELU layers thus allow for additional energy reductions by not 

computing unnecessary computations through computation skipping [9]. 

1.4. Organization  

The following chapters discuss the CNN algorithm structure, how it is implemented 

by software and hardware and comparison between the two approaches. The remainder 

of this thesis is organized as follows: 

Chapter 2 provides background information on Neural Networks especially 

Convolution Neural Networks (CNN), discusses the main layers of the CNN with their 

equations and functions and provides information about the training process performed 

on any neural network to improve its accuracy. Then it discusses background on FPGAs, 

including a brief overview of FPGA architectures and provides a literature survey including 

some techniques for implementing the CNN on FPGAs and acceleration methods. 

Chapter 3 provides information on the chosen CNN for the project which is Alex-

Net having a quick overview on its accuracy, the number of its layers and their 

arrangement. 

It also shows the effect of changing the number of bits of the fixed point data propagating 

between layers on the accuracy and the chosen number of bits. 

Chapter 4 provides a discussion on the project’s chosen design with the details of 

how each layer of the 5 main layers of Alex-Net is implemented and accelerated using two 

main techniques, parallelism of resources and pipelining inside some layers  

 

Chapter 5 provides results of the synthesis and implementation of super layer1 

(Convolutional+ Pool+ Normalization) in Alex-Net using Vivado showing the number of 
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resources utilized on the chosen kit which is Virtex 7, the timing constraints and the power 

consumption of the design on the kit. 

Chapter 6 discusses a modification on the design discussed in chapter 4 showing 

how this affects the number of resources and the simulation time emphasizing the target 

of the project which is accelerating Alex-Net on FPGA. 

Chapter 7 provides the results of the simulation of the whole design on Vivado and 

discusses the simulation timing results on MATLAB and Virtual FPGA (Behavioral 

Simulation). 

Chapter 8 provides a brief overview of the findings, draws conclusions, and 

recommends directions for future work. 
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Background and Related work  

2.1. Convolutional neural networks 

2.1.1. Neural Networks overview 

NN is a computational model inspired by the way we believe our brain operates: 

the data that comes from our sensors, e.g., eyes, is processed by multiple simple 

computational units called neurons. The neurons are interconnected through a complex 

network of connections (axons), and after several transformations, the input is translated 

into a conclusion such as “there is a chair in the picture” [10]. 

Similarly, artificial NNs use vast amounts of simple computational elements that 

are organized in interconnected layers called also neurons. These neurons are activated 

in response to the input, the activation of the neurons allows the network to detect and 

classify the patterns. Depending on the input data, an NN will calculate the probability that 

the data belong to a certain class (e.g., an object in a specific image). A Neural network 

needs in order to work to be trained at first. The network can be trained to recognize 

different classes by being provided a set of labeled training data (data sets). For example, 

given a set of faces and a set of non-faces, it can learn to decide whether an image 

contains a face. This is called supervised learning. Training of the NN involves more 

computations and takes more time than using a network and will be discussed in section 

2.1.4. 

2.1.2. Convolutional Neural Networks overview 

CNNs are a type of NN commonly used in image processing. Convolutions allow 

NNs to use the way information is structured in the image to reduce the number of 

calculations and improve feature extraction. 

A typical CNN structure consists of a feature extractor and a classifier. The feature 

extractor extracts an input image’s features and sends them to the classifier. According to 

these features, the classifier decides the category that the input image belongs to. A 

feature extractor consists of several similar stages. The input and output of a stage are 
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 called feature maps. The output feature maps of a stage are the input of the next stage. 

The input image is the input to the first stage. Each stage consists of three layers: a 

convolutional layer, a nonlinearity (RELU) layer, and a sub-sample (pooling) layer. The 

output feature maps of the last stage are organized as a feature vector of the original input 

image and sent to the classifier. A classifier is a traditional MLP (multi-layer perceptron) 

composed of several full connection layers. It takes the feature vector as input and 

calculates the probability of each category that the input image may belong to. At last, the 

classifier chooses the category with highest probability as the output [11]. 

2.1.3. Convolutional Neural Network Layers 

Convolutional layer 

The first layer in a CNN is a Convolutional Layer. Figure 2.1 illustrates the 

computation of a convolutional layer. The convolutional layer receives N feature maps as 

input. Each input feature map is convolved by a shifting window with  𝐾 𝑥 𝐾  kernel (filter) 

to generate one element in one output feature map. The stride of the shifting window is 𝑆, 

which is normally smaller than 𝐾. A total of 𝑀 output feature maps will form the set of input 

feature maps for the next convolutional layer. By stacking a number of convolutional 

layers, the network hierarchically learns high-level features of the image [12]. 

 

Figure 2.1 Convolution operation 
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RELU (Rectified Linear Units) Layer 

After each convolutional layer, it is convention to apply a nonlinear layer (or 

activation layer) immediately afterward. The purpose of this layer is to introduce 

nonlinearity to a system that basically has just been computing linear operations during 

the convolutional layers (just element wise multiplications and summations). In the past, 

nonlinear functions like “tanh” and “sigmoid” were used, but researchers found out that 

RELU layers work far better because the network is able to train a lot faster (because of 

the computational efficiency) without making a significant difference to the accuracy. The 

RELU layer applies the function 𝐹(𝑥) = max  (0, 𝑥) to all of the values in the input volume. 

In basic terms, this layer just changes all the negative activations to zero. This layer 

increases the nonlinear properties of the model and the overall network without affecting 

the receptive fields of the convolutional layer. 

Pooling layer 

In a typical CNN, convolutional layers are interleaved with pooling layers. Pooling 

layers are used to reduce feature map dimensions by subsampling with some simple 

function; for example, average or maximum.  Max-pooling being the most popular, this 

basically takes a filter 𝑃 𝑥 𝑃  and a stride of length 𝑆, it then applies it to the input volume 

and outputs the maximum number in every sub-region that the filter convolves around. As 

shown in Figure 2.2, the filter size is 2 𝑥 2 and the stride has the same length. A pooling 

layer serves two main purposes. The first is that the number of parameters or weights is 

reduced by 75% in the previous example, thus lessening the computation cost. The 

second is that it will control over-fitting. This term refers to when a model is so tuned to 

the training examples that it is not able to generalize well for the validation and test sets. 

A symptom of over-fitting is having a model that gets 100% or 99% on the training set, but 

only 50% on the test data. 
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Figure 2.2 Max pooling 

Local Response Normalization (LRN) 

The Local Response normalization (LRN) reduces top-1 and top-5 error rates by 

1.4% and 1.2%, respectively [13]. This sort of response normalization implements a form 

of lateral inhibition inspired by the type found in real neurons. Its contribution in the network 

performance was verified on the CIFAR-10 dataset: a four-layer CNN achieved a 13% test 

error rate without normalization and 11% with normalization [14]. 

𝑜𝑢𝑡𝑖 = 𝑖𝑛(𝑥,𝑦)
𝑖 (𝑘+∝ ∑ (𝑖𝑛(𝑥,𝑦)

𝑗
)

2
)𝛽  

min (𝑁−1,𝑖+ 
𝑛

2
)

𝑗=max (0,𝑖− 
𝑛

2
)

⁄   (1) 

 k =  1, n =  5, 𝛼 =  10−4, and β =  0.75 

Fully connected layers 

The way this fully connected layer (FC) works is that it looks at the output of the 

previous layer (which represent the activation maps of high level features) and determines 

which features most correlate to a particular class by unrolling the input features and the 

weights and multiply them and then outputs an N dimensional vector where N is the 

number of classes that the program has to choose from. Figure 2.3 shows an example of 

FC layer with un-rolled input 1 𝑥 3072 and corresponding weights 3072 𝑥 10 . 
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Figure 2.3 FC operation example 

2.1.4. Training process  

A CNN needs in order to work to go through a training process called back-

propagation. Back-propagation can be separated into 4 distinct sections, the forward pass, 

the loss function, the backward pass and the weight update. During the forward pass, you 

take a training image (RGB image) which for example a 32 x 32 x 3 array of numbers and 

pass it through the whole network. For example, CNN categorize 10 classes 

corresponding to numbers from 0 to 9. On the first training example, since all of the weights 

or filter values were randomly initialized, the output will probably be something like [.1 .1 

.1 .1 .1 .1 .1 .1 .1 .1], basically an output that doesn’t give preference to any number in 

particular. The network, with its current weights, isn’t able to look for those low-level 

features or thus isn’t able to make any reasonable conclusion about what the classification 

might be. This goes to the loss function part of back-propagation. The training data has 

both an image and a label. Let’s say for example that the first training image inputted was 

a 3. The label for the image would be [0 0 0 1 0 0 0 0 0 0]. A loss function can be defined 

in many different ways but a common one is MSE (Mean Squared Error), which is ½ times 

(actual - predicted) squared.  

Etotal =∑ 0.5 (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2          

The predicted label (output of the CNN) must be the same as the training label 

(This means that our network got its prediction right). In order to achieve this, it’s a must 

to minimize the amount of loss (error). It just an optimization problem in calculus to find 
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out which inputs (weights) most directly contributed to the loss (or error) of the network as 

shown in Figure 2.4. 

 

Figure 2.4 the error function 

Now perform a backward pass through the network, which is determining which 

weights contributed most to the loss and finding ways to adjust them so that the loss 

decreases. Once this following derivative is computed, we then go to the last step which 

is the weight update, update all the weights of the filters so that they change in the opposite 

direction of the gradient. 

𝑊 = 𝑊𝑖 − 𝞰
𝒅𝑳

𝒅𝑾
 , Where W is weights, L is loss function, and 𝝶 is learning rate. 

2.2. FPGAs 

2.2.1. Introduction 

A field-programmable gate array (FPGA) is an integrated circuit designed to be 

configured by a customer or a designer after manufacturing. The FPGA configuration is 

generally specified using a hardware description language (HDL), Verilog or VHDL, similar 

to that used for an application-specific integrated circuit (ASIC). 

2.2.2.  Components  

Field Programmable Gate Arrays (FPGAs) offer a reconfigurable design platform 

which makes them popular among digital designers. Typical internal structure of FPGA 

comprises of three major elements as shown in Figure 2.5[15]: 
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1. Configurable Logic Blocks (CLBs) are the resources of FPGA meant to implement logic 

functions. Each CLB is comprised of a set of slices which are further decomposable into 

a definite number of look-up tables (LUTs), flip-flops (FFs) and multiplexers (Muxes). 

2. Input/output Blocks (IOBs) available at FPGA’s periphery facilitate external connections. 

These programmable blocks carry signals ‘to’ or ‘from’ FPGA chip.  

3. Switch Matrix is an interconnecting wire-like arrangement within FPGA. This offer 

connectivity for the CLBs or provide dedicated low impedance, minimum delay paths (for 

example, global clock line). 

 

Figure 2.5 Internal structure of FPGA 

Some other important resources in the FPGAs as shown in Figure 2.6: 

1. Hardware multipliers denoted as digital signal processing (DSP) units which are used 

in MAC operations, multiplication and accumulation operations, which is widely used in 

Convolutional neural networks. 

2. Block RAMs which are prepared in columns as shown in the figure. In Xilinx FPGAs the 

BRAMs can be in 2 sizes 18 Kb or 36 Kb. For example, if the module synthesized has size 

less than 18 Kb it`s synthesized as 18 Kb BRAM and if it`s between 18 Kb and 36 Kb, it`s 

synthesized as 36 Kb BRAMs. 
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Figure 2.6 FPGA resources 

2.2.3. Design Flow 

Figure 2.7 shows the steps of the design flow [16]. 

 

Figure 2.7 FPGA design flow 

Explaining the previous steps 

1. Design Entry: It can be subdivided into two phases: defining functionality and structure 

of the design and creating the design using Hardware Descriptive Language (HDL), 

Verilog or VHDL. 



Chapter 2 
Background and Related work 

16 

2. Behavioral functionality: Behaviorally simulating the HDL designs to test system and 

device functionality before synthesis. 

3. Synthesis: Converts the input HDL source files into a netlist. It’s divided into three-step 

process:  

a) Syntax check & design association to logic cells. 

b)  Optimization: Reducing logic, eliminating the redundant one to make the design 

smaller and faster.  

c) Technology Mapping: Connecting design to logic, predicting and adding timing 

estimates, creating output reports and generating netlist file containing the design and 

constraints. 

4. Implementation: Determining the physical design layout by mapping synthesized 

netlists to the target FPGA’s structure and interconnecting design resources to FPGA’s 

internal and I/O logic. It consists of three sub-processes as shown in Figure 2.8: 

a) Translate: Combining all netlists and constraints into one large netlist and pining 

assignment & time requirements (e.g. input clock period, maximum delay, etc.) provided 

via a User Constraints File. 

b) Map: Comparing the resources specified in the input netlist file against the 

available resources of the target FPGA and dividing netlist circuit into sub-blocks to fit into 

the FPGA logic blocks generating a Native Circuit Description (NCD). 

c)Place & Route (PAR): Placing physically the NCD sub-blocks into FPGA logic 

blocks and routing signals between logic blocks such that timing constraints are met 

generating a completely routed NCD file. 
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Figure 2.8 FPGA implementation steps 

5. Bit Stream Generation: Converts the final NCD file into a format the FPGA understands. 

6. Programming the FPGA with the generated bit stream. 

 

2.3. Literature survey 

    Due to the specific, complex computation pattern of CNN, general purpose 

processors (CPUs) are not efficient for CNN implementation and can hardly meet the 

performance requirement. Thus, various accelerators based on FPGA, GPU, and even 

ASIC design have been proposed to improve performance of CNN designs [12]. Among 

these approaches, FPGA based accelerators have attracted more and more attention. 

The authors of paper [17] consider whether future high-performance FPGAs will 

outperform GPUs for next-generation DNNs in terms of speed beside its superiority in 

power consumption-efficiency, evaluating a selection of emerging DNN algorithms on two 

generations of Intel FPGAs (ArriaTM 10, StratixTM 10) against the latest highest 

performance Titan X Pascal GPU. They study various GEMM operations for next-

generation DNNs, and then proposed a detailed case study on accelerating Ternary Res-

Net which relies on sparse GEMM on 2-bit weights (i.e., weights constrained to 0, +1, -1) 
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and full-precision neurons which its accuracy is within ~1% of the full precision Res-Net 

which won the 2015 Image-Net competition. The results were very promising; Stratix 10 

performance is 10%, 50% and 5.4x better in performance (TOP/sec) than Titan X Pascal 

GPU on GEMM operations for pruned, Int6, and binarized DNNs, respectively. On 

Ternary-ResNet, the Stratix 10 FPGA is projected to deliver 60% better performance over 

Titan X Pascal GPU, while being 2.3x better in performance/watt. Results indicate that 

FPGAs may become the platform of choice for accelerating DNNs. 

Not only FPGAs are recommended to be used as hardware accelerators in 

implementing CNN but also ASIC technologies which gives a better performance, on the 

other hand the FPGA based accelerators have attracted more attention of researchers 

than ASIC accelerators because they have advantages of quite good performance, fast 

development round and capability of reconfiguration. 

Authors of [18] consider the spatial architectures used in ASIC and FPGA-based 

accelerators, discussing how data-flows can increase data reuse from low cost memories 

in the memory hierarchy to reduce energy consumption. This includes a large global buffer 

with a size of several hundred kilobytes that connects to DRAM, an inter-PE network that 

can pass data directly between the ALUs, and a register file (RF) within each processing 

element (PE) with a size of a few kilobytes or less. They investigate data-flows that exploit 

three forms of input data reuse (convolutional, feature map and filter). For convolutional 

reuse, the same input feature map activations and filter weights are used within a given 

channel, just in different combinations for different weighted sums. For feature map reuse, 

multiple filters are applied to the same feature map, so the input feature map activations 

are used multiple times across filters. Finally, for filter reuse, when multiple input feature 

maps are processed at once (referred to as a batch), the same filter weights are used 

multiple times across input features maps.  

Authors of [19] proposed energy-efficient dataflow called row stationary, which 

aims to maximize the reuse and accumulation at the local memory level (register file or 

caches) for all types of data (weights, pixels and partial sums) for the overall energy 

efficiency. It keeps the row of filter weights stationary inside the RF of  

the PE and then streams the input activations into the PE. The PE does the MACs for 

each sliding window at a time, which uses just one memory space for the accumulation of 

partial sums. Since there are overlaps of input activations between different sliding 
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windows, the input activations can then be kept in the RF and get reused. By going through 

all the sliding windows in the row, it completes the 1-D convolution and maximizes the 

data reuse and local accumulation of data in this row. With each PE processing a 1-D 

convolution, multiple PEs can be aggregated to complete the 2-D convolution. 

Also, authors of [18] idly discuss how DNN models and hardware can be co-

designed to jointly maximize accuracy and throughput, while minimizing energy and cost, 

which increases the likelihood of adoption. They highlight various efforts that have been 

made towards the co-design of DNN models and hardware. The co-design approaches 

can be loosely grouped into the following categories: (1) Reduce precision of operations 

and operands; this includes going from floating point to fixed point, reducing the bit-width, 

non-linear quantization and weight sharing, (2) Reduce number of operations and model 

size; this includes techniques such as compression, pruning and compact network 

architectures. 

The previous papers cited were the inspiration of our proposed approach, which 

applies feature-map data reuse technique, 2 data-flows types: output stationary and no 

local reuse, based on fixed point operations, uses extensively local memories for overall 

energy efficiency and then our CNN is accelerated on FPGA. Our approach will be deeply 

discussed and cleared in chapter4. 

2.4. Summary 

This chapter provides background information on Convolution Neural Networks 

(CNN), discusses the main layers of the CNN (Convolutional Layer, Max Pooling Layer, 

…. etc.)  with their operations, equations and functions and provides information about the 

training process with all its stages performed on any neural network to improve its 

accuracy. Then it discusses background on FPGAs, including a brief overview of FPGA 

architectures and provides a literature survey including some techniques for implementing 

the CNN on FPGAs, acceleration methods such as parallelism, data reuse, …. etc. 

showing the results of this implementation as execution time of each layer on FPGA and 

power consumption. 
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Alex-Net   

The chosen CNN architecture is Alex-Net, which had a large impact on the field of 

machine learning, specifically in the application of deep learning to machine vision. Alex-

Net will be overviewed in this chapter and discussed from the software point of view. 

3.1. Overview 

Alex-Net is one of the state-of-the-art CNN, it won the 2012 ILSVRC (Image-Net 

Large-Scale Visual Recognition Challenge). It was the first model to achieve top-1 and 

top-5 error rates of 37.5% and 17.0% respectively on the test data of Image-Net dataset 

[14], which was an astounding improvement compared with the other top models in the 

context which had error rates of 28% and 26% [13] as shown in Figure 3.1, so this 

architecture was one of the first deep networks to push ImageNet Classification accuracy 

by a significant stride in comparison to traditional methodologies. Therefore, the network 

was the breakthrough of CNNs, and the reason to use CNNs in computer vision 

community.  

In general, Neural networks are inspired by the structure of the cerebral cortex. At 

the basic level is the perceptron, the mathematical representation of a biological neuron. 

Like in the cerebral cortex, there can be several layers of interconnected perceptron. Input 

values, or in other words the underlying data, get passed through this “network” of hidden 

layers until they eventually converge to the output layer. The output layer is the prediction: 

it might be one node if the model just outputs a number, or a few nodes if it’s a multiclass 

classification problem. 

The neural network developed by Krizhevsky, Sutskever, and Hinton in 2012, 

which has 60 million parameters and 650,000 neurons, consists of five convolutional 

layers, some of them are followed by max-pooling layers, and three fully-connected layers 

with a final 1000-way soft-max [25] as shown in Figure 3.2.  
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Figure 3.1 ImageNet Large Scale Visual Recognithion Challenge winners 

 

Figure 3.2 Alex-Netneural network architecture 
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3.2. The Network Architecture 

Alex-Net contains 5 convolutional layers, max-pooling layers, dropout layers, and 

3 fully-connected layers as shown in Figure 3.3. The used layout is a relatively simple 

layout, compared to modern architectures. The network was designed for classification 

with 1000 possible categories. Table 3-1 shows the detailed parameter in each layer of 

the network from Caffe. 

 

Figure 3.3 Alex-Net layers architecture 

Table 3-1 The network parameters 

Layer 1 2 3 4 5 6 7 8 

Type conv+ 

max+ 

norm 

conv+ 

max+ 

norm 

conv conv conv+ 

max 

fc Fc fc 

Channels 96 256 384 384 256 4096 4096 1000 

Filter Size 11*11 5*5 3*3 3*3 3*3 - - - 

Convolution Stride 4*4 1*1 1*1 1*1 1*1 - - - 
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3.2.1. Convolutional Layer  

The Conv layer is the core building block of a Convolutional Network that does 

most of the computational heavy lifting. It's always the first layer in a CNN.  

 Convolution operation 

The metrical convolution operator is applied over the feature maps of the input and 

filter as shown in Figure 3.4. As the filter is sliding, or convolving, around the input image, 

it is multiplying the values in the filter with the original pixel values of the image (i.e. 

computing element wise multiplications). These multiplications are all summed up to 

produce a single output. The process is repeated for every location on the input volume. 

 The computation is given in (2), where M is the number of output feature maps 

(number of filters) of size E × E, C is the number of channels in Input feature maps, and 

R × R is the size of the Filter, which is the convolution operand obtained from the training. 

𝑜𝑢𝑡[𝑚][ℎ𝑜][𝑤𝑜] = 𝑏𝑖 + ∑ ∑ ∑ 𝐼𝑁𝑅
𝐾𝑤=0

𝑅
𝐾ℎ=0

𝐶
𝑖=1 [𝑖][ℎ𝑜 + 𝑘ℎ][𝑤𝑜 + 𝑘𝑤] ∗ 𝐾𝑒𝑟𝑛𝑒𝑙[𝑚][𝑖][𝑘ℎ][𝑘𝑤]  

(2) 

 

Figure 3.4 Convolution operation [19] 

Convolution layer parameters: 

Pooling Size 3*3 3*3 - - 3*3 - - - 

Pooling Stride 2*2 2*2 - - 2*2 - - - 

Padding Size 2*2 1*1 1*1 1*1 1*1 - - - 
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 Filters [20]: 

The Conv layer’s parameters consist of a set of learnable filters. Every filter is small 

spatially (along width and height) but extends through the full depth of the input volume.  

Each of these filters can be thought of as feature identifiers (edges, simple colors, and 

curves). First layer filters detect low level features such as edges and curves. In order to 

predict whether an image is a type of object, the network must be able to recognize higher 

level features. To extract high level features the output of the first layer is applied to a set 

of filters (pass it through the 2nd Conv layer). As the network get deeper and go through 

more Conv layers, activation maps can represent more complex features.  

In practice, a CNN learns the values of these filters on its own during the training process. 

However, other parameters are still need to be specified such as number of filters, filter 

size, architecture of the network before the training process. 

 Stride [20]: 

Stride is the number of pixels by which the filter matrix slides over the input matrix 

as shown in   

Figure 3.5. 

The spatial size of the output volume can be computed as a function of the input volume 

size (W), the filter size (K), the stride with which they are applied (S), and the amount of 

zero padding used (P) on the border.  

The formula for calculating the output volume is given by (W−K+2P)/S+1. 

  

Figure 3.5 Filter Stride over 2-D input feature map 
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3.2.2. Pooling Layer  

A key aspect of Convolutional Neural Networks are pooling layers, typically applied 

after the convolutional layers. Pooling layers (also called subsampling or down sampling) 

reduces the dimensionality of each feature map but retains the most important information. 

Pooling can be of different types: Max, Average, Sum etc. In practice, Max Pooling has 

been shown to work better [21]. For example,Figure 3.6  shows  max pooling for a 2×2 

window. Pooling operation is applied separately to each feature map. 

 

Figure 3.6 Max pooling operation 

The function of Pooling is to progressively reduce the spatial size of the input 

representation [20]. In particular, pooling 

 Makes the input representations (feature dimension) smaller and more 

manageable. 

 Reduces the number of parameters and computations in the network, therefore, 

controlling overfitting. 

 Makes the network invariant to small transformations, distortions and translations 

in the input image (a small distortion in input will not change the output of Pooling 

– since it considers only the maximum / average value in a local neighborhood). 

 Provides a fixed size output matrix, which typically is required for classification. For 

example, if the network has 1,000 filters and then apply max pooling to each, it will 

get a 1000-dimensional output, regardless of the size of the filters, or the size of 

the input. 
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3.2.3. RELU 

RELU stands for Rectified Linear Unit and is a non-linear operation used after 

every convolution operation. Its output is given by: max (0, in) as in Figure 3.7. RELU is 

an element wise operation and replaces all negative pixel values in the feature map by 

zero. The purpose of RELU is to introduce non-linearity in the CNN after linear operation 

of convolution (element wise matrix multiplication and addition), since most of the real-

world data the network required to learn would be non-linear. Nonlinearity makes it easy 

for the model to generalize or adapt with variety of data to best fit its representation as in 

Figure 3.8 and to differentiate between the outputs [22]. 

 

Figure 3.7 RELU function 

 

Figure 3.8 Non linear data fitting 



Chapter 3 
Alex-Net 

27 

There are other non-linear activation functions like Sigmoid and Tanh, however the 

RELU is used in almost all the convolutional neural networks or deep learning. it has 

become very popular in the last few years due to its advantages: 

 It was found to greatly accelerate (e.g. a factor of 6 in [14]) the convergence of 

stochastic gradient descent compared to the sigmoid / tanh functions. It is argued 

that this is due to its linear, non-saturating form. 

 Compared to tanh /sigmoid neurons that involve expensive operations 

(exponentials, etc.), the RELU can be implemented by simply thresholding a matrix 

of activations at zero [23]. 

3.2.4. Zero padding 

Sometimes it will be convenient to pad the input volume with zeros around the 

border so that the filter can be applied to bordering elements of the input matrix as shown 

in Figure 3.9, as it doesn’t have any neighboring elements to the top and the left. The size 

of this zero-padding is a hyper parameter. The nice feature of zero padding is that it will 

allow to control the spatial size of the output volumes [20]. 

 

Figure 3.9 Input matrix after zero padding 
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3.2.5. Local Response Normalization (LRN) 

The role of the LRN layer is to normalize the RELU neurons which have unbounded 

activations to avoid the saturation in network, and subsequently data missing. Equation 

(3) shows the normalization functionality; normalizing around the local neighborhood of 

the excited neuron, and make it even more sensitive as compared to its neighbors. 

𝑏𝑥,𝑦
𝑖 =  𝑎𝑥,𝑦

𝑖 (𝑘 +  𝛼 ∑ (𝑎𝑥 ,𝑦
𝑗

)
2min(𝑁−1 ,   𝑖+

𝑛

2
)

𝑗=max( 0 ,   𝑖−
𝑛

2
)

 )

𝛽

⁄                               (3) 

The sum runs over n adjacent kernel maps at the same spatial position where, 

𝑎𝑥,𝑦
𝑖  Represents the i th Pool kernel’s output at the position of (x, y) in the feature map. 

𝑏𝑥,𝑦
𝑖  Represents the output of local response normalization, and it’s also the input for the 

next layer. 

N is the number of the Pool’s kernels (depth size). 

n is the adjacent conv. kernel number; this number is up to you. In this network, n = 5. 

k, α and β are hyper-parameters, whose values are determined using a validation set in 

the used pre-trained CNN; the values used k=1, n=5, α=0.0000, β=0.75. 

Figure 3.10 illustrates the process of LRN in CNN, considering the following hints, 

 This figure presumes that the i th kernel is not at the edge of the kernel space. If i 

equals zero or one or last or one to the last, one or two additional zero padding 

Conv kernels are required. 

 In our network, n is 5, we presume n/2 is integer division, 5/2 = 2. 

 Summation of the squares of output of RELU and Pool stands for: for each output 

of RELU and Pool, compute its square, then, add the 5 squared value together. 

This process is the summation term of the formula. 
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 I presume the necessary padding is used by the input feature map so that the 

output feature maps have the same size of the input feature map, if you really care. 

But this padding may not be quite necessary. 

 

Figure 3.10 Normalization layer operation 

The hardware implementation challenges can be observed from (3), it is arises in 

the fractional power (β=0.75), and the variable range of the summation loop. The fractional 

power (β=0.75) was rounded to (β=1) in the hardware implementation with slight reduction 

in the accuracy, the variable range of the loop will be implemented using FSM (finite state 

machine) as discussed in the following chapter. 

3.2.6. Fully connected layer  

The fully connected layer is a traditional Multi Layer Perceptron (MLP) with Soft-

max activation function, its purpose is to use the extracted feature from the previous 



Chapter 3 
Alex-Net 

30 

convolution and pooling layers and classify the input image to various classes by 

determining the correlation between the extracted feature and a particular class. 

The Multi Layer Perceptron contains one or more hidden layers with all the neurons 

connected to each other, which can learn linear or non–linear functions, Figure 3.11 shows 

a three FC layers with one input layer, one output layer and one hidden layer [24]. 

 

 

Figure 3.11 A multi layer perceptron with one hidden layer 

The input FC layer unroll the output of the previous layer and multiply each neuron 

in the output by its corresponding weight as shown in Figure 3.12 using matrix 

multiplications in equation (4), the neurons of the output layer is fed to the Soft-max layer. 

𝑓(𝑥, 𝑤) = 𝑥𝑇 ∗ 𝑤  (4) 

 

Figure 3.12 the fully connected layer using matrix multiplication 
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3.2.7. Soft-max 

The last layer in the architecture is Soft-max. The Soft-max function squashes the 

outputs of each unit from real arbitrary values into some real values in range between 0 

and 1 and sum up to one as illustrated in Figure 3.13, which represent the probability 

distribution of each category in the dataset. It can be interpreted as the (normalized) 

probability assigned to the correct label 𝑦𝑗 given the image 𝑥𝑗 and parameterized by W 

and the result is 𝑓𝑗 given in equation (5) [23]. 

𝑃(𝑦 = 𝑗| 𝑥) = 𝑒
𝑓𝑦𝑗 ∑ 𝑒𝑓𝑘

𝑘=𝐾

𝑘=1

 ,⁄  𝑗 = 1,2, … … … 𝐾, (5) 

 𝑤ℎ𝑒𝑟𝑒 𝑓𝑗 = 𝑥𝑇𝑤 𝑎𝑛𝑑 𝐾 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡.  

 

Figure 3.13 The Softmax normalized probability. 

Practical issues: Numeric stability. When writing a code for computing the Soft-

max function in practice, the intermediate terms 𝑒
𝑓𝑦𝑗  and ∑ 𝑒𝑓𝑘𝑘=𝐾

𝑘=1  may be very large 

due to the exponentials. Dividing large numbers can be numerically unstable, so it is 

important to use a normalization trick. Notice that by multiplying the top and bottom of the 

fraction by a constant C and push it into the sum, it gives the following (mathematically 

equivalent) expression in (6). The constant C can take any value without affecting the 

results, a common choice for C is to set logC = −max (𝑓𝑗) to improve the numerical stability 

of the computation. This simply states that we should shift the values inside the vector f 

so that the highest value is zero the final equation is given by (7) [13]. 

𝑒
𝑓𝑦𝑗

∑ 𝑒𝑓𝑘𝑘
=  

𝐶 𝑒
𝑓𝑦𝑗

𝐶 ∑ 𝑒𝑓𝑘𝑘
=

𝑒
𝑓𝑦𝑗

+𝑙𝑜𝑔𝐶

∑ 𝑒𝑓𝑘+𝑙𝑜𝑔𝐶
𝑘

  (6) 
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𝑃(𝑦 = 𝑗| 𝑥) = 𝑒
𝑓𝑦𝑗

−𝑀𝑎𝑥(𝑓𝑗)
∑ 𝑒𝑓𝑘−𝑀𝑎𝑥(𝑓𝑗)

𝑘=𝐾

𝑘=1

 ,⁄  𝑗 = 1,2, … … … 𝐾, (7) 

 𝑤ℎ𝑒𝑟𝑒 𝑓𝑗 = 𝑥𝑇𝑤 𝑎𝑛𝑑 𝐾 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡.  

 

The implementation challenge for this layer rises from the exponential and division, 

the exponent will be implemented using LUT and the division will be ignored as its function 

is to normalize the probability which will not affect the classifier decision.   

3.2.8. Drop out  

Deep neural network with multiple layers and large number of neurons suffer from 

over fitting during the training phase. The architecture consists of 5 convolution layers and 

3 fully connected layers with 650,000 neurons make the usage of generalization 

techniques is necessary to prevent the network from over fitting. The dropout is a power 

full generalization technique for reducing overfitting in neural networks by preventing 

complex co-adaptations on training data by randomly dropping out the output of each 

hidden neuron with probability 0.5 as shown in Figure 3.14, which gives major 

improvements over other regularization methods.  

The main idea of dropout is to have neuron A and neuron B both to learn something 

about the data, and the neural network not rely on 1 neuron alone as illustrated in Figure 

3.15. This has the effect of developing redundant representations of data for prediction by 

randomly dropping out the outputs of the previous layer with probability of 0.5. However, 

there is have no idea which one is better, so in the testing phase, all the neurons are used 

but their outputs are multiplied by 0.5 to average them [25][26]. The dropout layer is used 

in the first two fully-connected layers of the network. Without dropout, the network exhibits 

substantial overfitting [25]. 
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Figure 3.14 Droupout for multiple neurons in hidden layer 

 

Figure 3.15 Droupout illustration for single layer with two neurons 

3.3. Fixed point back ground  

Fixed-point optimization of deep neural networks plays an important role in 

hardware based design and low-power implementations. In recent years increasingly 

complex architectures for deep convolution networks (DCNs) have been proposed to 

boost the performance on image recognition tasks. However, the gains in performance 

have come at a cost of substantial increase in computation and model storage resources. 

Fixed point implementation of DCNs has the potential to alleviate some of these 

complexities and facilitate potential deployment on embedded hardware. 

A fixed-point representation of a number consists of integer and fractional components 

and sign bit as shown in Figure 3.16, where WL represents word length, S represents the 
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sign bit, I represent the integer bits and F represents the fractional bits.  With this 

representation the range of numbers is  [2− 𝐼 , 2𝐼[ ,  and a step size (resolution) of 2−𝐹. 

 

Figure 3.16 fixed point data representation 

3.3.1. Fixed point multiplication 

Fixed-point multiplication is the same as 2's compliment multiplication but requires 

the position of the "point" to be determined after the multiplication to interpret the correct 

result.  The determination of the "point's" position is a design task.  The actual 

implementation does not know (or care) where the "point" is located.  This is true because 

the fixed-point multiplication is exactly the same as a 2's complemented multiplication, no 

special hardware is required. Consider the following illustrative example assuming the 

multiplicand has WL = 8, I=3 and F=4, and the multiplier has WL = 8, I=5 and F=2, 

Multiplicand = 6.5625|decimal = 0 110 1001|fixed point representation 

Multiplier = 4.25|decimal = 0 00100 01|fixed point representation 

            01101001 

x         00010001 

 _____________ 

            01101001 

          00000000  

        00000000   

      00000000   
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    01101001     

   00000000       

 00000000 

00000000  

 -------------------- 

000011011111001   = 0000011011.111001 = 27.890625 

 

The number of bits required for the product (result) is the multiplicand's WL + the 

multiplier's WL. Note that the fractional bits in the product are equal to the multiplicand’s 

F + the multiplier’s F. 

3.3.2. Fixed point addition 

Addition is a little more complicated because the points need to be aligned before 

performing the addition.  Using the same numbers from the multiplication problem, 

            0110.1001  

    + 000100.01  

       ____________ 

       001010.1101 = 10.8125 

When adding (subtracting) two numbers an additional bit is required for the result.  When 
adding more than two numbers all of the same WL width, the number of bits required for 

the result is 𝑊𝐿 = 𝑊𝐿 + 𝑙𝑜𝑔2 ( 𝑁 𝑥 𝑊𝐿) +  𝑙𝑜𝑔2 (𝑁). where N is the number of 

elements being summed. 

3.4. Software Accuracy and preprocessing   

A typical CNN is composed of two components: a feature extractor and a classifier. 

The feature extractor is used to extract the features of the input feature map by filtering it 
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with different filters. The feature extractor may consist of several convolutional layers 

followed by optional subsampling layers, for example the chosen network has five 

convolutional layers each layer has different number of filters with different sizes each filter 

concerned to extract certain features of the input (edges, corners, lines, etc. …...). The 

extracted features are then fed to the classifier, which is usually an artificial neural network, 

which is responsible to decide the category that the input image may belong to, according 

to the matching between the input image and each category in the dataset. The chosen 

network has three fully connected layers followed by soft-max, the function of each layer 

is discussed in section 3.2. 

The chosen dataset for testing the network performance is subset of ImageNet, 

which was used in ILSVRC, it is a large dataset consist of 1000 categories and roughly 

1.2 million training images, 50,000 validation images, and 150,000 testing images [25].  

The network employs two paths, a feedforward path for recognizing the input 

image and a backward path for training. Before starting classifying the dataset the network 

must be trained on the training set to tune the network parameters, the training set of 

ImageNet has 1.2 million image, so training the network may take few months. Typically, 

the training process is done offline and the forward path only implemented on the FPGA. 

In order to save the training time on the software, a pretrained model on ImageNet from 

Caffe [27] is used, where the network parameters were available. 

The network performance was tested by calculating the accuracy on the validation 

dataset of the ImageNet that contains 50,000 validation images. The test set of ImageNet 

wasn't used as the test set labels are available only for the competition submissions, 

although ILSVRC-2010 test set labels are available, it contains 150,000 testing images, 

which may take a month to classify it. 

3.4.1.  Accuracy  

The accuracy of the network was tested on the cross-validation dataset from [28] 

using the open source MATLAB implementation of the forward path from GitHub [29]. The 

MATLAB implementation convert the input picture from MATLAB representation (RGB) to 

Caffe representation (BGR) and provide the preprocessing required for the input image 

and the implementation of each layer in the network.  
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The accuracy was measured on the first 1500 images from the data set for different 

number of bits represent data across the network.  

 For the ideal representation of the data using 64 double data type the accuracy 

was about 57%. 

 After replacing the power of normalization layer (β) ( from 0.75 to 1)  accuracy 

was about 53.67 % 

 For 32-bit fixed point with 12-bits for integer and 20-bits for fraction part the 

accuracy reached 53.6%.  

 For 16-bit fixed point with 12-bits for integer and 4-bits for fraction part the 

accuracy reached 53.5%. 

3.4.2.  Preparing data for Hardware implementation 

In order to prepare the input data for the hardware simulation the data was required 

to fit into Block Ram which implies perform the operation on one input at a time, therefore 

the input data is unrolled from 3-D (RGB) representation to the 1-D representation to fit 

into the input ram. Typically, the input image after preprocessing is adjusted to 227x227x3, 

after the unrolling the generated output is of size 154587x1.The unrolling of data was done 

across the depth Figure 3.17 shows the unrolling of 3x3x3 input image as an example for 

simplicity. Figure 3.18 shows the flow to generate the input data to from MATLAB to the 

hardware simulation.   
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Figure 3.17 Unrolling the input data from 3-D to 1-D 

 

Figure 3.18 Data generation from MATLAB to Hardware simulation 

3.5. Summary 

This chapter provides information on the chosen CNN for the project which is Alex-

Net having a quick overview on its accuracy for the top-5 and top-1 results using 

ImageNet, the number of its layers which is 13 layers (5 Convolutional layers, 3 Max 

Pooling layers, 3 Fully Connected layers and 2 Local Normalization layers) and their 

arrangement. It also shows the effect of changing the number of bits of the fixed point data 
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propagating between layers on the accuracy and the chosen number of bits based on its 

effect on accuracy and compromising this effect with the number of resources utilized by 

the design. 
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Hardware Methodology    

4.1. Proposed approach  

4.1.1. Design 

Our proposed approach is mainly based on serving convolutional layers as a 

previous study [18] proved that convolution operations will occupy over 90% of the 

computation time. It applies: 

1- Usage of local memory hierarchy. 

2- Data reuse technique; Feature map reuse. 

3- Data flow techniques; (1) Output stationary and (2) No local reuse. 

4- Fixed point operations and quantization. 

Each point will be illustrated clearly in the rest of this section. 

Usage of local memory hierarchy. 

This design considers only one picture to be classified not involving a real-time 

sequence of image, that must be clear before involving the design techniques. All data 

types (weights, bias, one picture and output data of each layer) are stored in individual 

small local memories. Each filter kernel of weights is stored separately in caches and 

proposed to remain fixed in the whole design, and the picture is also stored in separate 

cache. Then output cache of each layer is needed and it represents the input cache of 

each layer.  

So the CNN won’t handle the external (off-chip DRR) memory except in loading 

state at the beginning and will store the data in these mentioned caches. That may 

introduce large area, but also will decrease dramatically the energy consumption, as low-

level memories (caches) which have much smaller area than the DRR memory consumes 

much lower energy consumption in read and write operations. 
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Data reuse technique: Feature map reuse 

For feature map reuse, multiple filters are applied to the same feature map, so the 

input feature map activations are used multiple times across filters. So the data comes 

from feature maps won’t be recalled again, as all filters are working parallel on this feature 

map.    

Data flow techniques 

Output stationary (OS) 

The partial sums are accumulated inside each PE (processing element) till the 

output is ready and then store the final result in the output cache, which helps to further 

reduce the energy consumption of accessing partial sums.  

No local reuse (NLR) 

Memory hierarchy lowest level is the caches level, no register files inside the PEs 

and all the on-chip area is allocated to the caches to maximize the storage capacity. 

Fixed point operations 

All operations through the CNN are fixed point operations, so inputs are 16-bit fixed 

point numbers and after applying the operations the output quantized to 16-bit also and 

then stored in output caches. 

Figure 4.1 illustrates the mentioned design points on the first convolutional layer. 

One common cache for input feature map outputs one data pixel each time corresponding 

to control unit address, applied to the parallel PEs inputs. Each filter kernel has individual 

cache outputs one weight element corresponding to the control unit address, applied to 

the second input of the parallel PEs.  These data were stored as 16-bit fixed point numbers 

in caches. Each PE works parallel to another PEs and applies convolution fixed point 

operation and accumulates in internal register “363 times for Conv 1”, till the output is 

ready. The output is quantized to 16 bits. Then the final output is store in parallel output 

caches corresponding to each PE. The convolution PEs will be discussed in details in 

section 4.2. 
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Figure 4.1 Hardware design over view 

4.1.2. Comparative study 

Authors of [18] discusses a comparative study between 3 different data flows; (1) 

Weight stationary, (2) Output stationary (A, B and C) and (3) Row stationary. The results 

were as shown in Figure 4.2. (a) showing that row stationary data flow gave the best 

performance in terms of energy efficiency. Our design has a lowest DRAM energy as it 

gets the data only one time from DRAM. It has relatively small buffer only for the bias 

shown in Figure 4.2 (a) so also a lowest buffer energy consumption. ALU equivalent to 
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the operation energy consumption as is the same as these data flows. No RF in our design 

only one register inside each PE. But our design introduces caches energy consumption 

which is relatively small as filter caches size is small and feature maps are reused and 

output cache won’t be accessed unless the output is ready (no partial sums access times). 

By comparing our design to results in Figure 4.2 (b), pixels will have the lowest 

energy consumption because of feature map reuse. Partial sums also the lowest energy 

consumption as we accumulate in internal register. weights are accessed more efficiently 

in row stationary data flow, but also in our design the local memory level will result in 

relatively lower or quite the same level of the row stationary weight-energy consumption. 

 

Figure 4.2 comparative study of energy consumption for different data flows 

4.2. Convolution layer 

Convolution layers form the crux of the CNN network, so it will be considered first 

to be explained. The mechanism of convolution layers as explained in section 3.3., is to 
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perform convolution of the input feature map with the layers’ kernels with certain 

parameters as the stride, zero padding size, input feature map size, output feature map 

size and number of kernels which are different from one convolution layer to another (5 

convolution layers), as shown in Figure 4.3. 

 

Figure 4.3 convolution layers in Alex-Net  
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Table 4-1 Alex-Net Convolutional Layers parameters 

Layers Input size  Output 

size  

Number 

of 

filters  

Filter size Stride Zero 

pad 

Group 

Conv1  227x227x3 55x55x96 96 11x11x3x96 4 0 1 

Conv2 27x27x96 27x27x256 256 5x5x48x256 1 0 2 

Conv3  13x13x256 13x13x384 384 3x3x256x384 1 1 1 

Conv4 13x13x384 13x13x384 384 3x3x192x384 1 1 2 

Conv5 13x13x384 13x13x256 256 3x3x192x256 1 1 2 

 

As shown in Table 4-1, the convolution layers are the same expect for the 

parameters and the groups so the Conv1 layer will be explained in details. 

Hardware implementation of Conv1 layer: 

 The building unit is the parallel engine (PE) which is a multiplier and an 

accumulator as shown in Figure 4.4 

 

Figure 4.4 PE internal structure 
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 Then parallel PEs are used, number of PEs= number of filters.  

For Conv1 layers, the number of parallel PEs=96. 
So, the filters outputs are accumulated in parallel, while each filter convolution is 
done serially. 
Numbers of cycles taken for the Conv1 layer output to finish=number of outputs 
for each filter* number of cycles taken for each filter= 55*55*11*11*3. 

 

Figure 4.5 : Hardware structure of the parallel PEs, control unit, output caches, weights caches. 

 

 

Convolution layer 

Input feature 

map: one pixel 

from input cache 

PE 1 

PE 2 

PE 96 

Control unit 
Input 

feature 
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cache 

1-Read 

Address 

2-read 

enable 

Buffer 1 of 

output1 

Buffer 96 

Buffer 2 

Cache 1 of 

weights 

Cache 96 

Cache 2 

1-Read Address 

2-read enable  

Output cache 

In a sequential manner 

outputs will be stored 

Control unit: 

Addresses and write 

enable 

Control signals: 1- Enable PEs 

2- Enable outputs from the PES on 

the output ports 

3- start and clock signals 
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After the convolution output is ready, a bias is added to each filter output then the 

result passes through RelU layer (as discussed in section 3.2.3) and quantized into 16-

bits and stored to be proceeded in the next pooling layer. 

4.3. Pooling 

After discussing the convolutional layer, the second layer is pooling. Figure 4.6 

shows the basic building block of the pooling layer which mainly depends on comparing 

each input in the kernel with the previous inputs and keeping the maximum number in the 

register. 

 

Figure 4.6 pooling engine 

The main target of the project is acceleration of a network so parallelism is used 

to speed up the operations required from the network. The main idea of parallelism in this 

layer is using parallel engines of the building block corresponding to the depth of the input 

which means that each parallel engine is responsible for the output of a certain depth. 

Each PE has a separated input and output cache. 
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Figure 4.7 parallel engines for pooling layer 

 

 In Alex-Net, there exists three pooling layers so in the following table here are the 

used parameters for each single layer: 

Table 4-2 Alex-Net Pooling Layers parameters 
 

 

 

  

layers Pool1 Pool2 Pool5 

Number of Parallel 

Engines 

96 256 256 

Input Size of each 

Parallel Engine 

55*55 27*27 13*13 

Cache size Before 

Parallel Engine 

4K * 4 bytes 1K * 4 bytes 256 * 4 bytes 

Output Size 

of each Parallel 

Engine 

27*27 13*13 6*6 

Cache Size after 

Parallel Engine 

1K * 8 bytes 256 * 8 bytes 64 * 8 bytes 

Kernel Size 3 3 3 

Stride 2 2 2 
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4.4. Local Response Normalization layer (LRN) 

Recall from Section 3.2.5 equation (1) that shows the normalization functionality; 

normalizing around the local neighborhood of the excited neuron and make it even more 

sensitive as compared to its neighbors. What is going to be done now, introducing the 

hardware blocks that would calculate this equation. 

4.4.1.  Computing engines 

Each process in equation (1) will be defined by hardware block. 

Summation of squares 

That could be done by a tree of adders that adds the input squares as shown in 

Figure 4.8. Recall that the sum runs over n (n=5) adjacent kernel maps at the same spatial 

position, so 3 adders only are needed and will be reused. Finally, multiply by α and add k 

to get the denominator result of equation (1). 

 

Figure 4.8 Norm Square and tree adder engine 
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Fixed point division 

The idea is to use 2 integer divisions as illustrated in; the first one calculates the 

integer part and the second calculates the fraction part, then both parts concatenated to 

obtain the final result. Dividend and divider are fixed point numbers with; (1) S is 1 bit 

represents the sign, (2) I bits represents the integer part and (3) F bits represents the 

fraction number, the fixed point division result is also representing in the same format. In 

this network divider always larger than one, so the fixed point division is designed to work 

properly only when the divider is larger than one and any other values won’t act properly. 

Sign bit is considered but actually no need for it because the Pool and RELU output is 

always positive. 

 

Figure 4.9 Division engine in Norm layer 

4.4.2. Controlling structure 

Figure 4.10 illustrates the controlling structure; (1) multiple input caches are 

needed for LRN as it needs to get the whole depth in one buffer to be able to apply 

squaring process and the tree of adders, so number of input caches in this design is equal 

to number of elements of the depth of the previous Pool layer to the LRN, (2) addressing 

unit is needed to access the caches parallel and it’s controlled by the control unit using 
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the start Norm signal, (3) transition module is needed to get the n (recall n=5 ) elements 

of the summation by calculating the start and end position of the summation, (4) after 

computing each output element store it in one cache if the following layer is group 1 Conv 

(like Conv 2) or 2 caches if the following layer is group 2 Conv (like Conv1). 

 

Figure 4.10 Control structure for Norm layer 
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4.5. Fully Connected Layer 

After discussing the main three layers that are repeated in the first five super 

layers, the last layer is fully connected layer. Figure 4.11 shows the basic building block 

of the fully connected layer which is similar to that of the convolutional layer .It mainly 

depends on multiplying the input with the corresponding weight in the weight matrix and 

accumulates the result in the register. 

 

Figure 4.11 FC engine 

The main operation of the Fully Connected layer as described before is multiplying 

a 2-Dimensional matrix of weights with an array of inputs so each output from the fully 

connected layer is due to the multiplying of a row from the weights’ matrix with the inputs 

vector as illustrated in the Figure 4.12 .  

  

Figure 4.12 FC operation 

The main target of the project is acceleration of a network so in this layer uses 2 

techniques to speed up its operations: 
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1.  Parallelism 

The main idea of parallelism in this layer is using parallel engines of the building 

block corresponding to the number of rows of the weights` matrix but due to the large 

number of rows only part of the rows is taken in parallel and after getting the outputs 

corresponding to these rows another rows are taken as illustrated in Figure 4.13 . 

 

 

Figure 4.13 FC parallelism 
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2.  Pipelining 

For more speeding up, pipelining is used. In the layer`s design there is a cache for 

each PE at its weight port and only one cache for all the PEs at the output. So pipelining 

occurs in the weights’ cache as illustrated in Figure 4.14 . 

 

Figure 4.14 pipelining inside FC caches 

In Alex-Net, there exists three fully connected layers so in the following table here 

are the used parameters for each single layer: 
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Table 4-3 Alex-Net FC Layers parameters 
 

 

For different design using different number of PEs can be given as: 

Number of serial loading of new rows to the PE = 

𝐎𝐮𝐭𝐩𝐮𝐭 𝐒𝐢𝐳𝐞 𝐨𝐟 𝐞𝐚𝐜𝐡 𝐏𝐚𝐫𝐚𝐥𝐥𝐞𝐥 𝐄𝐧𝐠𝐢𝐧𝐞

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐏𝐚𝐫𝐚𝐥𝐥𝐞𝐥 𝐄𝐧𝐠𝐢𝐧𝐞𝐬
 

Number of cycles for executing any fully connected layer = 

Number of serial loading of new rows to the PE x Input Size of each Parallel Engine. 

  

layers FC6 FC7 FC8 

Number of Parallel Engines 64 64 25 

Input Size of each Parallel Engine 9216 4096 4096 

Output Size of each Parallel Engine 4096 4096 1000 

Cache size Before Parallel Engine 16K * 2 bytes 4K * 2 bytes 4K * 2 bytes 

Number of serial loading of new 

rows to the PE 

64 64 40 
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4.6. Reshape function 

The MATLAB function Reshape is used as a transition between the Pooling 5 layer 

and the first fully connected layer(FC6) to convert the 3D matrix output from the operations 

from Conv1 layer to pooling 5 layers to 1D column matrix to be multiplied by the fully 

connected layer weights. 

 Input matrix dimensions= 6*6*256. 

 Output matrix dimensions= 9216*1. 

Hardware implementation: 

The memories used to store the output of pooling 5 layer is implemented as cache 

array, the reshape output is stored in a cache of size 216 *16 bits. The main idea is address 

control, to output the whole depth once and store each location in the desired position. 

Example: location 0 from the output caches, gives 256 value, value 0 is stored in address 

0 in the reshaped caches, while value 1 is stored in address 36 and so on. Location 6(1st 

column in each depth), gives 256 value, value 0 is stored in address 1, value 2 is stored 

in address 37. Finally, the output cache is reshaped to fit the next fully connected layers. 

 

Figure 4.15 Reshape operation 
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4.7. Summary 

This chapter provides a discussion on the project’s chosen design with the details 

of how each layer of the 5 main layers of Alex-Net is implemented, and accelerated using 

two main techniques, parallelism of resources and pipelining inside some layers, tabulates 

the different layers of the same type to show the slight difference between the 

implementation of each one and the other.  
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Synthesis and implementation 

In this chapter the synthesis and implementation results are shown to demonstrate 

the FPGA used resources, timing and power. 

5.1. Synthesis 

After synthesizing the design on FPGA Virtex 7 using the VIVADO synthesis tool, 

Figure 5.1shows the utilization of the resources.  

 

Figure 5.1 Post synthesis utilization summary 
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Figure 5.2 shows how each module is synthesized and the number of its resources. 

 

Figure 5.2 Synthesis utilization report 

 

Analyzing the previous results of the main modules: 

 Module 1(Data input memory)  32 BRAM each of size 36Kbit. 

 

 Module 2(weight array)  48 BRAM each of size 18 Kbit 

The weight array is composed of 96 weight cache each occupy 0.5 BRAM, and 
1536 LUTs for the 16*96 output wires. 

  Module 3(Convolution 1)  96 DSPs for the 96 parallel engines used in the MAC 

operations, 3072 slice registers one for each output. 

 Module 4 (bias adder)  1536 slice registers for the 16*96 outputs. 

 Module 5 (Output Cache array)  192 BRAMS each of size 36Kbit where each 

cache utilizes 2 BRAMS.  

 Module 6 (Pool 1)  3072 slice registers one for each output having 16*96 Inputs 
and outputs. 

 Module 6(Cache after Pool array)  the same as weight array. 

 Module7 (Norm1)  7 DSPs used for the squaring of the elements corresponding 
to the equation. 
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5.2. Implementation 

After implementing the design on the previous mentioned Virtex 7 FPGA using the 

VIVADO implementation tool, Figure 5.3 shows the utilization of the resources. 

 

 

Figure 5.3 Post implementation utilization summary 
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The following figure shows how each module is placed and routed on Virtex 7 FPGA, and 

the number of its resources. 

 

Figure 5.4 Implementation utilization report 

Analyzing the previous results, same as the utilization report of the synthesized design 

but less resources specially LUTs due to optimization option. 

Timing analysis results: 

The following figure shows the setup and hold time slack, which are equal to zero which 

means the timing constraints are met at clock frequency 100 MHz 

 

Figure 5.5 Design timing summary 

Power analysis: 

The following two figure shows the power consumption of the super layer1 on the Virtex 7 

FPGA, total power on chip = 1.141 watts. 
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Figure 5.6 Power report summary 

 

5.3. Summary 

This chapter provides the results of the synthesis and implementation of super 

layer1 in Alex-Net, as the kit can`t fit all the design because it`s a first trial design which 

would be modified afterwards, using Vivado. Also it shows the number of resources 

utilized on the chosen kit, which is Virtex 7, the timing constraints and the power 

consumption of the design. 



Chapter 6 
Optimization 

63 

  
Optimization  

In order to minimize the hardware needed across the network, the power 

consumption and minimize the time required for the classifications, optimization 

techniques as pipeline between network stages, replacing DSP multiplier by power 

efficient multiplier were used to achieve better performance from aspect of time, power 

and area. This section discuss briefly the optimization technique used and its algorithms, 

then shows the area, power and time reduction achieved by applying these techniques. 

6.1. Pipeline approach  

As the FPGA implements the logic for all the operations even if it doesn’t work 

simultaneously.  The approach is to rearrange the operations into a sequence (rearrange 

the algorithm into a pipeline), where each stage can operate simultaneously with the other 

stages.  Pipelining tends to be faster than the state machine approach for accomplishing 

the same algorithm and it can even be more resource efficient [30]. 

The difficult part of a digital logic pipeline is that the pipeline runs and produces 

outputs even when the inputs to the pipeline are not valid as shown in Figure 6.1. 

Therefore, the algorithm must handle the signaling associated with pipeline logic.    

 

Figure 6.1 Data flow between pipeline stages 



Chapter 6 
Optimization 

64 

6.2.       Pipeline between the convolution and pooling 
stages  

Applying the pipeline approach between the convolution and pooling stages as 

they are the first two stages in the algorithm. The rest of this section considers Conv1 and 

Pool1 in Alex-Net as an illustrative example for simplicity.  

Typically, in Alex-Net, Conv1 and Pool1 parameters are (kernel size=11x11x3, 

output size = 55x55x96), (kernel size=3x3, stride=2, output size=27x27) respectively as in 

Table 6-1. Which implies that, for the first output row of the pooling stage can be executed 

after the first three rows in Conv ‘s output is completed. For the second row of the pooling 

can be executed after the fourth and fifth rows of Conv are completed and so on as shown 

in Figure 6.2. 

Figure 6.3 shows the replacement in caches for the Conv output to reduce the 

Conv output cache size, as the Conv outputs are not needed after the pooling is done. 

- As the algorithm used in the design apply the convolution sequentially 

across the filter, each output in Conv1 require 363 cycle (11x11x3), similarly for the pooling 

each output needs 9 cycles (3x3), to produce a complete output row of pooling1 it takes 

(27x9= 243 cycle) which less than the number of cycles needed for one output of the 

convolution layer, hence pooling1 can operates during the convolution output is computed. 
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Figure 6.2 Execution of convolution and pooling stages in pipeline 

 

Figure 6.3 Replacement in Conv1 output cache 
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Table 6-1 Layer 1 parameters  

layer Conv1 Pool1 

Input size 227x227x3 55x55x96 

Output size  55x55x96 27x27x96 

Channels 96 96 

Filter Size 11x11x3 3x3 

Stride 4 2 

Number of cycles for single output 11x11x3 =363 3x3=9 

Number of cycles for row output 55x363= 19965 27x9=243  

Latency  0 55x3x363 for the first output row  

55x2x363 for the remaining output rows 
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6.3. Pipelined design synthesis 

Super layer 1 (Convolution 1, pooling 1, normalization 1) is synthesized and 

implemented to verify that the pipelined approach reduces the needed resources and also 

reduces the power and time needed to execute the layers’ operations. 

The design is synthesized on the previous mentioned Virtex 7 FPGA using the 

VIVADO synthesis tool. Figure 6.4 shows the percentage of the utilized resources from 

the total FPGA resources. 

 

 

Figure 6.4 Post synthesis utilization summary 
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The previous figure shows that the utilization of resources is reduced compared to the 

original design especially in the BRAMs utilization which decreased from 22% to 9% which 

a significant reduction is saving the area and power as will be shown in the design 

implementation results. 

Figure 6.5 shows the utilization report of the pipelined design, declaring how each module 

is synthesized and number of resources used by each module. 

 

Figure 6.5 Implementation utilization report 

 

Figure 6.6 LUTs resources of output memory 

Analyzing the previous results, all modules are synthesized as before in the 

original design. The noticeable difference is the utilization of the memory used to store the 

convolution output, in the original design all the output of the convolution layer is stored 

then the pooling operation starts, in the pipelined approach not all the outputs are stored, 

only the first 3 rows are stored in a dual port RAM and immediately the pooling operation 
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starts and when finished the dual port RAM is reused to store the next three rows and so 

on, so a large portion of the memory is saved. 

Comparing between the memory resources utilization, the output cache in the 

original design which takes 192 BRAMs each of size 36Kbits, and in the pipelined design 

which takes 96*88= 8448 LUTs as memory shown in Figure 6.6, 88(28 * 16 bits) LUTs to 

save 3 rows for each filter output, the pipelined approach uses less memory resources. 

6.4. Pipelined design implementation 

The pipelined design is implemented on the Virtex 7 FPGA, to check the utilization 

after the place and route phase, power and timing summary. 

Figure 6.7 shows the percentage of the utilized resources from the total FPGA resources 

after implementing the design. 

 

 

Figure 6.7 Post implementation utilization summary 
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Figure 6.8 shows the utilization report of the pipelined design, declaring how each module 

is implemented and number of resources used by each module. 

 

Figure 6.8 Implementation utilization report 

Analyzing the previous results, same as the utilization report of the synthesized design 

but less resources specially LUTs due to optimization option. 

Timing analysis results: 

Figure 6.9 shows the setup and hold time slack, which are equal to zero which means the 

timing constraints are met at clock frequency 100 MHz 

 

Figure 6.9 Holding slack for pipelined design implementation 

Power analysis: 

Figure 6.10 shows the power consumption of the super layer1 on the Virtex 7 FPGA, total 

power on chip = 1.071 watts which is less than the power reported in the original design 

as the resources decrease specially the BRAMs which consumes 0.179 W in the original 

design, and 0.06 W in the pipelined design. 
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Figure 6.10 Power report summary 

6.5. Summary  

This chapter discusses a modification on the design discussed in chapter 4 based 

on pipelining, shows how this affects the number of resources and the simulation time 

emphasizing the target of the project which is accelerating Alex-Neton FPGA. Also it 

provides detailed results of synthesis and implementation of super layer 1 in Alex-Netafter 

this modification, to verify that the pipelined approach reduces the needed resources and 

also reduces the power and time needed to execute the layers’ operations. 
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Results  

7.1. Verification of RTL functionality  

Back to the original purpose of the CNN is to predict the image and the object 

inside it, so the complete RTL network is tested by multiple images from the IMAGNET 

validation data set and compared to the MATLAB prediction. 

Figure 7.1 shows a sample image from the tested images: which is harvester (reaper) 

 

Figure 7.1 Sample image from dataset 

Figure 7.2 shows the MATLAB results predicted correctly with maximum soft-max output 

16.1635 and index predicted 596. 
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Figure 7.2 Software classification for input image 

Figure 7.3 shows the RTL behavioral simulation results which is similar to MATLAB results 

with the output predicted correctly, index 595(starting from 0 index) and soft-max output 

15.8125. 

 

Figure 7.3 RTL classification for input image 

Summarizing the comparison between the results of MATLAB and RTL simulation: 
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7.2. Timing comparison between software and RTL 

Table 7-1 shows the time taken by each layer to be executed by MATLAB (CPU) 

and on FPGA by the implemented design. It's clear that the bottleneck in simulation time 

was convolution layer, therefore it was the first design consideration to be accelerated and 

reduce it's time, the other layers were accelerated but the convolution has significant 

contribution in decreasing simulation time.   

Table 7-1 Simulation time of Software and RTL 

Layer 
MATLAB  

simulation time (in S) 

FPGA  

virtual simulation time 

Conv1 7.8  11 ms 

Pool1 0.37 65.6 μs 

Norm1 1.83 700 μs 

Conv2 7.9 8.7 ms 

Pool2 0.3 1690 ns 

Norm2 1 432.64 μs 

Conv3 3.2  4 ms 

Conv4  1.64 2.8 ms 

Conv5 1.04 2.9 ms 

Pool5 0.01 3240 ns  
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reshape 0. 000018 3.4 μs 

Fc6 0.37 6ms 

Fc7  0.019 2.66 ms 

Fc8 0.0074 1.68 ms 

Soft-max 0.04 20 ns 

 25.5 s 40.25 ms 

 Comparison with GPU is summarized in Table 7-2, the execution time 

depends on hardware resources available of the platform.  

Table 7-2 Simulation time of Alex-Neton different GPUs 

GPU Forward (ms) 

Proposed Architecture  40.94 

GTX 1080 Ti 4.31 

Pascal Titan X 5.04 

Pascal Titan X 5.32 

GTX 1080 7.00 

Maxwell Titan X 7.09 

GTX 1080 7.35 
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Maxwell Titan X 7.55 

7.3. FPGA results  

A sample from the accelerated design is implemented on the ZYNQ 702 board to 

check the operation on real time hardware. The chosen part is the first kernel from the 1st 

convolution layer and pooling operation on its output. 

Figure 7.4 shows a sample of the pooling output from the real implemented design 

in the SDK XILINX tool. 

 

Figure 7.4 FPGA output for first super layer 

Comparing the FPGA results with MATLAB results, same results are obtained. For 

example: the first location in SDK is 5c (hex) =5.75 and from MATLAB 5.746. 

Therefore, the results in MATLAB, RTL, and FPGA are matched and the output is 

predicted correctly. 
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7.4. Summary  

This chapter provides the results of the simulation of the whole design on Vivado 

and discusses the simulation timing results on Matlab and Virtual FPGA (Behavioral 

Simulation) comparing between them showing how the design is accelerated in RTL 

design compared to that running on software.  
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Conclusion and future work  

8.1. Conclusion  

In this thesis we demonstrate the acceleration of the forward path of a pre-trained 

Alex-Net on FPGA, introducing the parallelism and pipeline techniques that can be used 

to accelerate the network, and the hardware architecture used to implement it.  

The proposed architecture was discussed in details. The parallelism and pipelining 

techniques to accelerate the network were illustrated clearly and their contribution to 

achieve better performance from area and power consumption point of view. When 

evaluating performance, it is clear that the GPU is currently most efficient in terms of 

execution time and throughput, though the FPGA is best in terms of power consumption 

and pipelining opportunity. 

In closing, its believed that this work achieve the desired objective by showing that 

FPGAs can be used as a practical acceleration platform for deep convolutional neural 

networks. While, in its current state, this work does not convince deep learning 

practitioners to use FPGAs instead of GPUs, it's believed that the directions which make 

this reality have been identified. 

8.2. Future work   

8.2.1. Introduction   

Future work concerns deeper analysis of particular mechanisms, new proposals 

to try different methods, or simply curiosity. This thesis has been mainly focused on 

parallel acceleration to speed up as possible without giving enough attention to (1) 

Pipelining on the Network Level, (2) using SD Card on FPGA, (3) Increasing the 

parallelism according to the FPGA available resources, (4) Improving the network 

accuracy using the pre-layer quantization, (5) Pruning the network to reduce the power 

and increase the throughput, (6) Computational skipping,(7)Introducing time sharing 

technique, and (8) Introducing PDR technique. And also, this thesis considers only one 
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picture to be processed which is saved in cache on board, so continuous input is not 

introduced. These points left for the future due to lack of time. 

8.2.2. Pipelining on the Network Level  

Applying pipeline in Conv1 & Pool1 lead to reduction in hardware utilization. Same 

approach can be applied across the network layers. The main idea is to pass the minimum 

data needed between layers to make the following layer start execution, so no layer has 

spare time as possible. It is expected to increase the overall network throughput and 

reduce the hardware resources significantly. 

8.2.3. SD Card  

Instead of initializing some ROMs in the design with the weights, bias values or the 

input image values which would take in some layers many number of code lines and the 

simulation tools won’t be able to compile them, an alternative solution is using the SD card 

on the FPGA kit ,containing all the files of all the needed  values, which would send the 

data before the start of the execution of the network operations to the targeted ROMs 

which would reduce the number of code lines but will take some time at first for data 

transfer due to its small bus width. 

8.2.4. Increase the parallelism according to the FPGA available 
resources  

As the network can be accelerated by increasing the number of parallel engine 

that can work simultaneously, the limitation on the available FPGA resources (Block 

RAMS, DSP slice, CLB). For example, considering Conv1 to illustrate: 

the filter size = 11x11x3, and there are 96 filters. Typically, the number of parallel engines 

used in current design = 96, each engine corresponds to one depth of output. Therefore, 

the convolution operation for one output take 11x11x3=363 cycle. To speed up the 

convolution operation we can use parallel multipliers in single depth i.e. 11x11 multiplier 

for each depth, hence the convolution output is done in 3 cycles.  
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8.2.5. Improve the network accuracy using the pre-layer quantization  

As the accuracy was degraded after quantizing the network from (64-floating point) 

to (16-fixed point with 12 bit for integer and 4 bits’ fractions for input data and 1 bit for 

integer and 15 bits’ fractions for weights) which lead to decreasing in accuracy (from 53.4 

to 52.7). The Pre-layer quantization can improve the network accuracy by quantizing each 

layer separately which lead to better results. 

8.2.6. Pruning the network to reduce the power and increase the 
throughput  

By eliminating all relatively small weights of neurons as they have insignificant 

contribution to the output. By applying pruning algorithms to rank the neurons in the 

network according to how much they contribute to the output, then remove the low ranking 

neurons from the network, resulting in a smaller and faster network therefore high 

throughput can be achieved. 

8.2.7. Computational skipping  

By skipping the operation on zero input in the network. As all the negative outputs 

are set to zero after RELU layers which generate sparsity in the network, therefore the 

operation on zero input can be skipped to reduce the power consumption across the 

network.  

8.2.8. Time sharing   

By using the same hardware for all the super layers (Conv– Pool– norm), and 

differentiate between their operation in time using different states for each layer. 

8.2.9. PDR  

By reconfiguring hardware for each layer, therefore can run all the network on one 

FPGA. 



Chapter 8 
Conclusion and future work 

81 

References 

[1] M. Bojarski et al., "End to End Learning for Self-Driving Cars", 2016. 

[2] K. He et al., "Deep Residual Learning for Image Recognition", 2016. 

[3] "ImageNet Large Scale Visual Recognition Competition (ILSVRC)", Image-net.org, 
2017. [Online]. Available: http://www.image-net.org/challenges/LSVRC/. 

[4] K. Simonyan and A. Zisserman, "VERY DEEP ConvOLUTIONAL NETWORKS FOR 
LARGE-SCALE IMAGE RECOGNITION", 2014. 

[5] H. Li et al., "Acceleration of Deep Learning on FPGA", 2017. 

[6] M. Peemen et al., "Memory-Centric Accelerator Design for Convolutional  

[7] "Learning about deep learning", Recode, 2017. [Online]. Available: 
https://www.recode.net/2016/5/4/11634228/learning-about-deep-learning.  

[8] "FPGA Acceleration of Convolutional Neural Networks - Nallatech", Nallatech, 2017. 
[Online]. Available: http://www.nallatech.com/fpga-acceleration-convolutional-
neural-networks/.  

[9] B. Moons et al., "Energy-Efficient ConvNets Through Approximate Computing", 2016. 

[10] D. Patterson et al., Artificial neural networks. Singapore: Prentice Hall, 1996. 

[11] Y. Qiao, J. Shen, T. Xiao, Q. Yang, M. Wen and C. Zhang, "FPGA-accelerated deep 
convolutional neural networks for high throughput and energy efficiency", 
Concurrency and Computation: Practice and Experience, vol. 29, no. 20, p. e3850, 
2016. 

[12] C. Zhang et al., "Optimizing FPGA-based Accelerator Design for Deep Convolutional 
Neural Networks", 2015. 

[13] "Deep Learning 101 - Part 1: History and Background", Beamandrew.github.io, 
2018.[Online].Available:https://beamandrew.github.io/deeplearning/2017/02/23/d
eep_learning_101_part1.html. 

[14] "alexnet_tugce_kyunghee.pdf - ImageNet Classification with Deep Convolutional 
Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey E Hinton Presented", 
Coursehero.com, 2018. [Online]. Available: 
https://www.coursehero.com/file/24481166/alexnet-tugce-kyungheepdf/. 
[Accessed: 11- Jul- 2018].Neural Networks?", 2017. 

 

http://www.image-net.org/challenges/LSVRC/
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html


Chapter 8 
Conclusion and future work 

82 

[15] T. ARTICLES, N. PRODUCTS, G. ELECTRONICS, C. PROJECTS, E. MICRO, V. 
Lectures, I. Webinars, I. Training, P. Search, T. DB, B. Tool, R. Designs and S. 
H.L., "Purpose and Internal Functionality of FPGA Look-Up Tables", 
Allaboutcircuits.com, 2018. [Online]. Available: 
https://www.allaboutcircuits.com/technical-articles/purpose-and-internal-
functionality-of-fpga-look-up-tables/. [Accessed: 11- Jul- 2018]. 

[16] Indico.desy.de, 2018. [Online]. Available: 
https://indico.desy.de/indico/event/7001/session/0/contribution/1/material/slides/0
.pdf. [Accessed: 11- Jul- 2018]. 

[17]  E. Nurvitadhi et al., "Can FPGAs Beat GPUs in Accelerating Next-Generation 
Deep Neural Networks?", 2017. 

[18] V. Sze et al., "Efficient Processing of Deep Neural Networks: A Tutorial and Survey", 
2017. 

[19] Y. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss : An Energy-Efficient 
Reconfigurable Accelerator for Deep Convolutional Neural Networks Future of 
Deep Learning Recognit ion DCNN Accelerator is Crucial • High Throughput for 
Real-time,” IEEE Int. Solid-State Circuits Conf. , Feb. 2016. 

[20] "An Intuitive Explanation of Convolutional Neural Networks", the data science blog, 
2018. [Online]. Available: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-
convnets/. [Accessed: 10- Jun- 2018]. 

[21] "Understanding Convolutional Neural Networks for NLP", WildML, 2018. [Online]. 
Available: http://www.wildml.com/2015/11/understanding-convolutional-neural-
networks-for-nlp/. [Accessed: 10- Jun- 2018]. 

[22] "Activation Functions: Neural Networks – Towards Data Science", Towards Data 
Science, 2018. [Online]. Available: https://towardsdatascience.com/activation-
functions-neural-networks-1cbd9f8d91d6. [Accessed: 11- Jun- 2018]. 

[23] "CS231n Convolutional Neural Networks for Visual Recognition", Cs231n.github.io, 
2018. [Online]. Available: http://cs231n.github.io/neural-networks-1/. [Accessed: 
11- Jun- 2018]. 

[24] "A Quick Introduction to Neural Networks", the data science blog, 2018. [Online]. 
Available: https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/. 
[Accessed: 11- Jul- 2018]. 

[25] A. Krizhevsky, I. Sutskever and G. Hinton, "ImageNet classification with deep 
convolutional neural networks", 2012.  

[26] "Why dropouts prevent overfitting in Deep Neural Networks", Medium, 2018. [Online]. 
Available: https://medium.com/@vivek.yadav/why-dropouts-prevent-overfitting-in-
deep-neural-networks-937e2543a701. [Accessed: 11- Jul- 2018]. 



Chapter 8 
Conclusion and future work 

83 

 

[27] "Caffe | Deep Learning Framework", Caffe.berkeleyvision.org, 2018. [Online]. 
Available: http://caffe.berkeleyvision.org/. [Accessed: 11- Jul- 2018]. 

[28] "ImageNet Large Scale Visual Recognition Competition (ILSVRC)", Image-net.org, 
2017.[Online].Available:http://www.imagenet.org/challenges/LSVRC/2012/nonpu
b-downloads.  

[29] "pmgysel/alexnet-forwardpath", GitHub, 2018. [Online]. Available: 
https://github.com/pmgysel/alexnet-forwardpath. [Accessed: 12- Jul- 2018]. 

[30] "Strategies for pipelining logic", Zipcpu.com, 2018. [Online]. Available: 
http://zipcpu.com/blog/2017/08/14/strategies-for-pipelining.html. [Accessed: 11- 
Jul- 2018]. 

 

 

http://www.imagenet.org/challenges/LSVRC/2012/nonpub-downloads
http://www.imagenet.org/challenges/LSVRC/2012/nonpub-downloads

