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Abstract

Deep Convolutional Neural Networks (CNNs) are the state of the art systems for image
classification and scene understating. The target in this field nowadays is its acceleration
to be used in real time applications. The solution was using graphics processing units
(GPU) but many problems arise due to its high-power consumption which prevents its
usage in daily used equipment. The Field Programmable Gate Array (FPGA) became a
new solution due to its low power consumption and flexible architecture although the
architectures suggested till now have lower speed than GPU due to the limited resources
on the kit facing the large number of operations executed in the network. This thesis
discusses this problem and providing a solution which compromises between the speed
of the network and the power consumption on FPGA.
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Chapter 1.
Introduction

In this thesis, we are going to propose some technigues to map the deep
convolutional neural networks into hardware (FPGAS) in order to be accelerated to fit real

time applications which need high speed and less power consumption.

1.1. Motivation

In recent years, artificial intelligence and deep learning have shown their utility and
effectiveness in solving many real-world computation-intensive problems. The motivation
of these is to eliminate the need of direct programming and create an intelligent system
can automatically extract features and recognize a particular pattern and after having
learned to recognize a particular pattern, extend that capability to objects that it hasn’t
actually seen before. In other words, it doesn't have to be trained on every single situation
that could possibly exist, that makes deep-learning algorithms better suited in variable,
situation-dependent decisions as in self-driving cars than traditional, rules-based
approach. It learns the entire processing pipeline needed to steer an automobile as in [1]
by creating models that meet or exceed the ability of a human driver which could save

thousands of lives a year.

Among various deep learning algorithms, CNN (convolutional neural networks) is
one of the key algorithms for visual content understanding and classification, with
significantly higher accuracy than traditional algorithms in many applications, such as
image/video processing, face recognition, machine language translation, advances in

medicine, autonomous driving and more.

Convolutional neural network (CNN) is first inspired by research in neuroscience,
as it's a subset of neural networks (NNs). Neural Network (NN) is a computational model
inspired by the way the brain operates, artificial NNs use vast amounts of simple
computational elements that are organized in interconnected layers. Modern NNs usually
have multiple layers, exceeding 100 in [2] and thus are called deep neural networks
(DNNSs).
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In order to better interpret local features of multi-dimensional inputs such as
images, convolutional neural networks (CNNs) are commonly used. CNNs have been
shown to be efficient in image-related problems such as classification or scene parsing
because the convolution operation captures the 2D nature of images. Also, by using the
convolution kernels to scan an entire image, relatively few parameters need to be learned
compared to the total number of operations. Their adoption has exploded in the last few
years because of two recent developments. First, large, labeled data sets such as the
Large Scale Visual Recognition Challenge (ILSVRC) [3] have become available for
training and validation. Second, CNN learning algorithms have been implemented on the
massively parallel graphics processing units (GPUs) which tremendously accelerate

learning and inference.

To achieve accurate results, CNNs need many parameters (over 100M parameters
reported in [4]) and require huge amounts of computational resources and memory, they
also offer significant potential for massive parallelization and extensive data reuse.

As a result, expensive and power-hungry accelerators as GPUs are needed to
efficiently process these networks, recently many applications such as embedded systems
in self-driving cars need high energy efficiency and real-time performance. Therefore,
there is a need to reduce the computational resources to reduce the used power and

speed up the calculations.

FPGA implementations of CNN have seen an increased amount of interest in
recent years due to the customizability of FPGAs; Designers can create dedicated
pipelines with parallel processing elements, customized bit width, etc. on FGPAs.
Therefore, there is a rapid increase in popularity of using FPGAs as accelerators. They
also have advantages of good performance, high energy efficiency, fast development
round, and capability of reconfiguration.

On the other hand, the limitations of the computational resources and memory
bandwidth of an FPGA platform must be considered. In fact, if an accelerator structure is
not carefully designed, its computing throughput cannot match the memory bandwidth
provided by the FPGA platform. It means that the performance is degraded due to the

bottleneck of the memory bandwidth.
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Both CNN algorithms and FPGA aggravate the problem of achieving the best
performance. As a result, it's a must to seek ways in order to reduce the number of the
computations and the energy consumption (specially at convolutional layers that require
a huge number of operations) and match the computing throughput to the memory
bandwidth (this problem specially appears at fully connected layer as its operations is
simple and does not require much time so the latency would be caused from memory
bandwidth). Acceleration approaches can be categorized into two main parts; (1) General
approaches (hardware independent) as reduction in precision, Shared weights and data
reuse. (2) Customize the FPGA architecture to be suitable for the algorithm using
pipelining, parallelism and increase the memory bandwidth.

1.2. Problem statement

CNN requires a huge number of computations to process a single image due to
the convolution operation on the multiple dimensional arrays which represents a
computational challenge for general purpose processors and consume a large amount of
power. Also, deep-learning systems thrive on data. The more data an algorithm sees, the
better it'll be able to recognize and generalize about, the patterns it needs to understand.
This required huge memory resources and consume a large amount of power. However,
the high energy consumption is no big concern during the network’s training phase - which
typically takes place on a computer cluster - it poses a problem when the network needs
to be evaluated on mobile hardware like smartphones, smart glasses, and other wearable

devices.

As a result, hardware accelerators such as Graphic Processing Units (GPU), Field
Programmable Gate Arrays (FPGA), and Application Specific Integrated Circuits (ASIC),
have been utilized to improve the throughput of the CNN.

Among these accelerators, GPUs are the most widely used to improve both
training and classification process of CNN, thanks to their high throughput and memory
bandwidth. However, GPUs consume a considerable amount of power which is another

important evaluation metric in the modern digital systems.

ASIC design, on the other hand, has achieved high throughput with low power

consumption by assigning dedicated resources and customizing memory hierarchy. But
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the development time and cost are significantly high compared to other solutions. As
alternative, FPGA-based accelerators provide high throughput, low power consumption,
superior energy efficiency (Performance/Watt) compared to high-end GPUs, and

configurability at a reasonable price [5].

The capacity of hardware resources in the FPGA increases continuously, which
provides more than a thousand floating computing units in one FPGA chip and provide
low power consumption. Also, CNN offers significant potential for massive parallelization
and extensive data reuse which make FPGAs suitable for customizing the designs of
CNNs to achieve low power consumption and high throughput.

One limitation for the design of efficient accelerators on FPGAs is the limited
amount of external memory bandwidth. The current bottleneck in available platforms for
efficient utilization of parallelism is data transfer as CNN requires large memory bandwidth
due to FC layers. Without on-chip buffers all accesses are to the external memory,
requiring huge memory bandwidth and consuming a lot of energy. The number of external
accesses can be reduced by on-chip memory that exploits data reuse due to the heavily

pipelined circuits in FPGA implementations [6].

The most challenging problem for CNN is the Real-time classification, that accepts
live data input from different devices and satisfy the real-time performance requirements
while constraining energy usage, because of the need to run the multiple layers of a
convolutional neural network in real time (as in embedded computer platforms for
autonomous cars which are expected to be one of the key beneficiaries of deep learning

and neural networks) [7].

1.3. Solution approach

FPGAs are customizable and programmable to deliver low latency and flexible
precision, with higher performance per watt for deep learning inference. In order to reduce
the number of the computations and the energy consumption, several techniques of

optimization and approximation can be used on FPGAs to accelerate the algorithm.

First is Data Reuse; As each input layer influences all output layers in a CNN

convolution layer it is possible to process multiple input layers simultaneously. This would
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increase the external memory bandwidth required for loading layers. The data is cached

in FPGA memory allowing each pixel to be reused multiple times [8].
Second are approximate computing techniques:
I- The Precision Reduction

Typically, CNN run on high precision machines using 32-bit floating point number
representations or 16-bit fixed point. However, such high precision is not always
necessary. The energy spent in high precision computations, does not lead to more
accurate classification by the algorithm. To reduce the energy consumption of the CNN'’s
computations, the main strategy is to quantize its weights and the inputs to its layers. Such
guantization leads to a network that is only an approximation of the original network. The
unique flexibility of the FPGA fabric allows the logic precision to be adjusted to the

minimum that a particular network design requires [9].

The reduction in precision allows the FPGA accelerator to process increasingly
more images per second. This can be achieved in various ways, leading to either a static
(fixed after design-time) or a dynamic (adaptable after design-time). The work in [9] shows
how the reduction in precision can be done for different network architecture with minimal
loss in accuracy and without the need to retrain the network which leads to reduce the

energy consumption.
There are two types of the precision reduction as discussed in [9]

1- Uniform quantization which uses the same quantization setting (the number

of quantization bits) for all the network layers.

2- Pre-layer quantization where each layer is quantized separately which lead

to better results.

- Pruning which is the mean of eliminating all relatively small weights of
neurons, which decreasing a significant number of operations, resulting in a high

throughput.

Third is computational skipping:
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Due to the appearance of the Rectified Linear Unit layers (RELU layers) in many
modern convolutional neural networks. These put all negative inputs to zero and pass on
positive values unchanged, Output = max (0, Input). Since many layers in CNN
classification algorithms only output positive values when certain features are present, a
large amount of RELU outputs will be zero and do not have to be used for further
computations. The RELU layers thus allow for additional energy reductions by not
computing unnecessary computations through computation skipping [9].

1.4. Organization

The following chapters discuss the CNN algorithm structure, how it is implemented
by software and hardware and comparison between the two approaches. The remainder
of this thesis is organized as follows:

Chapter 2 provides background information on Neural Networks especially
Convolution Neural Networks (CNN), discusses the main layers of the CNN with their
equations and functions and provides information about the training process performed
on any neural network to improve its accuracy. Then it discusses background on FPGAs,
including a brief overview of FPGA architectures and provides a literature survey including
some techniques for implementing the CNN on FPGAs and acceleration methods.

Chapter 3 provides information on the chosen CNN for the project which is Alex-
Net having a quick overview on its accuracy, the number of its layers and their

arrangement.

It also shows the effect of changing the number of bits of the fixed point data propagating

between layers on the accuracy and the chosen number of bits.

Chapter 4 provides a discussion on the project’s chosen design with the details of
how each layer of the 5 main layers of Alex-Net is implemented and accelerated using two

main techniques, parallelism of resources and pipelining inside some layers

Chapter 5 provides results of the synthesis and implementation of super layerl

(Convolutional+ Pool+ Normalization) in Alex-Net using Vivado showing the number of
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resources utilized on the chosen kit which is Virtex 7, the timing constraints and the power

consumption of the design on the Kkit.

Chapter 6 discusses a modification on the design discussed in chapter 4 showing
how this affects the number of resources and the simulation time emphasizing the target

of the project which is accelerating Alex-Net on FPGA.

Chapter 7 provides the results of the simulation of the whole design on Vivado and
discusses the simulation timing results on MATLAB and Virtual FPGA (Behavioral

Simulation).

Chapter 8 provides a brief overview of the findings, draws conclusions, and

recommends directions for future work.
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Background and Related work

2.1. Convolutional neural networks

2.1.1. Neural Networks overview

NN is a computational model inspired by the way we believe our brain operates:
the data that comes from our sensors, e.g., eyes, is processed by multiple simple
computational units called neurons. The neurons are interconnected through a complex
network of connections (axons), and after several transformations, the input is translated

into a conclusion such as “there is a chair in the picture” [10].

Similarly, artificial NNs use vast amounts of simple computational elements that
are organized in interconnected layers called also neurons. These neurons are activated
in response to the input, the activation of the neurons allows the network to detect and
classify the patterns. Depending on the input data, an NN will calculate the probability that
the data belong to a certain class (e.g., an object in a specific image). A Neural network
needs in order to work to be trained at first. The network can be trained to recognize
different classes by being provided a set of labeled training data (data sets). For example,
given a set of faces and a set of non-faces, it can learn to decide whether an image
contains a face. This is called supervised learning. Training of the NN involves more
computations and takes more time than using a network and will be discussed in section
2.1.4.

2.1.2. Convolutional Neural Networks overview

CNNs are a type of NN commonly used in image processing. Convolutions allow
NNs to use the way information is structured in the image to reduce the number of

calculations and improve feature extraction.

A typical CNN structure consists of a feature extractor and a classifier. The feature
extractor extracts an input image’s features and sends them to the classifier. According to
these features, the classifier decides the category that the input image belongs to. A

feature extractor consists of several similar stages. The input and output of a stage are
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called feature maps. The output feature maps of a stage are the input of the next stage.
The input image is the input to the first stage. Each stage consists of three layers: a
convolutional layer, a nonlinearity (RELU) layer, and a sub-sample (pooling) layer. The
output feature maps of the last stage are organized as a feature vector of the original input
image and sent to the classifier. A classifier is a traditional MLP (multi-layer perceptron)
composed of several full connection layers. It takes the feature vector as input and
calculates the probability of each category that the input image may belong to. At last, the
classifier chooses the category with highest probability as the output [11].

2.1.3. Convolutional Neural Network Layers

Convolutional layer

The first layer in a CNN is a Convolutional Layer. Figure 2.1 illustrates the
computation of a convolutional layer. The convolutional layer receives N feature maps as
input. Each input feature map is convolved by a shifting window with K x K kernel (filter)
to generate one element in one output feature map. The stride of the shifting window is S,
which is normally smaller than K. A total of M output feature maps will form the set of input
feature maps for the next convolutional layer. By stacking a number of convolutional

layers, the network hierarchically learns high-level features of the image [12].

wit [l | wii M
W;I wll l I
wif [wit
wif |wii
wii |wi? R
} Tl
- | wi o
: %x‘
N —
— Y C
K C-S+K
weights [nput feature maps Output feature maps

Figure 2.1 Convolution operation
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RELU (Rectified Linear Units) Layer

After each convolutional layer, it is convention to apply a nonlinear layer (or
activation layer) immediately afterward. The purpose of this layer is to introduce
nonlinearity to a system that basically has just been computing linear operations during
the convolutional layers (just element wise multiplications and summations). In the past,
nonlinear functions like “tanh” and “sigmoid” were used, but researchers found out that
RELU layers work far better because the network is able to train a lot faster (because of
the computational efficiency) without making a significant difference to the accuracy. The
RELU layer applies the function F(x) = max (0, x) to all of the values in the input volume.
In basic terms, this layer just changes all the negative activations to zero. This layer
increases the nonlinear properties of the model and the overall network without affecting

the receptive fields of the convolutional layer.

Pooling layer

In a typical CNN, convolutional layers are interleaved with pooling layers. Pooling
layers are used to reduce feature map dimensions by subsampling with some simple
function; for example, average or maximum. Max-pooling being the most popular, this
basically takes a filter P x P and a stride of length S, it then applies it to the input volume
and outputs the maximum number in every sub-region that the filter convolves around. As
shown in Figure 2.2, the filter size is 2 x 2 and the stride has the same length. A pooling
layer serves two main purposes. The first is that the number of parameters or weights is
reduced by 75% in the previous example, thus lessening the computation cost. The
second is that it will control over-fitting. This term refers to when a model is so tuned to
the training examples that it is not able to generalize well for the validation and test sets.
A symptom of over-fitting is having a model that gets 100% or 99% on the training set, but

only 50% on the test data.
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Max-poolinginput, Single feature map Corresponding
output feature map

After max-

pooling 6 8

Figure 2.2 Max pooling

Local Response Normalization (LRN)

The Local Response normalization (LRN) reduces top-1 and top-5 error rates by
1.4% and 1.2%, respectively [13]. This sort of response normalization implements a form
of lateral inhibition inspired by the type found in real neurons. Its contribution in the network
performance was verified on the CIFAR-10 dataset: a four-layer CNN achieved a 13% test

error rate without normalization and 11% with normalization [14].

S min(N-Li+2) / ; 2
out' = ing, ,y/(k+x 3 2 (mg ) )k (1)

j=max(0,i-7) \" (x¥)
k = 1,n = 5,a= 10"%and f = 0.75

Fully connected layers

The way this fully connected layer (FC) works is that it looks at the output of the
previous layer (which represent the activation maps of high level features) and determines
which features most correlate to a particular class by unrolling the input features and the
weights and multiply them and then outputs an N dimensional vector where N is the
number of classes that the program has to choose from. Figure 2.3 shows an example of

FC layer with un-rolled input 1 x 3072 and corresponding weights 3072 x 10 .

11
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Un-rolled input Weights Output
1 x3072 3072 x 10 1x10
[N, z
1 1 @ B g =---- Q Ij
3072 10
3072
Sl

10
Figure 2.3 FC operation example

2.1.4. Training process

A CNN needs in order to work to go through a training process called back-
propagation. Back-propagation can be separated into 4 distinct sections, the forward pass,
the loss function, the backward pass and the weight update. During the forward pass, you
take a training image (RGB image) which for example a 32 x 32 x 3 array of numbers and
pass it through the whole network. For example, CNN categorize 10 classes
corresponding to numbers from 0 to 9. On the first training example, since all of the weights
or filter values were randomly initialized, the output will probably be something like [.1 .1
1.1.1.1.1.1.1.1], basically an output that doesn’t give preference to any number in
particular. The network, with its current weights, isn’'t able to look for those low-level
features or thus isn’t able to make any reasonable conclusion about what the classification
might be. This goes to the loss function part of back-propagation. The training data has
both an image and a label. Let’s say for example that the first training image inputted was
a 3. The label for the image would be [0 00 1 00 0 0 0 0]. A loss function can be defined
in many different ways but a common one is MSE (Mean Squared Error), which is ¥z times

(actual - predicted) squared.

Ewa =y, 0.5 (target — output)?

The predicted label (output of the CNN) must be the same as the training label
(This means that our network got its prediction right). In order to achieve this, it's a must

to minimize the amount of loss (error). It just an optimization problem in calculus to find

12
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out which inputs (weights) most directly contributed to the loss (or error) of the network as

shown in Figure 2.4.

Figure 2.4 the error function

Now perform a backward pass through the network, which is determining which
weights contributed most to the loss and finding ways to adjust them so that the loss
decreases. Once this following derivative is computed, we then go to the last step which
is the weight update, update all the weights of the filters so that they change in the opposite
direction of the gradient.

W =Wi- n:—;} , Where W is weights, L is loss function, and n is learning rate.

2.2. FPGAs

2.2.1. Introduction

A field-programmable gate array (FPGA) is an integrated circuit designed to be
configured by a customer or a designer after manufacturing. The FPGA configuration is
generally specified using a hardware description language (HDL), Verilog or VHDL, similar

to that used for an application-specific integrated circuit (ASIC).

2.2.2. Components

Field Programmable Gate Arrays (FPGAS) offer a reconfigurable design platform
which makes them popular among digital designers. Typical internal structure of FPGA

comprises of three major elements as shown in Figure 2.5[15]:
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1. Configurable Logic Blocks (CLBs) are the resources of FPGA meant to implement logic
functions. Each CLB is comprised of a set of slices which are further decomposable into

a definite number of look-up tables (LUTS), flip-flops (FFs) and multiplexers (Muxes).

2. Input/output Blocks (IOBs) available at FPGA'’s periphery facilitate external connections.

These programmable blocks carry signals ‘to’ or ‘from’ FPGA chip.

3. Switch Matrix is an interconnecting wire-like arrangement within FPGA. This offer
connectivity for the CLBs or provide dedicated low impedance, minimum delay paths (for
example, global clock line).

VO Block

]

]

]
4 1 .< + 4t
"0o'oo oo oo

Figure 2.5 Internal structure of FPGA
Some other important resources in the FPGAs as shown in Figure 2.6:

1. Hardware multipliers denoted as digital signal processing (DSP) units which are used
in MAC operations, multiplication and accumulation operations, which is widely used in

Convolutional neural networks.

2. Block RAMs which are prepared in columns as shown in the figure. In Xilinx FPGAs the
BRAMSs can be in 2 sizes 18 Kb or 36 Kb. For example, if the module synthesized has size
less than 18 Kb it's synthesized as 18 Kb BRAM and if it's between 18 Kb and 36 Kb, it's
synthesized as 36 Kb BRAMSs.

14
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Figure 2.6 FPGA resources

2.2.3. Design Flow

Figure 2.7 shows the steps of the design flow [16].

Design declaration in HDL

Behaviour functionality

k

Logic synthesis

l

Design Implementation

b

Bit-stream generation

L

Programming the FPGA

Figure 2.7 FPGA design flow

Explaining the previous steps

1. Design Entry: It can be subdivided into two phases: defining functionality and structure
of the design and creating the design using Hardware Descriptive Language (HDL),
Verilog or VHDL.
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2. Behavioral functionality: Behaviorally simulating the HDL designs to test system and

device functionality before synthesis.

3. Synthesis: Converts the input HDL source files into a netlist. It’s divided into three-step

process:
a) Syntax check & design association to logic cells.

b) Optimization: Reducing logic, eliminating the redundant one to make the design

smaller and faster.

¢) Technology Mapping: Connecting design to logic, predicting and adding timing
estimates, creating output reports and generating netlist file containing the design and

constraints.

4. Implementation: Determining the physical design layout by mapping synthesized
netlists to the target FPGA’s structure and interconnecting design resources to FPGA’s

internal and 1/O logic. It consists of three sub-processes as shown in Figure 2.8:

a) Translate: Combining all netlists and constraints into one large netlist and pining
assignment & time requirements (e.g. input clock period, maximum delay, etc.) provided

via a User Constraints File.

b) Map: Comparing the resources specified in the input netlist file against the
available resources of the target FPGA and dividing netlist circuit into sub-blocks to fit into

the FPGA logic blocks generating a Native Circuit Description (NCD).

c)Place & Route (PAR): Placing physically the NCD sub-blocks into FPGA logic
blocks and routing signals between logic blocks such that timing constraints are met

generating a completely routed NCD file.

16
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NGC File
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Translate

| NGD File

Mapping
NCD File
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"Romed NCD File

Generate Bit File

!

Bit File

Figure 2.8 FPGA implementation steps
5. Bit Stream Generation: Converts the final NCD file into a format the FPGA understands.

6. Programming the FPGA with the generated bit stream.

2.3. Literature survey

Due to the specific, complex computation pattern of CNN, general purpose
processors (CPUs) are not efficient for CNN implementation and can hardly meet the
performance requirement. Thus, various accelerators based on FPGA, GPU, and even
ASIC design have been proposed to improve performance of CNN designs [12]. Among

these approaches, FPGA based accelerators have attracted more and more attention.

The authors of paper [17] consider whether future high-performance FPGAs will
outperform GPUs for next-generation DNNs in terms of speed beside its superiority in
power consumption-efficiency, evaluating a selection of emerging DNN algorithms on two
generations of Intel FPGAs (ArriaTM 10, StratixTM 10) against the latest highest
performance Titan X Pascal GPU. They study various GEMM operations for next-
generation DNNs, and then proposed a detailed case study on accelerating Ternary Res-

Net which relies on sparse GEMM on 2-bit weights (i.e., weights constrained to 0, +1, -1)
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and full-precision neurons which its accuracy is within ~1% of the full precision Res-Net
which won the 2015 Image-Net competition. The results were very promising; Stratix 10
performance is 10%, 50% and 5.4x better in performance (TOP/sec) than Titan X Pascal
GPU on GEMM operations for pruned, Int6, and binarized DNNSs, respectively. On
Ternary-ResNet, the Stratix 10 FPGA is projected to deliver 60% better performance over
Titan X Pascal GPU, while being 2.3x better in performance/watt. Results indicate that
FPGAs may become the platform of choice for accelerating DNNs.

Not only FPGAs are recommended to be used as hardware accelerators in
implementing CNN but also ASIC technologies which gives a better performance, on the
other hand the FPGA based accelerators have attracted more attention of researchers
than ASIC accelerators because they have advantages of quite good performance, fast
development round and capability of reconfiguration.

Authors of [18] consider the spatial architectures used in ASIC and FPGA-based
accelerators, discussing how data-flows can increase data reuse from low cost memories
in the memory hierarchy to reduce energy consumption. This includes a large global buffer
with a size of several hundred kilobytes that connects to DRAM, an inter-PE network that
can pass data directly between the ALUs, and a register file (RF) within each processing
element (PE) with a size of a few kilobytes or less. They investigate data-flows that exploit
three forms of input data reuse (convolutional, feature map and filter). For convolutional
reuse, the same input feature map activations and filter weights are used within a given
channel, just in different combinations for different weighted sums. For feature map reuse,
multiple filters are applied to the same feature map, so the input feature map activations
are used multiple times across filters. Finally, for filter reuse, when multiple input feature
maps are processed at once (referred to as a batch), the same filter weights are used

multiple times across input features maps.

Authors of [19] proposed energy-efficient dataflow called row stationary, which
aims to maximize the reuse and accumulation at the local memory level (register file or
caches) for all types of data (weights, pixels and partial sums) for the overall energy
efficiency. It keeps the row of filter weights stationary inside the RF of
the PE and then streams the input activations into the PE. The PE does the MACs for
each sliding window at a time, which uses just one memory space for the accumulation of

partial sums. Since there are overlaps of input activations between different sliding
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windows, the input activations can then be kept in the RF and get reused. By going through
all the sliding windows in the row, it completes the 1-D convolution and maximizes the
data reuse and local accumulation of data in this row. With each PE processing a 1-D

convolution, multiple PEs can be aggregated to complete the 2-D convolution.

Also, authors of [18] idly discuss how DNN models and hardware can be co-
designed to jointly maximize accuracy and throughput, while minimizing energy and cost,
which increases the likelihood of adoption. They highlight various efforts that have been
made towards the co-design of DNN models and hardware. The co-design approaches
can be loosely grouped into the following categories: (1) Reduce precision of operations
and operands; this includes going from floating point to fixed point, reducing the bit-width,
non-linear quantization and weight sharing, (2) Reduce number of operations and model
size; this includes techniques such as compression, pruning and compact network

architectures.

The previous papers cited were the inspiration of our proposed approach, which
applies feature-map data reuse technique, 2 data-flows types: output stationary and no
local reuse, based on fixed point operations, uses extensively local memories for overall
energy efficiency and then our CNN is accelerated on FPGA. Our approach will be deeply

discussed and cleared in chapter4.

2.4. Summary

This chapter provides background information on Convolution Neural Networks
(CNN), discusses the main layers of the CNN (Convolutional Layer, Max Pooling Layer,
.... etc.) with their operations, equations and functions and provides information about the
training process with all its stages performed on any neural network to improve its
accuracy. Then it discusses background on FPGAs, including a brief overview of FPGA
architectures and provides a literature survey including some techniques for implementing
the CNN on FPGAs, acceleration methods such as parallelism, data reuse, .... etc.
showing the results of this implementation as execution time of each layer on FPGA and

power consumption.
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Chapter 3.
Alex-Net

The chosen CNN architecture is Alex-Net, which had a large impact on the field of
machine learning, specifically in the application of deep learning to machine vision. Alex-

Net will be overviewed in this chapter and discussed from the software point of view.

3.1. Overview

Alex-Net is one of the state-of-the-art CNN, it won the 2012 ILSVRC (Image-Net
Large-Scale Visual Recognition Challenge). It was the first model to achieve top-1 and
top-5 error rates of 37.5% and 17.0% respectively on the test data of Image-Net dataset
[14], which was an astounding improvement compared with the other top models in the
context which had error rates of 28% and 26% [13] as shown in Figure 3.1, so this
architecture was one of the first deep networks to push ImageNet Classification accuracy
by a significant stride in comparison to traditional methodologies. Therefore, the network
was the breakthrough of CNNs, and the reason to use CNNs in computer vision

community.

In general, Neural networks are inspired by the structure of the cerebral cortex. At
the basic level is the perceptron, the mathematical representation of a biological neuron.
Like in the cerebral cortex, there can be several layers of interconnected perceptron. Input
values, or in other words the underlying data, get passed through this “network” of hidden
layers until they eventually converge to the output layer. The output layer is the prediction:
it might be one node if the model just outputs a number, or a few nodes if it's a multiclass

classification problem.

The neural network developed by Krizhevsky, Sutskever, and Hinton in 2012,
which has 60 million parameters and 650,000 neurons, consists of five convolutional
layers, some of them are followed by max-pooling layers, and three fully-connected layers

with a final 1000-way soft-max [25] as shown in Figure 3.2.
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3.2. The Network Architecture

Alex-Net contains 5 convolutional layers, max-pooling layers, dropout layers, and

3 fully-connected layers as shown in Figure 3.3. The used layout is a relatively simple

layout, compared to modern architectures. The network was designed for classification

with 1000 possible categories. Table 3-1 shows the detailed parameter in each layer of

the network from Caffe.

L]

11x11x3 5x5x86 3x3x256 3x3x384  Ix3Ix3B4 0216x1x1 4096x1x1 4096x1x1
{96} {256} {384} {384} {256} {4os6} {4086} {1000}

I Convolutional layer

Local Response
Max Pooling layer Fully Connectad

Layer

Type

Channels
Filter Size

Convolution Stride

Figure 3.3 Alex-Net layers architecture

Table 3-1 The network parameters

1 2 3 4 5 6 7 8
conv+ conv+ conv conv conv+ fc Fc fc
max+  max+ max

norm norm

96 256 384 384 256 4096 4096

1111 5*5 3*3 3*3  3*3 = =

4*4 11 1*1 1*1 1*1 - -
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Pooling Size 3*3 3*3 - - 3*3 - . i
Pooling Stride 2*2 2%2 - - 2%2 - . i
Padding Size 2*2 1*1 1 11 1% - - -

3.2.1. Convolutional Layer

The Conv layer is the core building block of a Convolutional Network that does

most of the computational heavy lifting. It's always the first layer in a CNN.
e Convolution operation

The metrical convolution operator is applied over the feature maps of the input and
filter as shown in Figure 3.4. As the filter is sliding, or convolving, around the input image,
it is multiplying the values in the filter with the original pixel values of the image (i.e.
computing element wise multiplications). These multiplications are all summed up to

produce a single output. The process is repeated for every location on the input volume.

The computation is given in (2), where M is the number of output feature maps
(number of filters) of size E x E, C is the number of channels in Input feature maps, and

R x R is the size of the Filter, which is the convolution operand obtained from the training.

out[ml[h,][wol = b; + Xi_1 XX, =0 Xk, =0 IN [i1[ho + kpllw, + kyy ] * Kernel[m][il[ky][ky]
2)

Input Image

Many
Filters (M)

=N

Output Image

«—q—

<— E—>

Many
Output Channels (M)

«—q—

Figure 3.4 Convolution operation [19]

Convolution layer parameters:
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o Filters [20]:

The Conv layer's parameters consist of a set of learnable filters. Every filter is small

spatially (along width and height) but extends through the full depth of the input volume.

Each of these filters can be thought of as feature identifiers (edges, simple colors, and
curves). First layer filters detect low level features such as edges and curves. In order to
predict whether an image is a type of object, the network must be able to recognize higher
level features. To extract high level features the output of the first layer is applied to a set
of filters (pass it through the 2nd Conv layer). As the network get deeper and go through

more Conv layers, activation maps can represent more complex features.

In practice, a CNN learns the values of these filters on its own during the training process.
However, other parameters are still need to be specified such as number of filters, filter
size, architecture of the network before the training process.

e Stride [20]:

Stride is the number of pixels by which the filter matrix slides over the input matrix

as shown in
Figure 3.5.

The spatial size of the output volume can be computed as a function of the input volume
size (W), the filter size (K), the stride with which they are applied (S), and the amount of

zero padding used (P) on the border.

The formula for calculating the output volume is given by (W-K+2P)/S+1.

11 108 | 126

N 32 33 34 35 36 37 |
e lolw]el«~] HEED> 258 506

5 52 53 54 55 56 57

61 62 63 64 65 66 67

Al 4 73 T4 75 76 v

Figure 3.5 Filter Stride over 2-D input feature map
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3.2.2. Pooling Layer

A key aspect of Convolutional Neural Networks are pooling layers, typically applied
after the convolutional layers. Pooling layers (also called subsampling or down sampling)
reduces the dimensionality of each feature map but retains the most important information.
Pooling can be of different types: Max, Average, Sum etc. In practice, Max Pooling has
been shown to work better [21]. For example,Figure 3.6 shows max pooling for a 2x2
window. Pooling operation is applied separately to each feature map.

224x224x64 | |
112x112x64 Single depth slice
pool r/ s 1 1 ” 1
|‘i’ [ max pool with 2x2 filters
5(6 (7|8 and stride 2 6 8
! ‘ 3(2(1]0 s B
1 | 2 [EERIES
. frr—— i
112 R
224 -

Figure 3.6 Max pooling operation

The function of Pooling is to progressively reduce the spatial size of the input

representation [20]. In particular, pooling

e Makes the input representations (feature dimension) smaller and more

manageable.

o Reduces the number of parameters and computations in the network, therefore,
controlling overfitting.

¢ Makes the network invariant to small transformations, distortions and translations
in the input image (a small distortion in input will not change the output of Pooling

— since it considers only the maximum / average value in a local neighborhood).

o Provides a fixed size output matrix, which typically is required for classification. For
example, if the network has 1,000 filters and then apply max pooling to each, it will
get a 1000-dimensional output, regardless of the size of the filters, or the size of

the input.
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3.2.3. RELU

RELU stands for Rectified Linear Unit and is a non-linear operation used after
every convolution operation. Its output is given by: max (0, in) as in Figure 3.7. RELU is
an element wise operation and replaces all negative pixel values in the feature map by
zero. The purpose of RELU is to introduce non-linearity in the CNN after linear operation
of convolution (element wise matrix multiplication and addition), since most of the real-
world data the network required to learn would be non-linear. Nonlinearity makes it easy
for the model to generalize or adapt with variety of data to best fit its representation as in
Figure 3.8 and to differentiate between the outputs [22].

RelLU

10

R(z) =max(0, z}_

Figure 3.7 RELU function

Figure 3.8 Non linear data fitting
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There are other non-linear activation functions like Sigmoid and Tanh, however the

RELU is used in almost all the convolutional neural networks or deep learning. it has

become very popular in the last few years due to its advantages:

e It was found to greatly accelerate (e.g. a factor of 6 in [14]) the convergence of

stochastic gradient descent compared to the sigmoid / tanh functions. It is argued

that this is due to its linear, non-saturating form.

e Compared to tanh /sigmoid neurons that

involve expensive operations

(exponentials, etc.), the RELU can be implemented by simply thresholding a matrix

of activations at zero [23].

3.2.4. Zero padding

Sometimes it will be convenient to pad the input volume with zeros around the

border so that the filter can be applied to bordering elements of the input matrix as shown

in Figure 3.9, as it doesn’t have any neighboring elements to the top and the left. The size

of this zero-padding is a hyper parameter. The nice feature of zero padding is that it will

allow to control the spatial size of the output volumes [20].

0 0 0 0 0 0

0 156 | 155 | 156 | 158 | 158
0 153 | 154 | 157 | 159 | 159
0 149 | 151 | 155 | 158 | 159
0 146 | 146 | 149 | 153 | 158
0 145 | 143 | 143 | 148 | 158

Figure 3.9 Input matrix after zero padding
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3.2.5. Local Response Normalization (LRN)

The role of the LRN layer is to normalize the RELU neurons which have unbounded
activations to avoid the saturation in network, and subsequently data missing. Equation
(3) shows the normalization functionality; normalizing around the local neighborhood of

the excited neuron, and make it even more sensitive as compared to its neighbors.

e B
b, = a;;,y/(k A l.“)(ai,y)Z) 3)

j=max(0, l—g)
The sum runs over n adjacent kernel maps at the same spatial position where,

a,ic,y Represents the i " Pool kernel’s output at the position of (x, y) in the feature map.

b,‘;,y Represents the output of local response normalization, and it's also the input for the

next layer.
N is the number of the Pool’s kernels (depth size).
n is the adjacent conv. kernel number; this number is up to you. In this network, n = 5.

k, a and B are hyper-parameters, whose values are determined using a validation set in
the used pre-trained CNN; the values used k=1, n=5, a=0.0000, 3=0.75.

Figure 3.10 illustrates the process of LRN in CNN, considering the following hints,

e This figure presumes that the i ! kernel is not at the edge of the kernel space. If i
equals zero or one or last or one to the last, one or two additional zero padding

Conv kernels are required.
¢ In our network, nis 5, we presume n/2 is integer division, 5/2 = 2.

e Summation of the squares of output of RELU and Pool stands for: for each output
of RELU and Pool, compute its square, then, add the 5 squared value together.

This process is the summation term of the formula.
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e | presume the necessary padding is used by the input feature map so that the
output feature maps have the same size of the input feature map, if you really care.

But this padding may not be quite necessary.

a;._;"rz

i
b%y

At position (x, y} in
kernel (depth} i

At position (x, y) in At position (x, y)
kernel (depth) i in kernel (depth) i

sl
Summation of
sguares of POOL

and RelU output LRN output
POOL and RelU
out kernels
min(N-1, ity) £
. . .2
b, = ai, / (k +a z .,
jrmes, 13)

Figure 3.10 Normalization layer operation

The hardware implementation challenges can be observed from (3), it is arises in
the fractional power (3=0.75), and the variable range of the summation loop. The fractional
power (=0.75) was rounded to (f=1) in the hardware implementation with slight reduction
in the accuracy, the variable range of the loop will be implemented using FSM (finite state

machine) as discussed in the following chapter.

3.2.6. Fully connected layer

The fully connected layer is a traditional Multi Layer Perceptron (MLP) with Soft-

max activation function, its purpose is to use the extracted feature from the previous
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convolution and pooling layers and classify the input image to various classes by

determining the correlation between the extracted feature and a particular class.

The Multi Layer Perceptron contains one or more hidden layers with all the neurons
connected to each other, which can learn linear or non—linear functions, Figure 3.11 shows

a three FC layers with one input layer, one output layer and one hidden layer [24].

Input Layer Hidden Layer Output Layer

Hidden

o)

—= Output 1

TN

}»—- Output 2

Figure 3.11 A multi layer perceptron with one hidden layer

The input FC layer unroll the output of the previous layer and multiply each neuron
in the output by its corresponding weight as shown in Figure 3.12 using matrix
multiplications in equation (4), the neurons of the output layer is fed to the Soft-max layer.

fl,w)=xTxw (4)

input activation
[ ) —» W — 1 [O [
1 1
3072 10x 3072 10
weights

Figure 3.12 the fully connected layer using matrix multiplication
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3.2.7. Soft-max

The last layer in the architecture is Soft-max. The Soft-max function squashes the
outputs of each unit from real arbitrary values into some real values in range between 0
and 1 and sum up to one as illustrated in Figure 3.13, which represent the probability
distribution of each category in the dataset. It can be interpreted as the (normalized)
probability assigned to the correct label y; given the image x; and parameterized by W

and the result is f; given in equation (5) [23].

k=K

P(y = jlx) = efyf'/z efk, j =12 K, (5)

k=1

where f] = x"w and K is the total number of classes in the dataset.

(12 - [0.46]
0.9 | 0.34
0.4 10.20

Figure 3.13 The Softmax normalized probability.

Practical issues: Numeric stability. When writing a code for computing the Soft-

max function in practice, the intermediate terms efyf and Zﬁi’f el may be very large

due to the exponentials. Dividing large numbers can be numerically unstable, so it is
important to use a normalization trick. Notice that by multiplying the top and bottom of the
fraction by a constant C and push it into the sum, it gives the following (mathematically
equivalent) expression in (6). The constant C can take any value without affecting the
results, a common choice for C is to set logC = —max(f;) to improve the numerical stability
of the computation. This simply states that we should shift the values inside the vector f
so that the highest value is zero the final equation is given by (7) [13].
efyj Ce
Srelk - CYrelk - Yy efktlogC (©)

. .+logC
fy] efy] g
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k=K
P(y =j|x) = efyj_Max(ff)/z efi=Max(Fj) i =12, .. .... K, (7)
k=1

where f} = x"w and K is the total number of classes in the dataset.

The implementation challenge for this layer rises from the exponential and division,
the exponent will be implemented using LUT and the division will be ignored as its function

is to normalize the probability which will not affect the classifier decision.

3.2.8. Drop out

Deep neural network with multiple layers and large number of neurons suffer from
over fitting during the training phase. The architecture consists of 5 convolution layers and
3 fully connected layers with 650,000 neurons make the usage of generalization
techniques is necessary to prevent the network from over fitting. The dropout is a power
full generalization technique for reducing overfitting in neural networks by preventing
complex co-adaptations on training data by randomly dropping out the output of each
hidden neuron with probability 0.5 as shown in Figure 3.14, which gives major

improvements over other regularization methods.

The main idea of dropout is to have neuron A and neuron B both to learn something
about the data, and the neural network not rely on 1 neuron alone as illustrated in Figure
3.15. This has the effect of developing redundant representations of data for prediction by
randomly dropping out the outputs of the previous layer with probability of 0.5. However,
there is have no idea which one is better, so in the testing phase, all the neurons are used
but their outputs are multiplied by 0.5 to average them [25][26]. The dropout layer is used
in the first two fully-connected layers of the network. Without dropout, the network exhibits

substantial overfitting [25].
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Standard Neural Net After applying dropout.

Figure 3.14 Droupout for multiple neurons in hidden layer

Dropout A Dropout B

Testing, use ensemble

Input Output

Figure 3.15 Droupout illustration for single layer with two neurons

3.3. Fixed point back ground

Fixed-point optimization of deep neural networks plays an important role in
hardware based design and low-power implementations. In recent years increasingly
complex architectures for deep convolution networks (DCNs) have been proposed to
boost the performance on image recognition tasks. However, the gains in performance
have come at a cost of substantial increase in computation and model storage resources.
Fixed point implementation of DCNs has the potential to alleviate some of these

complexities and facilitate potential deployment on embedded hardware.

A fixed-point representation of a number consists of integer and fractional components

and sign bit as shown in Figure 3.16, where WL represents word length, S represents the
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sign bit, | represent the integer bits and F represents the fractional bits. With this

representation the range of numbersis [277,2/[ , and a step size (resolution) of 2.

WL

i
)

CL L

Figure 3.16 fixed point data representation

k4

3.3.1. Fixed point multiplication

Fixed-point multiplication is the same as 2's compliment multiplication but requires
the position of the "point" to be determined after the multiplication to interpret the correct
result. The determination of the "point's" position is a design task. The actual
implementation does not know (or care) where the "point" is located. This is true because
the fixed-point multiplication is exactly the same as a 2's complemented multiplication, no
special hardware is required. Consider the following illustrative example assuming the
multiplicand has WL = 8, I=3 and F=4, and the multiplier has WL = 8, I=5 and F=2,

Multiplicand = 6.5625|decimal = 0 110 1001 |sixed point representation
Multiplier = 4.25|decimal = 0 00100 O1|sixed point representation
01101001

X 00010001

01101001

00000000

00000000

00000000
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01101001
00000000
00000000

00000000

000011011111001 =0000011011.111001 = 27.890625

The number of bits required for the product (result) is the multiplicand's WL + the

multiplier's WL. Note that the fractional bits in the product are equal to the multiplicand’s
F + the multiplier's F.

3.3.2. Fixed point addition

Addition is a little more complicated because the points need to be aligned before

performing the addition. Using the same numbers from the multiplication problem,
0110.1001

+ 000100.01

001010.1101 = 10.8125

When adding (subtracting) two numbers an additional bit is required for the result. When
adding more than two numbers all of the same WL width, the number of bits required for

the result is WL = WL + log, (N xWL) + log, (N). where N is the number of
elements being summed.

3.4. Software Accuracy and preprocessing

A typical CNN is composed of two components: a feature extractor and a classifier.

The feature extractor is used to extract the features of the input feature map by filtering it
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with different filters. The feature extractor may consist of several convolutional layers
followed by optional subsampling layers, for example the chosen network has five
convolutional layers each layer has different number of filters with different sizes each filter
concerned to extract certain features of the input (edges, corners, lines, etc. ......). The
extracted features are then fed to the classifier, which is usually an artificial neural network,
which is responsible to decide the category that the input image may belong to, according
to the matching between the input image and each category in the dataset. The chosen
network has three fully connected layers followed by soft-max, the function of each layer
is discussed in section 3.2.

The chosen dataset for testing the network performance is subset of ImageNet,
which was used in ILSVRC, it is a large dataset consist of 1000 categories and roughly
1.2 million training images, 50,000 validation images, and 150,000 testing images [25].

The network employs two paths, a feedforward path for recognizing the input
image and a backward path for training. Before starting classifying the dataset the network
must be trained on the training set to tune the network parameters, the training set of
ImageNet has 1.2 million image, so training the network may take few months. Typically,
the training process is done offline and the forward path only implemented on the FPGA.
In order to save the training time on the software, a pretrained model on ImageNet from

Caffe [27] is used, where the network parameters were available.

The network performance was tested by calculating the accuracy on the validation
dataset of the ImageNet that contains 50,000 validation images. The test set of ImageNet
wasn't used as the test set labels are available only for the competition submissions,
although ILSVRC-2010 test set labels are available, it contains 150,000 testing images,
which may take a month to classify it.

3.4.1. Accuracy

The accuracy of the network was tested on the cross-validation dataset from [28]
using the open source MATLAB implementation of the forward path from GitHub [29]. The
MATLAB implementation convert the input picture from MATLAB representation (RGB) to
Caffe representation (BGR) and provide the preprocessing required for the input image

and the implementation of each layer in the network.
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The accuracy was measured on the first 1500 images from the data set for different

number of bits represent data across the network.

e Forthe ideal representation of the data using 64 double data type the accuracy

was about 57%.

o After replacing the power of normalization layer () ( from 0.75 to 1) accuracy
was about 53.67 %

e For 32-bit fixed point with 12-bits for integer and 20-bits for fraction part the
accuracy reached 53.6%.

e For 16-bit fixed point with 12-bits for integer and 4-bits for fraction part the

accuracy reached 53.5%.

3.4.2. Preparing data for Hardware implementation

In order to prepare the input data for the hardware simulation the data was required
to fit into Block Ram which implies perform the operation on one input at a time, therefore
the input data is unrolled from 3-D (RGB) representation to the 1-D representation to fit
into the input ram. Typically, the input image after preprocessing is adjusted to 227x227x3,
after the unrolling the generated output is of size 154587x1.The unrolling of data was done
across the depth Figure 3.17 shows the unrolling of 3x3x3 input image as an example for
simplicity. Figure 3.18 shows the flow to generate the input data to from MATLAB to the

hardware simulation.
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Figure 3.17 Unrolling the input data from 3-D to 1-D
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writing
data to
text file

input
| data
Jxt

Ir(l:u: image in RGB ] :‘;'F“‘ image MAT LAB
‘ pixet 11 | pixsi 72 | poel 13 pixel # 1
| | channel # 2
SR i e SR — channel#3 ) Quantization )
— 64 bit & 16 bit
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channel # 2
pixel # 4
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Figure 3.18 Data generation from MATLAB to Hardware simulation

3.5. Summary

Image
ROM

This chapter provides information on the chosen CNN for the project which is Alex-

Net having a quick overview on its accuracy for the top-5 and top-1 results using

ImageNet, the number of its layers which is 13 layers (5 Convolutional layers, 3 Max

Pooling layers, 3 Fully Connected layers and 2 Local Normalization layers) and their

arrangement. It also shows the effect of changing the number of bits of the fixed point data
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propagating between layers on the accuracy and the chosen number of bits based on its
effect on accuracy and compromising this effect with the number of resources utilized by

the design.
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4.1. Proposed approach

4.1.1. Design

Our proposed approach is mainly based on serving convolutional layers as a
previous study [18] proved that convolution operations will occupy over 90% of the
computation time. It applies:

1- Usage of local memory hierarchy.

2- Data reuse technique; Feature map reuse.

3- Data flow techniques; (1) Output stationary and (2) No local reuse.
4- Fixed point operations and quantization.

Each point will be illustrated clearly in the rest of this section.

Usage of local memory hierarchy.

This design considers only one picture to be classified not involving a real-time
sequence of image, that must be clear before involving the design techniques. All data
types (weights, bias, one picture and output data of each layer) are stored in individual
small local memories. Each filter kernel of weights is stored separately in caches and
proposed to remain fixed in the whole design, and the picture is also stored in separate
cache. Then output cache of each layer is needed and it represents the input cache of
each layer.

So the CNN won’t handle the external (off-chip DRR) memory except in loading
state at the beginning and will store the data in these mentioned caches. That may
introduce large area, but also will decrease dramatically the energy consumption, as low-
level memories (caches) which have much smaller area than the DRR memory consumes

much lower energy consumption in read and write operations.
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Data reuse technique: Feature map reuse

For feature map reuse, multiple filters are applied to the same feature map, so the
input feature map activations are used multiple times across filters. So the data comes
from feature maps won’t be recalled again, as all filters are working parallel on this feature

map.

Data flow techniques
Output stationary (OS)

The partial sums are accumulated inside each PE (processing element) till the
output is ready and then store the final result in the output cache, which helps to further

reduce the energy consumption of accessing partial sums.

No local reuse (NLR)

Memory hierarchy lowest level is the caches level, no register files inside the PEs

and all the on-chip area is allocated to the caches to maximize the storage capacity.

Fixed point operations

All operations through the CNN are fixed point operations, so inputs are 16-bit fixed
point numbers and after applying the operations the output quantized to 16-bit also and
then stored in output caches.

Figure 4.1 illustrates the mentioned design points on the first convolutional layer.
One common cache for input feature map outputs one data pixel each time corresponding
to control unit address, applied to the parallel PEs inputs. Each filter kernel has individual
cache outputs one weight element corresponding to the control unit address, applied to
the second input of the parallel PEs. These data were stored as 16-bit fixed point numbers
in caches. Each PE works parallel to another PEs and applies convolution fixed point
operation and accumulates in internal register “363 times for Conv 17, till the output is
ready. The output is quantized to 16 bits. Then the final output is store in parallel output
caches corresponding to each PE. The convolution PEs will be discussed in details in

section 4.2.
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Filter caches address

Output caches address

Feature map cache
address

Al

_ﬂ_
L}

This will be
repeated 363

(4

Figure 4.1 Hardware design over view
4.1.2. Comparative study

Authors of [18] discusses a comparative study between 3 different data flows; (1)
Weight stationary, (2) Output stationary (A, B and C) and (3) Row stationary. The results
were as shown in Figure 4.2. (a) showing that row stationary data flow gave the best
performance in terms of energy efficiency. Our design has a lowest DRAM energy as it
gets the data only one time from DRAM. It has relatively small buffer only for the bias

shown in Figure 4.2 (a) so also a lowest buffer energy consumption. ALU equivalent to
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the operation energy consumption as is the same as these data flows. No RF in our design
only one register inside each PE. But our design introduces caches energy consumption
which is relatively small as filter caches size is small and feature maps are reused and

output cache won’t be accessed unless the output is ready (no partial sums access times).

By comparing our design to results in Figure 4.2 (b), pixels will have the lowest
energy consumption because of feature map reuse. Partial sums also the lowest energy
consumption as we accumulate in internal register. weights are accessed more efficiently
in row stationary data flow, but also in our design the local memory level will result in
relatively lower or quite the same level of the row stationary weight-energy consumption.

15 RF
m NoC
Normalized
Energy/MAC B buffer

III u DRAM
dlllIE
= - .

[i]
WS 0S, 0S5 O0Se MNLR RS

DNN Dataflows

{a) Energy breakdown across memory hierarchy

2
15
H psums
Normnaslzed 1 H weights
Energy/MAC g
B pixels
0s
0

Ws 0S, 0S5, 0S. NR RS
DMN Dataflows

(b) Energy breakdown across data type
Figure 4.2 comparative study of energy consumption for different data flows

4.2. Convolution layer

Convolution layers form the crux of the CNN network, so it will be considered first
to be explained. The mechanism of convolution layers as explained in section 3.3., is to
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perform convolution of the input feature map with the layers’ kernels with certain
parameters as the stride, zero padding size, input feature map size, output feature map
size and number of kernels which are different from one convolution layer to another (5

convolution layers), as shown in Figure 4.3.

B
227  convolution
96 filters i pm:,ﬁwgh
1x11 Ix3 |
D;';:’:;Q strie 2

convolution
13 384 filters
-
EiE]
384 13 stride 1

padding 1

13 mupodhg

s

ERE
strie 2

384 filters | stride 1
padding 1

convolution l 33

256 filters

33
stride 1
padding 1

convolution .

wnnmed

neums

1000 4096

Figure 4.3 convolution layers in Alex-Net

44



Layers

Convl

Conv2

Conv3

Conv4

Convbs

Chapter 4

Hardware Methodology

Table 4-1 Alex-Net Convolutional Layers parameters

Input size

227X227x3

27x27x96

13x13x256

13x13x384

13x13x384

Output

size

55x55x96

27X27x256

13x13x384

13x13x384

13x13x256

Number
of

filters

96

256

384

384

256

Filter size

11x11x3%x96

5x5x48x256

3x3x256x384

3x3x192x384

3x3x192x256

Stride Zero Group

pad
4 0 1
1 0 2
1 1 1
1 1 2
1 1 2

As shown in Table 4-1, the convolution layers are the same expect for the

parameters and the groups so the Conv1l layer will be explained in details.

Hardware implementation of Convl layer:

e The building unit is the parallel engine (PE) which is a multiplier and an
accumulator as shown in Figure 4.4

—aal

Figure 4.4 PE internal structure
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e Then parallel PEs are used, number of PEs= number of filters.
For Conv1 layers, the number of parallel PEs=96.
So, the filters outputs are accumulated in parallel, while each filter convolution is
done serially.
Numbers of cycles taken for the Conv1 layer output to finish=number of outputs

for each filter* number of cycles taken for each filter=55*55*11*11*3.
[

1-Read 1-Read Address
Address 2-read enable
2-read

enable

Input
feature Control unit

maps

Input feature Control signals: 1- Enable PEs
map: one pixel 2- Enable outputs from the PES on
from input cache the output ports

3- start and clock signals

I I
/ Convolution layer \

Cache 1 of
weights

Buffer 1 of
outputl

Cache 96

0 00

Buffer 96

In a sequential manner

outputs will be stored

Control unit:
OUtpUt CaChe Addresses and write
enable

Figure 4.5 : Hardware structure of the parallel PEs, control unit, output caches, weights caches.
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After the convolution output is ready, a bias is added to each filter output then the
result passes through RelU layer (as discussed in section 3.2.3) and quantized into 16-

bits and stored to be proceeded in the next pooling layer.

4.3. Pooling

After discussing the convolutional layer, the second layer is pooling. Figure 4.6
shows the basic building block of the pooling layer which mainly depends on comparing
each input in the kernel with the previous inputs and keeping the maximum number in the

register.

> Register

Figure 4.6 pooling engine

The main target of the project is acceleration of a network so parallelism is used
to speed up the operations required from the network. The main idea of parallelism in this
layer is using parallel engines of the building block corresponding to the depth of the input
which means that each parallel engine is responsible for the output of a certain depth.

Each PE has a separated input and output cache.
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Figure 4.7 parallel engines for pooling layer
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In Alex-Net, there exists three pooling layers so in the following table here are the

layers Pooll

Number of Parallel 96
Engines

Input Size of each 55*55

Parallel Engine

Cache size Before 4K * 4 bytes

Parallel Engine
Output Size 27*27

of each Parallel
Engine

Cache Size after 1K * 8 bytes
Parallel Engine

Kernel Size 3

Stride 2

used parameters for each single layer:

Table 4-2 Alex-Net Pooling Layers parameters
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Pool2

256

27*%27

1K * 4 bytes

13*13

256 * 8 bytes

Pool5

256

13*13

256 * 4 bytes

6*6

64 * 8 bytes
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4.4. Local Response Normalization layer (LRN)

Recall from Section 3.2.5 equation (1) that shows the normalization functionality;
normalizing around the local neighborhood of the excited neuron and make it even more
sensitive as compared to its neighbors. What is going to be done now, introducing the

hardware blocks that would calculate this equation.

4.4.1. Computing engines
Each process in equation (1) will be defined by hardware block.

Summation of squares

That could be done by a tree of adders that adds the input squares as shown in
Figure 4.8. Recall that the sum runs over n (n=5) adjacent kernel maps at the same spatial
position, so 3 adders only are needed and will be reused. Finally, multiply by a and add k

to get the denominator result of equation (1).

—

E-a

(+ g
-y
E-E—

Denominator

result

Figure 4.8 Norm Square and tree adder engine
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Fixed point division

The idea is to use 2 integer divisions as illustrated in; the first one calculates the
integer part and the second calculates the fraction part, then both parts concatenated to
obtain the final result. Dividend and divider are fixed point numbers with; (1) S is 1 bit
represents the sign, (2) | bits represents the integer part and (3) F bits represents the
fraction number, the fixed point division result is also representing in the same format. In
this network divider always larger than one, so the fixed point division is designed to work
properly only when the divider is larger than one and any other values won'’t act properly.
Sign bit is considered but actually no need for it because the Pool and RELU output is

always positive.

Dividend
S I F
. \ Remainder >> F v
Quotient - Least significant
l “ 1 bits
Most
significant bit
v L 4 Y
S I F [ S | F
Divider Fixed point
output

Figure 4.9 Division engine in Norm layer
4.4.2. Controlling structure

Figure 4.10 illustrates the controlling structure; (1) multiple input caches are
needed for LRN as it needs to get the whole depth in one buffer to be able to apply
squaring process and the tree of adders, so number of input caches in this design is equal
to number of elements of the depth of the previous Pool layer to the LRN, (2) addressing

unit is needed to access the caches parallel and it's controlled by the control unit using
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the start Norm signal, (3) transition module is needed to get the n (recall n=5) elements
of the summation by calculating the start and end position of the summation, (4) after
computing each output element store it in one cache if the following layer is group 1 Conv

(like Conv 2) or 2 caches if the following layer is group 2 Conv (like Convl).

Start LRN
=
< Get data
L, oo from Computing Output
§ N-start to engine cache
é N-end
<
Cache N
| —

Figure 4.10 Control structure for Norm layer
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4.5. Fully Connected Layer

After discussing the main three layers that are repeated in the first five super
layers, the last layer is fully connected layer. Figure 4.11 shows the basic building block
of the fully connected layer which is similar to that of the convolutional layer .It mainly
depends on multiplying the input with the corresponding weight in the weight matrix and

accumulates the result in the register.

« X e Register

Figure 4.11 FC engine

The main operation of the Fully Connected layer as described before is multiplying
a 2-Dimensional matrix of weights with an array of inputs so each output from the fully
connected layer is due to the multiplying of a row from the weights’ matrix with the inputs

vector as illustrated in the Figure 4.12 .

~ ~ N —~
e —
I [
—x = —
—— —
- _ . .

Figure 4.12 FC operation

The main target of the project is acceleration of a network so in this layer uses 2

techniques to speed up its operations:
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1. Parallelism

The main idea of parallelism in this layer is using parallel engines of the building
block corresponding to the number of rows of the weights™ matrix but due to the large
number of rows only part of the rows is taken in parallel and after getting the outputs
corresponding to these rows another rows are taken as illustrated in Figure 4.13 .

Stepl RELU

~
I Input Cache
. :
— Input Cache
[ [
»

After the last

[ |
] |:> input is
e entered this
[

—

bias is added

Step2 RELU

— - Output
Input Cache @_) Cache
[ |
After the last
|:> input is
entered this
bias is added

Figure 4.13 FC parallelism
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2. Pipelining

For more speeding up, pipelining is used. In the layer's design there is a cache for
each PE at its weight port and only one cache for all the PEs at the output. So pipelining

occurs in the weights’ cache as illustrated in Figure 4.14 .

Stepl Step2

Input Cache 1 |:> Input Cache 1
[ [

Figure 4.14 pipelining inside FC caches

In Alex-Net, there exists three fully connected layers so in the following table here

are the used parameters for each single layer:
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Table 4-3 Alex-Net FC Layers parameters

layers FC6 FC7
Number of Parallel Engines 64 64

Input Size of each Parallel Engine 9216 4096
Output Size of each Parallel Engine 4096 4096

Cache size Before Parallel Engine 16K * 2 bytes 4K * 2 bytes
Number of serial loading of new 64 64

rows to the PE

For different design using different number of PEs can be given as:

Number of serial loading of new rows to the PE =

Output Size of each Parallel Engine

Number of Parallel Engines

Number of cycles for executing any fully connected layer =

FC8

25

4096

1000

4K * 2 bytes

40

Number of serial loading of new rows to the PE x Input Size of each Parallel Engine.
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4.6. Reshape function

The MATLAB function Reshape is used as a transition between the Pooling 5 layer
and the first fully connected layer(FC6) to convert the 3D matrix output from the operations
from Convl layer to pooling 5 layers to 1D column matrix to be multiplied by the fully

connected layer weights.

e Input matrix dimensions= 6*6*256.
e Output matrix dimensions= 9216*1.

Hardware implementation:

The memories used to store the output of pooling 5 layer is implemented as cache
array, the reshape output is stored in a cache of size 216 *16 bits. The main idea is address
control, to output the whole depth once and store each location in the desired position.
Example: location 0 from the output caches, gives 256 value, value O is stored in address
0 in the reshaped caches, while value 1 is stored in address 36 and so on. Location 6(1st
column in each depth), gives 256 value, value O is stored in address 1, value 2 is stored
in address 37. Finally, the output cache is reshaped to fit the next fully connected layers.

1% column in 1°
depth

Reshape
—_

36 1% column in

2" depth

9216

9180 Last column in

last depth

Figure 4.15 Reshape operation
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4.7. Summary

This chapter provides a discussion on the project’s chosen design with the details
of how each layer of the 5 main layers of Alex-Net is implemented, and accelerated using
two main techniques, parallelism of resources and pipelining inside some layers, tabulates
the different layers of the same type to show the slight difference between the

implementation of each one and the other.
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In this chapter the synthesis and implementation results are shown to demonstrate

the FPGA used resources, timing and power.

5.1. Synthesis

After synthesizing the design on FPGA Virtex 7 using the VIVADO synthesis tool,

Figure 5.1shows the utilization of the resources.

»

Utilization - Post-Synthesis

FF 1%

LUT A 11%

IjO 1 20%
BRAM 22%
DSP48 3%

BUFG 3%

0 % 50 75 100
Estimated Utilization (%)

Graph Table

»

Utilization - Post-Synthesis

Resource Estimation Available Utilization %
FF 10324 866400 1.19
LuT 47358 433200 10,93
1/o 168 850 19,76
BRAM 320 1470 21.77
DsP48 107 3600 2.97
BUFG 1 32 3.12
Graph | Table

Figure 5.1 Post synthesis utilization summary
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Figure 5.2 shows how each module is synthesized and the number of its resources.

Slice LUTs Slice Registers F7Muxes  F8Muxes Block RAM Tile DSPs Bonded I0B BUFGCTRL

Name (433200) (856400) (216600)  (108300) (1470) (3600) (850)
BNtptest | a7ssf  wsaf w0l 2] 30 107 168
--[@] add_pool_1 (POOL_address.. 295 154 0 0 0 2 0
--[@] bias1 (BiaseRom) 369 128 0 0 0 0 0
--[@] biasAdder (addBias 0 1536 0 0 0 0 0
+-[@] cache_after_Pool (RAM_AR... 0 0 0 0 43 0 0
+-[T] conv1 (conv] 6144 3072 0 0 0 % 0
“[@] CU (controlunit 11203 534 0 0 0 2 0
--[@] dataPixels (nput_memo) 0 0 0 0 32 0 0
-[@] Naddresses (norm1_addres 15620 a7 0 0 0 ] 0
+-[@ norm_1 (norm 1 251 0 0 0 0 7 0
--[@] norm_store (norm_storage 257 131 0 0 0 0 0
+-[@] Output (RAM_ARR__paran 3899 0 0 0 192 0 0
#-[@ pool1 (POC 3828 3072 160 2 0 0 0
@] tr (transition_1 769 20 0 0 0 0 0
+-[@] WA (RAM_ARR 1536 0 0 0 4 0 0

Figure 5.2 Synthesis utilization report

Analyzing the previous results of the main modules:

Module 1(Data input memory) = 32 BRAM each of size 36Kbit.

ROM:

mmmm e om o o m e e e e +
|Module Hame | RIL Ckject | Depth x Width | Implemented As |
e o o o +
|input memo | eXtrom | 65536xl148 | Block BAM |
mmmm e om o o m e e e e +

Module 2(weight array) - 48 BRAM each of size 18 Kbit

The weight array is composed of 96 weight cache each occupy 0.5 BRAM, and
1536 LUTSs for the 16*96 output wires.

Module 3(Convolution 1) = 96 DSPs for the 96 parallel engines used in the MAC
operations, 3072 slice registers one for each output.

Module 4 (bias adder) - 1536 slice registers for the 16*96 outputs.

Module 5 (Output Cache array) - 192 BRAMS each of size 36Kbit where each
cache utilizes 2 BRAMS.

Module 6 (Pool 1) - 3072 slice registers one for each output having 16*96 Inputs
and outputs.

Module 6(Cache after Pool array) - the same as weight array.

Module7 (Norm1) - 7 DSPs used for the squaring of the elements corresponding
to the equation.
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Synthesis and implementation

After implementing the design on the previous mentioned Virtex 7 FPGA using the

VIVADO implementation tool, Figure 5.3 shows the utilization of the resources.

Utilization - Post-Implementation

A
.y

FF4 1%
LUT A Qo
1/O A 20%
BRAM 22%
DSP48 3%
BUFG 3%%
0 25 50 75 100 '
Utilization (%)
Graph | Table
Utilization - Post-Implementation a
Resource Utilization Available Utilization %
FF 10342 366400 1.19
LuT 38975 433200 9.00
1/0 168 850 19.76
BRAM 320 1470 2177
DsP48 107 3600 2.97
BUFG 1 32 3.12
Graph | Table

Figure 5.3 Post implementation utilization summary

60



Chapter 5
Synthesis and implementation

The following figure shows how each module is placed and routed on Virtex 7 FPGA, and

the number of its resources.

e

Name SicelUTs  SliceRegisters ~ F7Muxes  F8 Muxes Slice
(433200) (866400) (216600)  (108300) (105300)
1"1
@ add_pou| 1(POOL_address 154 0 0
[d] bias1 (Biz: 338 128 0 0 271
biasAdder (addias) 0 1536 0 0 763
+-[1] cache_after_Pool (RAM_AR 0 0 0 0 0
(@ convi (conv) 5210 072 0 0 mn
CU (cont 5039 534 0 0 3302
dataPixels (input_memo 2 3 0 0 k)|
Naddresses (norm1_addres 15551 97 0 0 4539
(- norm_1 (norm1 249 0 0 0 101
norm_stare (norm_storage 257 131 0 0 9%
+-[@] Output mw_:p:_;a am... 4087 0 0 0 1661
(@] pool1 (P 812 072 160 2 2288
[@ tr (transition_1) 760 0 0 0 334
(£ [@) WA (RAM_ARR 1363 15 0 0 523

Block RAM Tie
(1470)

Bonded 108
(850)

LUT Flip Flop Pairs
(433200)

D5Ps
(3600)

LUT as Logic
(433200)

338 367 0 0 0
0 1536 0 0 0

0 0 8 0 0
5210 5491 0 % 0
3039 29 0 2 0
R M 2 0 0
15551 15595 0 0 0
49 249 0 7 0
257 284 0 0 0
4087 3554 192 0 0
3812 5251 0 0 0
760 768 0 0 0
1363 139 48 0 0

Figure 5.4 Implementation utilization report

Analyzing the previous results, same as the utilization report of the synthesized design

but less resources specially LUTs due to optimization option.

Timing analysis results:

The following figure shows the setup and hold time slack, which are equal to zero which

means the timing constraints are met at clock frequency 100 MHz

Design Timing Summary

Setup

Worst Negative Sladk (WNS): 0.146 ns

Total Negative Slack (TNS):

Number of Failing Endpoints:

Total Number of Endpoints:

0.000 ns
0
28858

Hold

Worst Hold Slack (WHS):

Total Hold Slack (THS):

Mumber of Failing Endpoints:
Total Number of Endpoints:

All user specified timing constraints are met.

Power analysis:

0.000 ns
0
28858

Pulse Width
Worst Pulse Width Slack (WPWS):
Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 0
Total Number of Endpoints: 11123

4.600 ns

Figure 5.5 Design timing summary

The following two figure shows the power consumption of the super layerl on the Virtex 7

FPGA, total power on chip = 1.141 watts.
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Power

Total On-Chip Power: 1141 W
Junction Temperature: 26.3 °C

Thermal Margin: 58.7 °C (49.4W)
Effective GIA: 1.1°C/w

Power supplied to off-chip devices: 0W

Confidence level: Medium

Summary On-Chip

Chapter 5

Synthesis and implementation

Power
[] Dynamic:
119 | [ Clodks:
69% 30% | [l Signals:
20% [ Logic:
I BRAM:
[Z] DSP:
] 1/0:
31%
2] Device Static:

Summary | On-Chip

Figure 5.6 Power report summary

5.3. Summary

0.785W

0.083W
0.232W
0.160 W
0.179wW
0.095wW
0.037W

0.356 W

This chapter provides the results of the synthesis and implementation of super

layerl in Alex-Net, as the kit can't fit all the design because it's a first trial design which

would be modified afterwards, using Vivado. Also it shows the number of resources

utilized on the chosen kit, which is Virtex 7, the timing constraints and the power

consumption of the design.
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In order to minimize the hardware needed across the network, the power
consumption and minimize the time required for the classifications, optimization
techniques as pipeline between network stages, replacing DSP multiplier by power
efficient multiplier were used to achieve better performance from aspect of time, power
and area. This section discuss briefly the optimization technique used and its algorithms,

then shows the area, power and time reduction achieved by applying these techniques.

6.1. Pipeline approach

As the FPGA implements the logic for all the operations even if it doesn’t work
simultaneously. The approach is to rearrange the operations into a sequence (rearrange
the algorithm into a pipeline), where each stage can operate simultaneously with the other
stages. Pipelining tends to be faster than the state machine approach for accomplishing
the same algorithm and it can even be more resource efficient [30].

The difficult part of a digital logic pipeline is that the pipeline runs and produces
outputs even when the inputs to the pipeline are not valid as shown in Figure 6.1.
Therefore, the algorithm must handle the signaling associated with pipeline logic.

o
in
v

Stage N-1 Stage N Stage N+1 Data

ek —J L L LT L L L 1L

Incoming Data Valid —,—|_|—|
incoming Data [ _(Donteare) X xin X X xn+11 X |
Qutgoing DataValid ... ooo... —J—I—J—l_
Outgoing Data | X vinl X X i1 X

| Latency |

) |

Figure 6.1 Data flow between pipeline stages
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6.2. Pipeline between the convolution and pooling
stages

Applying the pipeline approach between the convolution and pooling stages as
they are the first two stages in the algorithm. The rest of this section considers Convl and

Pooll in Alex-Net as an illustrative example for simplicity.

Typically, in Alex-Net, Convl and Pooll parameters are (kernel size=11x11x3,
output size = 55x55x96), (kernel size=3x3, stride=2, output size=27x27) respectively as in
Table 6-1. Which implies that, for the first output row of the pooling stage can be executed
after the first three rows in Conv ‘s output is completed. For the second row of the pooling
can be executed after the fourth and fifth rows of Conv are completed and so on as shown

in Figure 6.2.

Figure 6.3 shows the replacement in caches for the Conv output to reduce the

Conv output cache size, as the Conv outputs are not needed after the pooling is done.

- As the algorithm used in the design apply the convolution sequentially
across the filter, each output in Convl require 363 cycle (11x11x3), similarly for the pooling
each output needs 9 cycles (3x3), to produce a complete output row of poolingl it takes
(27x9= 243 cycle) which less than the number of cycles needed for one output of the

convolution layer, hence poolingl can operates during the convolution output is computed.
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Execution

POOL1
Output
Row#2

Time

Figure 6.2 Execution of convolution and pooling stages in pipeline

Conv1l output cache
55.col

| Output Row # 1 | Output Row # 4 Output Row # 4 Output Row # 4 _
T e
[ vt | [ ot | IO | ovrnonre || ovmsens |

POOL1 output cache
el P POOL1 output cache POOL1 output cache
Output Row #2/ Output Row #2/
27 27 row Output Row #3|
row

Pool Time

input | | | |
valid

signal

Figure 6.3 Replacement in Conv1 output cache
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Input size

Output size

Channels

Filter Size

Stride
Number of cycles for single output
Number of cycles for row output

Latency
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Table 6-1 Layer 1 parameters

Convl

227x227x3

55x55x96

96

11x11x3

11x11x3 =363

55x363= 19965

66

Pooll

55x55x96

27%x27%x96

96

3x3

3x3=9

27x9=243

55x3x363 for the first output row

55x2x363 for the remaining output rows
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6.3. Pipelined design synthesis

Super layer 1 (Convolution 1, pooling 1, normalization 1) is synthesized and
implemented to verify that the pipelined approach reduces the needed resources and also

reduces the power and time needed to execute the layers’ operations.

The design is synthesized on the previous mentioned Virtex 7 FPGA using the
VIVADO synthesis tool. Figure 6.4 shows the percentage of the utilized resources from

the total FPGA resources.

»

Utilization - Post-Synthesis

FF 1 1%
LUT 13%
Memory LUT 7 5%
1/0 19%%
BRAM - 99
DSP4E 3%
BUFG - 3%

0 5 50 75 100
Estimated Utilization (%)

Graph | Table
Post-Synthesis | Post-Implementation

Utilization - Post-Synthesis

»

Resource Estimation Available Utilization %
FF 11823 866400 1.36
T 57679 433200 13.31
Memory LUT 8448 174200 4.85
Ijo 160 850 18.82
BRAM 128 1470 8.71
DSP43 105 3600 2.92
BUFG 1 32 3.12
Graph | Table

Post-Synthesis | Post-Implementation

Figure 6.4 Post synthesis utilization summary
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The previous figure shows that the utilization of resources is reduced compared to the
original design especially in the BRAMs utilization which decreased from 22% to 9% which
a significant reduction is saving the area and power as will be shown in the design

implementation results.

Figure 6.5 shows the utilization report of the pipelined design, declaring how each module

is synthesized and number of resources used by each module.

Slice LUTs Slice Registers F7 Muxes F8 Muxes Block RAM Tile DSPs Bonded I0B BUFGCTRL

Name (433200) (856400) (216500)  (108300) (1470) (3500) (850) (32)
3 top_test 57679 11823 160 2 128 105 160
+-[@] add_pool_1 (POOL_address... 363 183 0 0 0 0 0
+-[@] bias1 (BiaseRor 369 128 0 0 0 0 0
--[T] biasAdder (zddEias 1536 1536 0 0 0 0 0
+-[@] cache_after_Pool (RAM_AR... 3652 0 160 2 48 0 0
+-[@] conv1 (conv) 6144 3072 0 0 0 9 0
+)-[@] ConviRamOut (DP_RAM_A 12384 1536 0 0 0 0 0
i [@] U (controlUnit 11419 468 0 0 0 2 0
+-[H@] dataPixels (input_men 0 0 0 0 32 0 0
-~[@] Naddresses (norm1_addres 15626 97 0 0 0 0 0
+)-[@] norm_1 (norm1 251 0 0 0 0 7 0
; norm_store (norm_storage 257 131 0 0 0 0 0
+-[@] pool1 (POC 0 3072 0 0 0 0 0
(@] tr (transition_1 769 20 0 0 0 0 0
+)-[@] WA (RAM_ARR 1536 0 0 0 43 0 0

Figure 6.5 Implementation utilization report

Utilization - utilization_1

A XS &3 4 Slice Logic - Slice LUTs - LUT as Memory (174200 available)
Hierarchy AP Q| Name Used
zrmnlary Zj =3 top_test 3443
1 lce 'ognc i g (+]-|4| ConviRamOut (DP_RAM A 8448
=}-Slice LUTs (13% ==
LUT as Logic (11% %
=8 UT as Memory (5%)
=~-LUT as Distributec
--LUT as Shift Regis

Figure 6.6 LUTSs resources of output memory

Analyzing the previous results, all modules are synthesized as before in the
original design. The noticeable difference is the utilization of the memory used to store the
convolution output, in the original design all the output of the convolution layer is stored
then the pooling operation starts, in the pipelined approach not all the outputs are stored,

only the first 3 rows are stored in a dual port RAM and immediately the pooling operation
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starts and when finished the dual port RAM is reused to store the next three rows and so

on, so a large portion of the memory is saved.

Comparing between the memory resources utilization, the output cache in the
original design which takes 192 BRAMs each of size 36Kbits, and in the pipelined design
which takes 96*88= 8448 LUTs as memory shown in Figure 6.6, 88(28 * 16 bits) LUTs to
save 3 rows for each filter output, the pipelined approach uses less memory resources.

6.4. Pipelined design implementation

The pipelined design is implemented on the Virtex 7 FPGA, to check the utilization

after the place and route phase, power and timing summary.

Figure 6.7 shows the percentage of the utilized resources from the total FPGA resources
after implementing the design.

Utilization - Post-Implementation

»

FFJ 1%
LUT 11%
Memory LUT
1/0 1 199%

BRAM 9%
DSP48
BUFG

T T T T

0 25 50 75 100
Utilization (%)

Graph Table

Post-Synthesis  Post-Implementation

»

Utilization - Post-Implementation

Resource Utilization Available Utilization %
FF 11841 366400 1.37
LuT 48394 433200 11.17
Memory LUT 8448 174200 4.85
1/0 160 850 18.82
BRAM 128 1470 8.71
DSP48 105 3600 292
BUFG 1 32 3.12
Graph = Table

Post-Synthesis . Post-Implementation

Figure 6.7 Post implementation utilization summary
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Figure 6.8 shows the utilization report of the pipelined design, declaring how each module

is implemented and number of resources used by each module.

Slice LUTs Slice Registers ~ F7 Muxes

Name (433200) (866400) (216600)
(] top_test 48394 11841 160
2dd_pool_t (POCL _addres 3% 183 0
bias1 (BiaseR 338 128 0
biasAdder (addbias 1440 153 0
+)-[1] cache_after_Pool (RAM_AR.., 3718 0 160
+1-(@] conv1 (co 5183 3072 0
- [ ConviRamOut (DP_RAM_A 12219 153% 0
[@] U (controlunit 5235 468 0
dataPixels (input_me R 3 0
Naddresses (norm1_addres. 15557 97 0
(3] norm_1 (norm 1 248 0 0
[&] norm_store (norm_storage 257 131 0
)-@] pool1 (POC 0 3072 0
tr (transition_ 758 0 0
- [T]) WA (RAM_ARR 1377 15 0

F8 Muxes
(108300)

Figure 6.8 Implementation utilization report

Slice
(108300)

13636
114
276

1414
1640
1780
4163
nz
31
4509
108
91
1022
321
509

LUT as Logic
(433200)

39946
356
33

1440
3718
5183
3
5235

2

15557
24
257

0
758
1377

LUT as Memory LUT Fiip Flop Pairs
(174200) (433200)

8 43532
354
367

2807
791
5337
13028
5376
35

15599
248
283

2688
762
1359

L]
H-B-B-BEZE-B -

Block RAM Tile

(1470)

128

0
0
0
48
0
0
0
2

w

0
0
0
0
0
48

DSPs
(3600)

105
0
0

w

oo oo wo oMo & oo

Bonded 108 BUFGCTRL
(850) (32)

160

cooco0o0cococO0o0O00C0CO

Analyzing the previous results, same as the utilization report of the synthesized design

but less resources specially LUTs due to optimization option.

Timing analysis results:

Figure 6.9 shows the setup and hold time slack, which are equal to zero which means the

timing constraints are met at clock frequency 100 MHz

Design Timing Summary

Setup Hold

Worst Negative Slack (WNS): 0.582ns
Total Negative Slack (TNS):  0.000 ns
Number of Failing Endpoints: 0

Total Mumber of Endpoints: 91176

All user specified timing constraints are met.

Figure 6.9 Holding slack for pipelined design implementation

Power analysis:

Worst Hold Sladk (WHS):
Total Hold Slack (THS):

Number of Failing Endpoints: 0

Total Number of Endpoints:

0.064ns

0.000 ns

91176

Pulse Width

Number of Failing Endpoints:

Total Number of Endpoints:

Worst Pulse Width Slack (WPWS):
Total Pulse Width Negative Slack (TPWS): 0.000 ns

4,232 ns

0
20686

Figure 6.10 shows the power consumption of the super layerl on the Virtex 7 FPGA, total

power on chip = 1.071 watts which is less than the power reported in the original design

as the resources decrease specially the BRAMs which consumes 0.179 W in the original

design, and 0.06 W in the pipelined design.
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Total On-Chip Power: 1.017W
Dynamic: 0.674W
Junction Temperature: 26.2°C
Thermal Margin: 58.8 °C (49.6 W) 13% Clocks:  0.087W
% :
Effective 0JA: L1°CW 66% 358, | [ISignals: 0.233W
Power supplied to off-chip devices: 0W 25% | Logic: 0.167W
Confidence level: Medium g% BRAM:  0.060W
15% [ OSP: 0.099W
s ‘ 1 1/0: 0.020W
[Z Device Static: 0.343W
Summary | On-Chip Summary  On-Chip

Figure 6.10 Power report summary
6.5. Summary

This chapter discusses a modification on the design discussed in chapter 4 based
on pipelining, shows how this affects the number of resources and the simulation time
emphasizing the target of the project which is accelerating Alex-Neton FPGA. Also it
provides detailed results of synthesis and implementation of super layer 1 in Alex-Netafter
this modification, to verify that the pipelined approach reduces the needed resources and
also reduces the power and time needed to execute the layers’ operations.
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7.1. Verification of RTL functionality

Back to the original purpose of the CNN is to predict the image and the object
inside it, so the complete RTL network is tested by multiple images from the IMAGNET

validation data set and compared to the MATLAB prediction.

Figure 7.1 shows a sample image from the tested images: which is harvester (reaper)

Figure 7.1 Sample image from dataset

Figure 7.2 shows the MATLAB results predicted correctly with maximum soft-max output
16.1635 and index predicted 596.
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======== Processing imagef# 15 ======= - ImagesNamesList  75x28 char
Elapsed time is 27.492959 seconds. rEEindex Max 596 I
PREDICTION ID: n03496892 PREDICTION class: harvester, reaper & 15
ACTUAL ID: n03496892 actual class: harvester, reaper =1 15
ACTUAL class no: 554 pred class no: 596 mapped pred class no: 129 ACTUAL [Elrn1 27x27x96 double
ID Pred = i mapped_predect... [129;554;1528]
n03496892 L5 maximum 15x 7 double
True=1 False=0 HI Maxinput_softmax
Minmum softMax = i minimum 15x1 double

~6.4464 I Minmum_softMax -6.4464
—=—————— FKFFFFAAHFAEND  Processina.accueracv=  2.000000e-03.No of arav images= [Emsq '========

Figure 7.2 Software classification for input image

Figure 7.3 shows the RTL behavioral simulation results which is similar to MATLAB results

with the output predicted correctly, index 595(starting from 0 index) and soft-max output

15.8125.

Behavioral Simulation Functional - sim_1 - tb_conv4

R e P | = m e
zs@ede@ § SEaREIesE
Name Search: | Q-

; gcache_ag:r_Poolz_gé = IName Value Data Type a

¥ cache_a Pool |

- @ POOL_RESHAPE_TRANS | % [ DataIn[399:0]  XXOOXXXXXX... Array
§ RESHAPE_CACHE Cfh ok 1 Logic
@curc Lfh enable Max 0 Logic
@ MM_FC6 | - (i index[9:0] 595 oy

+ @ fc6_mod ofd  |Amay |

51 @ Array. weights_FC6 |+ % MaxInt[15:0]  0000000000... Array
@ BiaseRom_FC6 |- 2§ Maxfrac[15:0]  0000000000... Array
@ addBias_FC6_n | -2 temp[15:0] 0000000000... Array

- @ data_cache fc7 : |- 2§ IntPart[15:0] 0000000000... Array
@MMFC7 - | 2§ FractionPart[1... 0000000000... Aray

+- @ fc7_mod +- 24 c[31:0] 25 Array

+ @ Array_weights_FC7 \ +- 2§ i[31:0] 40 Array
@ BiaseRom_FC7 - #§ DATA_WIDTH[... 16 Array
@ addBias_FC7_n | % ADDR_WIDTHL... 10 e

#1- @ data_cache fc8 | - parallel_fc_PE... 25 Array
@ MM_FC8 | ¢ #% DOTPOSITION... 4 Array

+- @ fc8_mod

+- @ Array_weights_FC8
@ BiaseRom_FC8 =
@ addBias_FC8_n |

1l 1) softmax ml

Figure 7.3 RTL classification for input image

Summarizing the comparison between the results of MATLAB and RTL simulation:

MATLAB RTL
MAK INDEX gqb (start from 1) gag (start from o)
SOFT MAX INDEX 16.16 15.8
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7.2. Timing comparison between software and RTL

Table 7-1 shows the time taken by each layer to be executed by MATLAB (CPU)
and on FPGA by the implemented design. It's clear that the bottleneck in simulation time
was convolution layer, therefore it was the first design consideration to be accelerated and
reduce it's time, the other layers were accelerated but the convolution has significant

contribution in decreasing simulation time.

Table 7-1 Simulation time of Software and RTL

Layer MATLAB FPGA
simulation time (in S) virtual simulation time
Convl 7.8 11 ms
Pooll 0.37 65.6 ps
Norm1 1.83 700 ps
Conv2 7.9 8.7 ms
Pool2 0.3 1690 ns
Norm2 1 432.64 ps
Conv3 3.2 4 ms
Conv4 1.64 2.8 ms
Conv5 1.04 2.9 ms
Pool5 0.01 3240 ns
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reshape

Fc6

Fc7

Fc8

Soft-max

0. 000018

0.37

0.019

0.0074

0.04

255s

3.4 ps

6ms

2.66 ms

1.68 ms

20 ns

40.25 ms
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Comparison with GPU is summarized in Table 7-2, the execution time

depends on hardware resources available of the platform.

Table 7-2 Simulation time of Alex-Neton different GPUs

GPU

Proposed Architecture

GTX 1080 Ti

Pascal Titan X

Pascal Titan X

GTX 1080

Maxwell Titan X

GTX 1080

Forward (ms)

40.94

4.31

5.04

5.32

7.00

7.09

7.35
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Maxwell Titan X 7.55

7.3. FPGA results

A sample from the accelerated design is implemented on the ZYNQ 702 board to
check the operation on real time hardware. The chosen part is the first kernel from the 1st

convolution layer and pooling operation on its output.

Figure 7.4 shows a sample of the pooling output from the real implemented design
in the SDK XILINX tool.

C/C#+ - topSW/src/main.c - Xilinx SDK
File Edit Source Refactor Navigate Search Project Xilinx Tools Run Window Help
wilkd |s~&-Fec2EaEx N v @ v r QL™ S N o R S S

= |2 Problems| & Tasks| & Console | & Properties| 4 Terminal 1 &2
1/ Serial: (COM3, 115200, 8, 1, None, None - CLOSED) - Encoding: (ISO-8859-1)
=

4@ address_cache_pool-@

poolOut=92

address_cache_pool=0
poolOut=02
address_cache_pool=0
poolOut=92
address_cache_pool=0
poolOut=92
address_cache_pool=08
poolOut=119

address_cache_pool=1

poolout=119

address_cache_pool=1

poolout=119
address_cache_pool=1
poolOut=119
address_cache_pool=1

poolOut=119

address_cache_pool=2

poolOut=886

address_cache_pool=2

Figure 7.4 FPGA output for first super layer

Comparing the FPGA results with MATLAB results, same results are obtained. For
example: the first location in SDK is 5c¢ (hex) =5.75 and from MATLAB 5.746.

Therefore, the results in MATLAB, RTL, and FPGA are matched and the output is

predicted correctly.
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7.4. Summary

This chapter provides the results of the simulation of the whole design on Vivado
and discusses the simulation timing results on Matlab and Virtual FPGA (Behavioral
Simulation) comparing between them showing how the design is accelerated in RTL

design compared to that running on software.
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8.1. Conclusion

In this thesis we demonstrate the acceleration of the forward path of a pre-trained
Alex-Net on FPGA, introducing the parallelism and pipeline techniques that can be used

to accelerate the network, and the hardware architecture used to implement it.

The proposed architecture was discussed in details. The parallelism and pipelining
techniques to accelerate the network were illustrated clearly and their contribution to
achieve better performance from area and power consumption point of view. When
evaluating performance, it is clear that the GPU is currently most efficient in terms of
execution time and throughput, though the FPGA is best in terms of power consumption

and pipelining opportunity.

In closing, its believed that this work achieve the desired objective by showing that
FPGAs can be used as a practical acceleration platform for deep convolutional neural
networks. While, in its current state, this work does not convince deep learning
practitioners to use FPGAs instead of GPUs, it's believed that the directions which make
this reality have been identified.

8.2. Future work

8.2.1. Introduction

Future work concerns deeper analysis of particular mechanisms, new proposals
to try different methods, or simply curiosity. This thesis has been mainly focused on
parallel acceleration to speed up as possible without giving enough attention to (1)
Pipelining on the Network Level, (2) using SD Card on FPGA, (3) Increasing the
parallelism according to the FPGA available resources, (4) Improving the network
accuracy using the pre-layer quantization, (5) Pruning the network to reduce the power
and increase the throughput, (6) Computational skipping,(7)Introducing time sharing

technique, and (8) Introducing PDR technique. And also, this thesis considers only one

78



Chapter 8
Conclusion and future work

picture to be processed which is saved in cache on board, so continuous input is not

introduced. These points left for the future due to lack of time.

8.2.2. Pipelining on the Network Level

Applying pipeline in Convl & Pooll lead to reduction in hardware utilization. Same
approach can be applied across the network layers. The main idea is to pass the minimum
data needed between layers to make the following layer start execution, so no layer has
spare time as possible. It is expected to increase the overall network throughput and
reduce the hardware resources significantly.

8.2.3. SD Card

Instead of initializing some ROMs in the design with the weights, bias values or the
input image values which would take in some layers many number of code lines and the
simulation tools won’t be able to compile them, an alternative solution is using the SD card
on the FPGA kit ,containing all the files of all the needed values, which would send the
data before the start of the execution of the network operations to the targeted ROMs
which would reduce the number of code lines but will take some time at first for data

transfer due to its small bus width.

8.2.4. Increase the parallelism according to the FPGA available
resources

As the network can be accelerated by increasing the number of parallel engine
that can work simultaneously, the limitation on the available FPGA resources (Block
RAMS, DSP slice, CLB). For example, considering Convl to illustrate:
the filter size = 11x11x3, and there are 96 filters. Typically, the number of parallel engines
used in current design = 96, each engine corresponds to one depth of output. Therefore,
the convolution operation for one output take 11x11x3=363 cycle. To speed up the
convolution operation we can use parallel multipliers in single depth i.e. 11x11 multiplier

for each depth, hence the convolution output is done in 3 cycles.
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8.2.5. Improve the network accuracy using the pre-layer quantization

As the accuracy was degraded after quantizing the network from (64-floating point)
to (16-fixed point with 12 bit for integer and 4 bits’ fractions for input data and 1 bit for
integer and 15 bits’ fractions for weights) which lead to decreasing in accuracy (from 53.4
to 52.7). The Pre-layer quantization can improve the network accuracy by quantizing each
layer separately which lead to better results.

8.2.6. Pruning the network to reduce the power and increase the
throughput

By eliminating all relatively small weights of neurons as they have insignificant
contribution to the output. By applying pruning algorithms to rank the neurons in the
network according to how much they contribute to the output, then remove the low ranking
neurons from the network, resulting in a smaller and faster network therefore high

throughput can be achieved.

8.2.7. Computational skipping

By skipping the operation on zero input in the network. As all the negative outputs
are set to zero after RELU layers which generate sparsity in the network, therefore the
operation on zero input can be skipped to reduce the power consumption across the

network.

8.2.8. Time sharing

By using the same hardware for all the super layers (Conv— Pool- norm), and

differentiate between their operation in time using different states for each layer.

8.2.9. PDR

By reconfiguring hardware for each layer, therefore can run all the network on one
FPGA.
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