

MASTER INFORMATION BLOCK (MIB) DECODING

PROCESSOR FOR 5G NR TECHNOLOGY

By

Ayman Helal

Kareem Ahmed Thabet

Mostafa Mahmoud Abdelkader

Nader Atef

Rahma Aly Mahmoud

Sondos Shabana

A Graduation Project Report Submitted to

the Faculty of Engineering at Cairo University

in Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science

in

Electronics and Communications Engineering

Faculty of Engineering, Cairo University

Giza, Egypt

July 2023

MASTER INFORMATION BLOCK (MIB) DECODING

PROCESSOR FOR 5G NR TECHNOLOGY

By

Ayman Helal

Kareem Ahmed Thabet

Mostafa Mahmoud Abdelkader

Nader Atef

Rahma Aly Mahmoud

Sondos Shabana

A Graduation Project Report Submitted to

the Faculty of Engineering at Cairo University

in Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science

in

Electronics and Communications Engineering

Under the Supervision of

Dr. Hassan Mostafa

 Assistant Professor

Electronics and Communications Engineering Department

Faculty of Engineering, Cairo University

Giza, Egypt

July 2023

1

Acknowledgments

We would like to sincerely thank our supervisor, Dr. Hassan Mostafa, and

STMicroelectronics’ engineers, for their continuous support and guidance throughout

our work.

2

Table of Contents
Acknowledgments.. 1

List of Tables ... 7

List of Figures .. 9

List of Symbols and Abbreviations.. 13

Abstract .. 14

Chapter 1: Introduction .. 15

1.1 Motivation ... 15

1.2 Organization of the Thesis .. 16

Chapter 2: System on Chip (SoC) Integration ... 17

2.1 Introduction ... 17

2.2 System Core (Cortex-M0) ... 17

2.2.1 Wakeup Interrupt Controller .. 18

2.2.2 Nested Vector Interrupt Controller (NVIC) ... 18

2.2.3 Debug Access Port (DAP) ... 20

2.2.4 Vector Table... 21

2.2.5 PHY Application on Cortex-M0 .. 22

2.2.6 Results .. 23

2.3 AHB Bus Matrix and Slaves ... 24

2.3.1 Instruction and Data Memories. ... 26

2.3.2 GPIO .. 26

2.3.3 PHY.. 27

2.4 APB Subsystem. .. 28

2.5 APB Slaves .. 29

2.5.1 Timer .. 29

2.5.2 Watchdog timer .. 30

2.5.3 APB UART. ... 32

3

Chapter 3: Polar Decoder Modeling. ... 34

3.1 Introduction ... 34

3.2 Literature Survey ... 34

3.3 Preliminaries.. 35

3.3.1. Polar Encoder .. 35

3.3.2. Cyclic Redundany Check (CRC) .. 41

3.4 Successive Cancellation (SC) Decoder ... 44

3.4.1 Channel Splitting .. 44

3.4.2 Decoder Core Description... 45

3.4.3 Proposed Algorithm .. 49

3.4.1 SC Decoder Limitations ... 53

3.5 Successive Cancellation List (SCL) Decoder ... 53

3.5.1 SCL decoder Operation... 53

3.6 Results ... 59

3.6.1 Polar Decoder Model Verification ... 59

3.6.2 3GPP Encoding/Decoding Specs ... 59

3.6.3 Selecting the appropriate list length (L)... 60

3.7 Fixed-Point Analysis ... 61

3.8 Conclusion ... 67

Chapter 4: Hardware Literature Survey. .. 68

4.1 Introduction. .. 68

4.2 Pipelined Tree Architecture. ... 68

4.2.1 Methodology. ... 68

4.2.2 Processing Element Architecture. .. 68

4.2.3 Advantages. .. 69

4.2.4 Disadvantages. ... 69

4.3 Line Architecture... 70

4

4.3.1 Methodology. ... 70

4.3.2 Processing Element Architecture. .. 71

4.3.3 Advantages. .. 72

4.3.4 Disadvantages. ... 72

4.4 Semi-parallel Architecture. ... 72

4.4.1 Methodology. ... 72

4.4.2 Processing Element Architecture. .. 73

4.4.3 Advantages. .. 74

4.4.4 Disadvantages. ... 74

4.5 Summary. .. 74

Chapter 5: Hardware Design Specifications. ... 75

5.1 Memory Specifications. .. 75

5.2 Clock Frequency Specifications. ... 75

Chapter 6: Hardware Design Iterations. .. 75

6.1 First design iteration. ... 75

6.2 Second design iteration. .. 76

6.3 Third design iteration. ... 77

6.4 Fourth design iteration. ... 77

6.5 Fifth design iteration. .. 78

6.6 Sixth design iteration. .. 79

Chapter 7: SC Proposed Architecture. ... 80

7.1 Introduction. .. 80

7.2 SC Interface. .. 80

7.3 SC Top-level. .. 81

7.4 SC Operation Overview. ... 82

7.5 Control Unit Sub-Module.. 83

7.5.1 Module Description. .. 83

5

7.5.2 Port Mapping. .. 85

7.6 Decision Unit Sub-Module.. 87

7.6.1 Module Description. .. 87

7.6.2 Port Mapping ... 88

7.7 Processing Element Sub-Module. ... 88

7.7.1 Module Description. .. 88

7.7.2 Port Mapping. .. 90

7.7.3 Fixed Point Modifications.. 90

7.8 Partial Sum Network. .. 91

7.8.1 Module Description. .. 91

7.8.2 Port Mapping. .. 96

7.9 SC Pipelined .. 97

7.10 SC Block level verification: .. 98

Chapter 8: SCL Proposed Architecture ... 99

8.1 Introduction. .. 99

8.2 Operation Overview. ... 100

8.3 Controller FSM Sub-Module. ... 102

8.3.1 Module Description. .. 102

8.4 Port mapping. .. 104

8.5 Metric Sorter Sub-Module. ... 106

8.5.1 Module description .. 106

8.5.2 Port mapping. ... 107

8.6 Copying Logic Sub-Module. ... 108

8.6.1 Module description. ... 108

8.6.2 Port mapping .. 109

8.7 Path Selection Sub Module. .. 110

8.7.1 Module Description. .. 110

6

8.7.2 Port Mapping. .. 110

8.8 Remove Frozen Sub-Module. ... 111

8.8.1 Module Description. .. 111

8.8.2 Port Mapping. .. 111

8.9 CRC Check Sub-Module. .. 111

8.9.1 Module Description. .. 111

8.9.2 Port Mapping. .. 112

8.10 PM Sorter Sub-Module. ... 112

8.10.1 Module Description. .. 112

8.10.2 Port Mapping. .. 113

8.11 PM Quantizer Sub-Module. ... 113

8.11.1 Module Description. .. 113

8.11.2 Port Mapping. .. 114

8.12 Modified SC Control Unit Sub-Module. ... 114

8.12.1 Module Description. .. 114

8.12.2 Port Mapping. .. 115

8.13 Modified Decision Unit Sub-Module. ... 115

8.13.1 Module Description. .. 115

8.13.2 Port Mapping. .. 116

8.14 SCL Block Level Verification ... 117

Chapter 9: PHY integration ... 118

9.1 Integrate the DL chain ... 118

9.1.1 Register Interface (RIF) ... 118

9.1.2 RX Frame Memory .. 122

9.2 The DL chain controller .. 124

9.2.1 Module Overview .. 124

9.2.2 Port Mapping ... 125

7

9.3 The Blind Decoder procedure ... 127

9.3.1 Blind Decoding Algorithm .. 127

9.3.2 HW implementation ... 128

9.3.3 SW implementation ... 129

Chapter 10: FPGA .. 129

10.1 Synthesis. ... 129

10.2 Implementation. ... 130

10.3 Design Wrapper. .. 131

Chapter 11: Conclusion .. 132

Chapter 12: Future Work ... 133

References .. 134

List of Tables

Table 2.1: NVIC Registers ... 19

Table 2.2: ISER Register ... 19

Table 2.3: ISPR Register.. 19

Table 2.4: ICPR Register ... 20

Table 2.5: IPR Registers .. 20

Table 2.6: PHY Program Steps .. 22

Table 2.7: Memory Map set for cortex-M0. .. 24

Table 2.8: Signal Description of some of the important AHB signals 25

Table 2.9: Some of the important signals coming from the APB Bridge 29

Table 4.1-Pipelined architecture scheduling .. 70

Table 4.2 - Comparison between the 3 architectures for N=512 74

Table 6.1 - Iteration 1 memory indexing ... 76

Table 7.1 - SC port mapping. ... 81

Table 7.2 - CU port mapping ... 85

Table 7.3 - DU port mapping ... 88

Table 7.4 - PE port mapping .. 90

Table 7.5 - PSN port mapping ... 96

8

Table 8.1 Controller FSM port mapping.. 104

Table 8.2 metric sorter port mapping ... 107

Table 8.3 Copying logic port mapping. ... 109

Table 8.4 - Path_sel port mapping ... 110

Table 8.5 - Remove frozen port mapping .. 111

Table 8.6 - CRC check port mapping .. 112

Table 8.7 - PM sorter port mapping ... 113

Table 8.8 - PM quantizer port mapping ... 114

Table 8.9 - Modified CU New ports .. 115

Table 8.10 - DU New Ports.. 117

Table 9.1: PHY Memory map .. 119

Table 9.2: RIF_SW_FLAGS_REG content ... 121

Table 9.3: RIF_PARAM_REG content ... 121

Table 9.4 RIF_CONTROL_REG content .. 121

Table 9.5: Half Frame Memory port mapping ... 123

Table 9.6: Top controller memory map ... 125

9

List of Figures

Figure 2.1 - Full System Block Diagram ... 17

Figure 2.2 - Cortex-M0 Block Diagram .. 18

Figure 2.3 - Flow Chart of PHY Program.. 23

Figure 2.4 - The passed iteration when iSSB is 1 .. 24

Figure 2.5 - Failed iteration when iSSB is zero ... 24

Figure 2.6 - Part of the AHB Bus matrix block diagram ... 25

Figure 2.7 - Memories Block diagram showing the interface with the bus matrix 26

Figure 2.8 - GPIO interface ... 26

Figure 2.9 - GPIO Alt. function ... 27

Figure 2.10 - PHY Block Diagram .. 28

Figure 2.11 - AHB to APB bridge block diagram ... 29

Figure 2.12 - APB Timer ... 30

Figure 2.13 - APB Watchdog... 31

Figure 2.14 - Watchdog timer flow diagram ... 32

Figure 2.15 - APB UART .. 33

Figure 2.16 - UART block ... 34

Figure 3.1 - Polar Block Code ... 35

Figure 3.2 - Part of the reliability sequence provided by the 3GPP 36

Figure 3.3 - Encoding Tree diagram containing the encoding rules. 37

Figure 3.4 - Step 1 of the encoding process ... 37

Figure 3.5 - Step 2 of the encoding process ... 38

Figure 3.6: Step 3 of the encoding process. ... 38

Figure 3.7 - Step 4 of the encoding process ... 39

Figure 3.8 - CRC block at Tx side ... 41

Figure 3.9 - CRC Block at Rx Side.. 43

Figure 3.10: Binary Erasure Channel (BEC) .. 44

Figure 3.11 - Two synthetic channels .. 44

Figure 3.12 - 𝑊2(−) channel outputs ... 45

Figure 3.13 - 𝑊2(+) channel outputs ... 45

Figure 3.14 - SC tree diagram .. 46

Figure 3.15: f operation on left child node N = 2 .. 46

Figure 3.16 - g operation on right node N = 2 ... 47

10

Figure 3.17 - Return back operation N = 2 .. 47

Figure 3.18 - Left node f operation .. 48

Figure 3.19 - Right child g operation ... 48

Figure 3.20 - Return back operation .. 48

Figure 3.21 - Sequence of operation .. 50

Figure 3.22 - Tree Representation ... 50

Figure 3.23 - Decoding Tree Steps .. 54

Figure 3.24 - Decoding Tree Steps .. 55

Figure 3.25 - Decoding Tree Steps .. 55

Figure 3.26 - Decoding Tree Steps .. 56

Figure 3.27 - Decoding Tree Steps .. 56

Figure 3.28 - Decoding Tree Steps .. 57

Figure 3.29 - SC and SCL decoders comparison with paper 59

Figure 3.30 - TX-RX chain starting from channel encoder and ending at channel

decoder. .. 60

Figure 3.31 - Selecting the appropriate L. ... 61

Figure 3.32 - Fixed-Point Representation .. 62

Figure 3.33: Comparing the resulting curves from quantization with the floating one.

The X-axis range is -12: -6 with step 0.1 dB. .. 63

Figure 3.34 - The quantized curve at Q = 6 with the floating curve to show that the

difference between the 2 curves is 0.1 dB approximately. The X-axis range is -12:-7

with step 0.1 dB. .. 63

Figure 3.35 - Summary of the results of fixed-point analysis first trial 64

Figure 3.36: The first 4 levels of the total 9 levels of the tree diagram. The division by

2 happens at the 4th level, mainly at the right node. .. 64

Figure 3.37 - Comparing the resulting curves from quantization with the floating one

after decreasing the dynamic range of the internal signals. ... 65

Figure 3.38 - The quantized curve at Q = 7 with the floating curve to show that the

difference between the 2 curves is 0.1 dB approximately ... 66

Figure 3.39 - Summary of the results of the fixed-point analysis after decreasing the

dynamic range of the internal signals. ... 66

Figure 4.1- PE Pipelined architecture .. 69

Figure 4.2-Pipelined architecture data path for N=8 ... 70

Figure 4.3- Line Architecture for N=8 ... 71

11

Figure 4.4 - Line architecture PE ... 71

Figure 4.5 - Semi-parallel architecture .. 73

Figure 4.6 - Semi-parallel architecture PE ... 73

Figure 6.1 - One memory for each stage .. 77

Figure 6.2 - Memory misalignment ... 78

Figure 6.3 - Two memories for each stage. ... 79

Figure 6.4 - First Vs second fixed point .. 79

Figure 7.1 - SC interface .. 80

Figure 7.2 - SC top level .. 82

Figure 7.3 - SC Operation. ... 83

Figure 7.4 - Control Unit Operation .. 84

Figure 7.5 - CU Multiplexing for N=8. ... 85

Figure 7.6 - CU port mapping .. 86

Figure 7.7 - DU operation .. 87

Figure 7.8 - DU port mapping.. 88

Figure 7.9 - G function node .. 89

Figure 7.10 - F function node .. 89

Figure 7.11 - PE port mapping ... 90

Figure 7.12 - PE after fixed point modifications ... 91

Figure 7.13 - Partial sums calculations .. 92

Figure 7.14 - SR-PSN internal structure .. 93

Figure 7.15 - Matrix generation unit .. 94

Figure 7.16 - PSN operation .. 95

Figure 7.17 - PSN internal structure .. 95

Figure 7.18 - PSN port mapping .. 96

Figure 7.19 SC Pipelined Top level ... 97

Figure 7.20 First 3 cycles in pipeline operation ... 98

Figure 7.21 Normal pipeline operation .. 98

Figure 7.22 - Test bench outputs.. 98

Figure 7.23 Output decoded bits .. 99

Figure 8.1 - SCL architecture ... 100

Figure 8.2 - SCL operation .. 101

Figure 8.3 FSM of SCL Top Controller... 102

Figure 8.4 Controller FSM port mapping .. 104

12

Figure 8.5 - Comparison between sorting algorithms [16] .. 106

Figure 8.6 - metric sorter port mapping ... 107

Figure 8.7 - Copying logic operation ... 108

Figure 8.8 - Copying logic port mapping... 109

Figure 8.9 - Path_sel port mapping .. 110

Figure 8.10 - Remove frozen port mapping ... 111

Figure 8.11 - CRC check port mapping ... 112

Figure 8.12 - PM sorter port mapping ... 113

Figure 8.13 - PM quantizer port mapping .. 114

Figure 8.14 - Modified control unit port mapping ... 115

Figure 8.15 - DU New port mapping ... 116

Figure 8.16 - SCL Functional verification ... 117

Figure 8.17 SCL Modelsim waveform .. 118

Figure 9.1 - PHY block diagram .. 118

Figure 9.2 - RX Frame Memory FSM ... 123

Figure 9.3 - RX Frame Memory Waveform .. 123

Figure 9.4 - RX Frame Memory block diagram .. 124

Figure 9.5 - Controller's FSM diagram .. 125

Figure 9.6: Top controller block diagram .. 127

Figure 9.7:Hardware Blind Decoder FSM ... 129

Figure 10.1 - RTL simulation .. 130

Figure 10.2 - Synthesis timing analysis. .. 130

Figure 10.3 - Post synthesis simulation ... 130

Figure 10.4 - Post implementation simulation. .. 130

Figure 10.5 - Implementation timing analysis. .. 131

Figure 10.6 - Design block... 132

Figure 10.7 - FPGA utilization .. 132

13

List of Symbols and Abbreviations.

NR New Radio

3GPP Third Generation Partnership Project

IoT Internet of things

VR Virtual Reality

PHY Physical Layer

MIB Master Information Block

PBCH Physical Broadcast Channel

SSB Synchronization Signal Block

PSS Primary Synchronization Signal

SSS Secondary Synchronization Signal

UE User Equipment

CRC Cyclic Redundancy Check

AHB Advanced High-performance Bus

APB Advanced peripheral Bus

SC Successive Cancellation

SCL Successive Cancellation List

RS Reliability Sequence

PM Path Metric

LLR Log-Likelihood Ratio

PE Processing Element

BRAM Block RAM

PSN Partial Sum Network

Sgn Sign

PS Part of Stage index number

FFS First Set bit

i Decoded bit index

CU Control Unit

DU Decision Unit

SM Sign and Magnitude

DFF D FlipFlop

SR Shift Register

LFSR Linear Feedback Shift Register

FPGA Field Programmable Gate Array

BD Blind Decoder

HW BD Hardware Blind Decoder

14

Abstract

The 5G technology aims at achieving an enhanced mobile broadband, ultra-

reliable and low latency communications, and massive machine-type communications.

To achieve these goals, 3GPP has introduced a unified network architecture, with a new

physical layer design, namely the New Radio (NR), that supports very high carrier

frequencies (mmWaves), large frequency bandwidths, and new techniques such as

massive multiple-input and multiple-output (MIMO), and beamforming.

The NR modem includes many basic building blocks such as the carrier scanning, cell

selection, physical channels decoding, measurements, and more. In this project,

although we consider a system on chip solution, we focus on only one building block

within the NR modem. For simplicity, we will treat this building block as a complete

independent processor despite that fact that it is one gear in the whole NR system. This

processor is basically the full decoding chain for the Physical Broadcast Channel

(PBCH) that carries the important Master Information Block (MIB).

The PBCH Decoding processor is a purely digital processor that is customized to

decode the PBCH channel within the NR modem. Form the overall system perspective

and the microprocessor point-of-view, this processor is employed as a HW accelerator

that receives a command from the microprocessor through its register interface. The

command is mainly to decode the PBCH channel. However, this command should be

associated with various system parameters (such as the cell ID, the time stamp, … etc)

that enables the PBCH Decoding processor to decode the PBCH. In return, the PBCH

Decoding processor would inform the microprocessor that the processing is complete

through an interrupt system and/or a register polling mechanism. The PBCH Decoding

processor would save the results in some internal registers that are accessible through

the register interface. The results are mainly the MIB payload if the PBCH is decoded

successfully, and an indicator whether the PBCH is decoded successfully or not.

The PBCH Decoding processor implements the typical receiver chain for the PBCH

detection. This processor has some mandatory building blocks including the FFT,

channel estimation and equalization, demodulation process, and the channel decoding

stage. One important feature about this processor is its ability to control the various

building blocks within the blind decode trials.

15

Chapter 1: Introduction

1.1 Motivation

5G New Radio (NR) is the latest global wireless network protocol developed by

the Third Generation Partnership Project (3GPP) that provides faster and better mobile

services compared to previous generations. 5G can connect billions of devices that

share information in real time while providing stable and reliable connectivity. It

introduces a massive shift in applications that require secure and reliable real time

connectivity such as the Internet of Things (IoT), virtual reality (VR), and many more

[1].

To support the evolution from 4G to 5G and the different functionalities offered by the

5G network, the 3GPP defined a large set of protocols for transmitting user data and

control information across all network layers.

In the physical (PHY) layer (Layer 1), the 3GPP defines a new signaling block, Master

Information Block (MIB). It contains the critical system parameters needed for radio

resource management, channel quality reports, and higher layers’ information. This

block is broadcasted on the physical broadcast channel (PBCH), where the PBCH

resources are mapped with synchronization signals in a special segment of the resource

grid called Synchronization Signal Block (SSB).

The SSB consists of 3 signals: Primary synchronization signal (PSS), Secondary

synchronization signal (SSS), and Physical broadcast channel (PBCH). PSS and SSS

are responsible for time domain synchronization while the PBCH Payload contains the

MIB. Hence, one of the PHY layer’s main procedures is the downlink cell’s

synchronization which consists of time synchronization and MIB decoding.

MIB enables the synchronization of the user equipment (UE) with the network, it

conveys the UE and network entities parameters and capabilities, such as the carrier

frequency, bandwidth, modulation, coding rate, and access control parameters of 5G

NR. The UE must detect the MIB during the initial cell attach procedure. Hence, it plays

a key part in the 5G network connection and is said to be the highest-priority data block

in the 5G network and is defined as the first information element in a message [2].

Multiple SSBs are periodically transmitted through the channel in a single

Synchronization Signal (SS) burst. Each SSB within the burst contains the same MIB

payload and is transmitted with a unique index, the SSB index, which corresponds to a

specific beam. The goal of our processor is to successfully identify the SSB index and

decode the MIB.

In this thesis, we are focusing on one building block within the NR modem and are

treating it for simplicity as an independent processor. This processor represents the full

decoding chain of the MIB payload found in the PBCH. It consists of 3 main

subsystems: FFT subsystem, post-FFT subsystem and the Decoder Subsystem.

16

1.2 Organization of the Thesis

In this thesis, our main focus is the decoding process (Polar decoders) used in

NR technology including the cyclic redundancy check (CRC) operation.

The rest of this thesis is organized as follows. Chapter 2 details the full system on chip

specs and components starting from the used core, the Advanced High-performance

Bus (AHB) address map, and down to the used Advances Peripheral Bus (APB) slaves.

Chapter 3 provides a literature survey of polar codes and polar decoders in specific the

successive cancellation (SC) and successive cancellation list (SCL) decoders. Then,

introduces the 2 implemented decoders model in detail and discusses their operation

including CRC operation in addition to some hardware architectures found in the

literature. It also presents the work done to select the appropriate decoder and the fixed-

point analysis operations.

Chapters 4:8 discuss the implemented hardware architecture and the steps followed to

obtain an optimum design. Chapter 9 introduces the system integration including the

blind decoding process and how the processor operates to successfully decode the MIB

payload. Finally, the conclusion and the possible future work are stated in Chapters

11:12.

17

Chapter 2: System on Chip (SoC) Integration

2.1 Introduction

In this chapter, we will discuss the full system components, starting from the

core (Cortex-M0) to the APB slaves. The Core is connected to multiple AHB slaves

through an AHB Bus matrix that uses a unique memory map.

In our system, we had the following AHB slaves: Instruction and Data memories,

General purpose input output (GPIO), the AHB to APB bridge and the PHY that

contains the implementation of the MIB decoding chain that will be discussed in the

upcoming chapters, Fig. 2.1.

The AHB to APB bridge connects the Bus matrix to the following slaves: Timer,

Watchdog and the UART. These slaves and their usage will be explained in the

following sections.

2.2 System Core (Cortex-M0)

Could you imagine moving your limps without your brain? Of course not, so as

a system, the system has many peripherals, but they want to talk with each other but

how when each one has its own signals, standard and sequence? This is the processor

mission. In this section, we talk about the kind of processor that we use to control our

system which is cortex M0.

This processor is one of the smallest arm processors available. It has an exceptionally

small silicon area, low power, and low cost. It is a 32-bit RISC ARM processor core

licensed by ARM limited. The ultra-low gate count of the processor enables its

Figure 2.1 - Full System Block Diagram

18

deployment in analog and mixed devices. The block diagram of Cortex-M0 is shown

in Fig. 2.2. We discuss each of the main blocks of this diagram in the following sub-

sections.

Figure 2.2 - Cortex-M0 Block Diagram

2.2.1 Wakeup Interrupt Controller

The device might include a Wakeup Interrupt Controller (WIC), an optional

peripheral that can detect an interrupt and wake the processor from deep sleep mode.

The WIC is enabled only when the DEEPSLEEP bit in the SCR is set to 1. The WIC is

not programmable and does not have any registers or user interface. It operates entirely

from hardware signals.

When the WIC is enabled and the processor enters deep sleep mode, the power

management unit in the system can power down most of the Cortex-M0 processor. This

has the side effect of stopping the SysTick timer. When the WIC receives an interrupt,

it takes several clock cycles to wake up the processor and restore its state before it can

process the interrupt. This means interrupt latency is increased in deep sleep mode.

2.2.2 Nested Vector Interrupt Controller (NVIC)

This section describes the NVIC and the registers it uses. The NVIC supports:

- An implementation-defined number of interrupts, in the range 1-32.

- A programmable priority level of 0-192 in steps of 64 for each interrupt. A

higher level corresponds to a lower priority, so level 0 is the highest interrupt

priority.

- Level and pulse detection of interrupt signals.

- Interrupt tail-chaining.

- An external NMI.

The processor automatically stacks its state on exception entry and unstacks this state

on exception exit, with no instruction overhead. This provides low latency exception

handling. The hardware implementation of the NVIC registers is shown in table (2-1).

19

Table 2.1: NVIC Registers

Address Name Type Reset value Description

0xE000E100 ISER RW 0x00000000 Interrupt Set-enable Register

0xE000E180 ICER RW 0x00000000 Interrupt Clear-enable Register

0xE000E200 ISPR RW 0x00000000 Interrupt Set-pending Register

0xE000E280 ICPR RW 0x00000000 Interrupt Clear-pending Register

0xE000E400-

0xE000E41C

IPR0-7 RW 0x00000000 Interrupt Priority Registers

2.2.2.1 Interruput Set-enable Register

The ISER enables interrupts and shows the interrupts that are enabled. The bit

assignments are shown in table (2-2).

Table 2.2: ISER Register

Bits Name Function

[31:0] SETENA Interrupt set-enabled bits.

Write: 0 = no effect, 1 = enable interrupt.

Read: 0 = interrupt disabled, 1 = interrupt enabled

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority.

If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to

pending, but the NVIC never activates the interrupt, regardless of its priority.

2.2.2.2 Interrupt Set-pending Register

The ISPR forces interrupts into the pending state and shows the interrupts that

are pending. The bit assignments are shown in table (2-3).

Table 2.3: ISPR Register

Bits Name Function

[31:0] SETPEND Interrupt set-pending bits.

Write: 0 = no effect, 1 = changes interrupt state to

pending.

Read: 0 = interrupt is not pending, 1 = interrupt is

pending

Writing 1 to the ISPR bit corresponding to:

- An interrupt that is pending has no effect.

- A disabled interrupt sets the state of that interrupt to pending.

2.2.2.3 Interrupt Clear-pending Register

The ICPR removes the pending state from interrupts and shows the interrupts

that are pending. The bit assignments are shown in table (2-4).

https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-set-enable-register?lang=en
https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-clear-enable-register?lang=en
https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-set-pending-register?lang=en
https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-clear-pending-register?lang=en
https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-priority-registers?lang=en

20

Table 2.4: ICPR Register

Bits Name Function

[31:0] CLRPEND Interrupt clear-pending bits.

Write: 0 = no effect, 1 = removes pending state interrupt.

Read: 0 = interrupt is not pending, 1 = interrupt is

pending

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

2.2.2.4 Interrupt Priority Register

The interrupt priority registers provide an 8-bit priority field for each interrupt,

and each register holds four priority fields is shown in table (2-5). This means the

number of registers is implementation-defined and corresponds to the number of

implemented interrupts. These registers are only word accessible.

Table 2.5: IPR Registers

Bits Name Function

[31:24] Priority, byte offset

3

Each priority field holds a priority value, 0-192. The

lower the value, the greater the priority of the

corresponding interrupt. The processor implements

only bits [7:6] of each field, bits [5:0] read as zero

and ignore writes. This means writing 255 to a

priority register saves value 192 to the register.

[23:16] Priority, byte offset

2

[15:8] Priority, byte offset

1

[7:0] Priority, byte offset

0

The following steps show how to find the IPR number and byte offset for an

interrupt M:

- The corresponding IPR number, N, is given by N = N DIV 4.

- The byte offset of the required Priority field in this register is M MOD 4,

where:

o byte offset 0 refers to register bits [7:0].

o byte offset 1 refers to register bits [15:8].

o byte offset 2 refers to register bits [23:16].

o byte offset 3 refers to register bits [31:24].

2.2.3 Debug Access Port (DAP)

The processor has a low gate count Debug Access Port (DAP). This provides a

Serial Wire or JTAG debug-port and connects to the processor slave port to provide full

system-level debug access. The DAP enables communication between the core and the

device pins during debug.

The Debug Access Port enables the following:

- Halting, resuming, and single stepping of program execution.

- Access to processor core registers and special registers.

- On-the-fly memory access.

- Data watchpoints.

- HW/SW breakpoints.

- PC sampling for basic profiling.

21

2.2.4 Vector Table

The vector table contains the reset value of the stack pointer, and the start

addresses, also called exception vectors, for all exception handlers. Table (2-6) shows

the order of the exception vectors in the vector table. The least-significant bit of each

vector must be 1, indicating that the exception handler is written in Thumb mode. The

vector table is fixed at address 0x00000000.

Exception number IRQ number Vector Offset

16 + n n IRQn

0x40+4n

.

.

.

 .

.

.

.

.

.

18 2 IRQ2

0x48

17 1 IRQ1

0x44

16 0 IRQ0

0x40

15 -1 SysTick, if implemented

0x3C

14 -2 PendSV

0x38

13

12

Reserved

11 -5 SVCall

0x2C

10

9

8

7

6

5

4

Reserved

0x10

3 -13 HardFault

0x0C

2 -14 NMI

0x08

1 Reset

0x04

 Initial SP value

0x00

22

2.2.5 PHY Application on Cortex-M0

The algorithm the cortex working with is as follows:

- First, the cortex is reset. Then the PC is loaded with address 0x00000000

- The processor reads the value from 0x00000000 location to MSP.

- Then the processor reads the address of the reset handler from location

0x00000004

- Then it jumps to reset handler and start executing the instructions

- The main application (as illustrated in table (2-7)) is included in the reset

handler.

- The interrupt TTI_INT is enabled using the NVIC_EnableIRQ() function.

So that when it arrives, it is served by the processor then it returns to the

main application again.

The flow chart in Fig. 2.3, implements the firmware of the PHY which decodes the

MIB and checks its correctness then transmits the MIB and its succeeded iSSB through

UART IP to a monitor to print them.

Table 2.6: PHY Program Steps

1 Fill MMSE coefficient memories.

2 Transmit PHY subsystems parameters

3 - Assert Rx_Start_RIF signal. (Start FFT subsystem

operation)

- De-assert Rx_Stop_RIF signal.

4

 If FFT_done is asserted:

- De-assert Rx_Start_RIF signal.

- Assert Rx_Stop_RIF signal.

SW
Assert the trial_start_rif signal so that the blind decoding

starts (Start Post-FFT subsystem operation).

HW De-assert trial_start_rif.

5
SW

If trial_done is asserted:

- De-assert trial_start_rif.

- check CRC_result value.

HW If All_done is asserted, check CRC_result value.

6

If CRC_result equals 1:

The correct iSSB was found and the MIB was decoded

successfully.

Report the correct iSSB and MIB payload to the processor,

then go to step 2.

7

 If CRC_result equals 0

SW
iSSB < 3

Transmit new iSSB value.

Assert trial_start_rif

Go to step 5

iSSB = 3 Failed to decode MIB. Go to step 2

HW Go to step 2

23

2.2.6 Results

The PHY application is implemented in C language. We have loaded the code in

the instruction memory, sent the required parameters to the PHY and started simulating

the system on ModelSim, and we have tested output then compared it with the data

from the reference model (which is implemented on MATLAB). In the chosen test case,

the iSSB is 1. So, we have the following results:

- When the iSSB index is 0, the iteration fails as shown in Fig. 2.4.

Figure 2.3 - Flow Chart of PHY Program

24

- When the iSSB index is 1, the iteration is passed as shown in Fig. 2.5, since this

is the value of iSSB index the processor sent.

Hint: All inputs of the cortex must take a value (you must not leave an input floating).

For the outputs, connect what you need and leave the rest floating.

2.3 AHB Bus Matrix and Slaves

The AHB bus is a widely used bus protocol in the ARM cortex-M architecture.

It connects the various components with the system-on-chip (SoC) design, enabling

data transfer while maintaining ease of use. Each slave is set a certain address range in

the cortex memory map.

The memory map for the system was set according to the specified ranges outlined in

the Cortex design manual. We generated the bus matrix using XML file where we

specified the address range for each slave as indicated in table 1.

A section of the block diagram of the bus matrix is presented in Fig.2.6, where the input

and output signals are shown, and the description of the main signals is shown in table

(2).

Table 2.7: Memory Map set for cortex-M0.

Slave

number
Slave Name Start address End address Size

0 Instruction Memory 0x0000_0000 0x000F_FFFF 1 M

 Reserved 0x0010_0000 0x1FFF_FFFF 511 M

1 Data Memory 0x2000_0000 0x200F_FFFF 1 M

 Reserved 0x2010_0000 0x3FFF_FFFF 511 M

2 Bridge

UART 0x4000_0000 0x4000_0FFF 4 K

Watchdog 0x4000_1000 0x4000_1FFF 4 K

Timer 0x4000_2000 0x4000_2FFF 4 K

 Reserved 0x4000_3000 0x4000_FFFF 52 K

Figure 2.5 - Failed iteration when iSSB is zero

Figure 2.4 - The passed iteration when iSSB is 1

25

3 GPIO 0x4001_0000 0x4001_0FFF 4 K

4 PHY 0x4001_1000 0x4001_5FFF 20 K

Whenever the processor needs to access a certain AHB slave, it writes its specified

address from the memory map.

Table 2.8: Signal Description of some of the important AHB signals

Signal Description

HCLK System clock, Logic is triggered on the rising edge of the clock.

HRESETn Activate LOW asynchronous reset.

HADDR Address from AHB

HSEL When enabled means a specific slave is selected

HSIZE Indicate the size of transfer either word or half word or Byte

HWRITE
When enabled indicates a write transfer otherwise a read transfer

occurs

HWDATA/

HRDATA
Data transferred from/to bus matrix

HTRANS Indicates transfer type (IDLE, BUSY, NONSEQ, SEQ)

Figure 2.6 - Part of the AHB Bus matrix block diagram

26

2.3.1 Instruction and Data Memories.

The memories are connected to the AHB Bus matrix through a special interface

AHB to SRAM interface. This interface translates the incoming AHB signals into

signals understood by the SRAM module, Fig. 2.7

• Instruction Memory: contains the instruction needed for the system to function.

• Data Memory: contains the data needed for each subsystem in the PHY to

operate correctly.

2.3.2 GPIO

GPIO is an essential component in any SoC integration. It is a general purpose

I/O interface unit of 16 bits with some properties such as programmable interrupts and

alternate functions.

Figure 2.8 - GPIO interface

Figure 2.7 - Memories Block diagram showing the interface with the bus matrix

27

Interrupt generation feature can be programmed through three registers which are

interrupt enable, interrupt polarity and interrupt type, each register has separate set and

clear addresses. Each bit of the I/O pins can be configured through these three registers.

Interrupt polarity can be set to high or low while interrupt type can be set to level or

edge triggered. When an interrupt is triggered, its corresponding bit in INSTATUS

register and GPIOINT are asserted. To de-assert these two bits and clear the interrupts,

one has to be written inside INTCLEAR register. During interrupt generation, three

cycle latency is introduced, two or input synchronization and another cycle for

registering the interrupt status.

Each pin in the GPIO can be used as an I/O pin or an alternate function such as timer

or UART or any other supported feature, this is done through out a multiplexing

network for each bit as shown in Fig. 2.9. This alternate function feature is enabled by

default for all GPIO pins and can be disabled by writing one inside the alternative

function clear register.

Masked access is another feature which allows reading from or writing to individual

bits or multiple bits, this avoids read-modify-write operations which are not thread safe.

The GPIO slave was synthesized for FPGA and it was found that its frequency upper

limit is 602 MHZ.

2.3.3 PHY.

It contains the main part of our project, which is the physical (PHY) layer

implementation. It consists of the following blocks, Fig. 2.10:

- 3 main building Subsystems: FFT subsystem, post-FFT subsystem and the decoder

subsystem.

- Controller: it implements the blind decoding algorithm (discussed in chapter 9).

- Register interface: an interface to the AHB bus matrix that connects the PHY to the

rest of the system (discussed in chapter 9).

- Memories.

Figure 2.9 - GPIO Alt. function

28

We will go into further details into the implementation of the PHY in the following

chapters.

2.4 APB Subsystem.

The Advanced High-performance Bus (AHB) to Advanced Peripheral Bus

(APB) bridge is used in system-on-chip (SoC) designs to connect the AHB bus, which

is typically a high-performance bus, to the APB bus, which is typically a lower-

performance bus. Here are a few reasons why an AHB to APB bridge is used:

- Bus Compatibility: In a complex SoC design, different modules or peripherals may

have different bus interfaces. The AHB bus is commonly used as the main

interconnect for high-performance components such as GPIO and SRAMs, while

the APB bus is used for lower-performance peripherals such as Timers and

watchdogs. By using an AHB to APB bridge, it allows these different bus interfaces

to communicate with each other seamlessly.

- Performance Optimization: The AHB bus is designed to provide high-performance

data transfers between different modules or peripherals within the SoC. On the other

hand, the APB bus operates at a lower clock frequency and is more suited for

connecting slower peripherals that don't require high bandwidth. The AHB to APB

bridge allows for the efficient transfer of data between the high-performance AHB

bus and the lower-performance APB bus, optimizing the overall system

performance.

- Performance Optimization: The AHB bus is designed to provide high-performance

data transfers between different modules or peripherals within the SoC. On the other

hand, the APB bus operates at a lower clock frequency and is more suited for

connecting slower peripherals that don't require high bandwidth. The AHB to APB

bridge allows for the efficient transfer of data between the high-performance AHB

bus and the lower-performance APB bus, optimizing the overall system

performance.

- Power Management: The AHB bus consumes more power compared to the APB

bus due to its higher clock frequency and increased bandwidth. By using an AHB

to APB bridge, it is possible to selectively enable or disable specific peripherals or

Figure 2.10 - PHY Block Diagram

29

modules connected to the APB bus, thus providing power management capabilities.

This allows the system to conserve power by only activating the necessary

peripherals when needed.

- System Integration: SoCs often consist of multiple IP (intellectual property) blocks

or subsystems that may have different bus protocols. The AHB to APB bridge acts

as a protocol converter, enabling seamless integration of these IP blocks into the

overall SoC design. It provides a standardized interface for communication between

different subsystems, regardless of their individual bus protocols.

Overall, the AHB to APB bridge plays a crucial role in enabling communication,

optimizing performance, facilitating power management, and integrating different

subsystems within a system-on-chip design. The block diagram of the APB bridge is

presented in Fig. 2.11 where table explains some of the important output signals.

Table 2.9: Some of the important signals coming from the APB Bridge

Signal Description

PCLK System clock, Logic is triggered on the rising edge of the clock.

PRESETn Activate LOW asynchronous reset.

PADDR LSB of AHB address [15:0]

PSEL When enabled means a specific slave is selected

PWRITE
When enabled indicates a write transfer otherwise a read transfer

occurs

PWDATA/

PRDATA
Data transferred from/to bridge

2.5 APB Slaves

2.5.1 Timer

The APB timer is a 32 bit down-counter which generates an interrupt request

signal, TIMERINT, when the counter reaches 0. The interrupt request is held until it is

cleared by writing to the INTCLEAR Register. If the APB timer count reaches 0, and

Figure 2.11 - AHB to APB bridge block diagram

30

at the same time, the software clears a previous interrupt status, then the interrupt status

is set to 1.

The timer peripheral contains a separate clock pin PCLKG for the APB register read or

write logic that permits the clock to peripheral register logic to stop when there is no

APB activity. You can turn-off the gated peripheral bus clock for register access

PCLKG when there is no APB access which has same frequency and synchronous

PCLK.

The timer can use external input signal EXTIN as a timer enable through zero to one

transition of this signal.

2.5.1.1 Access Timer Peripheral

1. To enable the timer peripheral interrupt, you should access the timer CTRL

register through the following steps:

- Set PADDR to address of CTRL register = 0x000.

- Set PDATA = 32'd9 to set timer interrupt enable and global enable of module.

- Set PSEL = 1 and PWRITE = 1.

2. To reload the counter of the timer with a given value you should access the timer

RELOAD register through the following steps:

- Set PADDR to address of RELOAD register = 0x008.

- Set PDATA to the number you want.

- Set PSEL = 1 and PWRITE = 1.

3. To clear the timer interrupt you should access the timer INTCLEAR register and

set this register through the following steps:

- Set PADDR to address of INTCLEAR register = 0x00c.

- Set PDATA = 1

- Set PSEL = 1 and PWRITE = 1.

2.5.2 Watchdog timer

The Watchdog module peripheral is a 32-bit down counter that is

initialized from the Reload Register. The counter decrements by one on each

positive clock edge of WDOGCLK when the clock enables WDOGCLKEN

Figure 2.12 - APB Timer

31

is HIGH. When the counter reaches zero an interrupt is generated. On the

next enabled WDOGCLK clock edge the counter is reloaded from the reload

Register and the countdown sequence continues. If the interrupt is not cleared

by the time that the counter next reaches zero, then the Watchdog module

asserts the reset signal WDOGRES, and the counter is stopped. This signal

causes the system to be rested.

WDOGCLK can be equal to or be a sub-multiple of the PCLK frequency.

However, the positive edges of WDOGCLK and PCLK must be

synchronous and balanced.

The Watchdog module interrupt and reset generation can be enabled or

disabled through the Control Register WdogControl. When the interrupt

generation is disabled then the counter is stopped. When the interrupt is re-

enabled then the counter starts from the value programmed in WdogLoad

and not from the last count value.

The Watchdog counter only decrements on a rising edge of WDOGCLK when

WDOGCLKEN is HIGH. The relationship between WDOGCLK and PCLK must

observe the following constraints:

- The rising edges of WDOGCLK must be synchronous and balanced with a

rising edge of PCLK.

- The WDOGCLK frequency cannot be greater than the PCLK Frequency.

2.5.2.1 Access WDT Peripheral

1. Enable APB to access WDT registers by unlocking its registers through accessing

Lock WDT register. Writing a value of 0x1ACCE551 to the register enables write

accesses to all the other registers. Writing any other value disables the write

accesses to all registers except the Lock Register. To access this register

- Set PADDR to address of WDOGLOCK register = 0xC00.

- Set PDATA = 0x1ACCE551.

- Set PSEL = 1 and PWRITE = 1.

2. Enable INTEN and RESEN bits in WDOGCONTROL control register to enable

WDOGINT and WDOGRES signals through the following procedures:

Figure 2.13 - APB Watchdog

32

- Set PADDR to address of WDOGCONTROL register = 0x008.

- Set PDATA = 32’d2.

- Set PSEL = 1 and PWRITE = 1.

3. To Load Watchdog with a value you should access the timer WDOGLOAD

register and set this register with the value you want to load through the following

steps:

- Set PADDR to address of WDOGLOAD register = 0x000.

- Set PDATA to the number you want.

- Set PSEL = 1 and PWRITE = 1.

4. To clear interrupt in Watchdog peripheral, you should access WDOGINTCLR

register and write in it any number through the following steps:

- Set PADDR to address of WDOGINTCLR register = 0x00C.

- Set PDATA to the number you want.

- Set PSEL = 1 and PWRITE = 1.

2.5.3 APB UART.

The design of the APB UART supports 8 bits communications without parity,

and it supports a one bit start and one bit stop of the transmitting and receiving, which

means that the total width of the character frame is 10 bits.

The design has a baud divider buffer to make the baud rate configurable to make the

design suitable for most simple embedded applications, we can calculate the baud rate

using the baud divider value which stored in the baud divider register according to the

following equation.

𝐵𝑎𝑢𝑑𝑅𝑎𝑡𝑒 =
𝐶𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

𝐵𝑎𝑢𝑑 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 𝑣𝑎𝑙𝑢𝑒
 (2.1)

The baud divider value represents approximately the number of cycles at which one bit

can be transmitted or received.

The baud rate is used to calculate the number of clock cycles at which one character

can be transmitted or received, we can calculate the number of the clock cycles at which

a character can be transmitted or received according to the following equation.

𝑛𝑢𝑚 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 =
𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 × 𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑟𝑎𝑚𝑒

𝐵𝑎𝑢𝑑𝑅𝑎𝑡𝑒
 (2.2)

Figure 2.14 - Watchdog timer flow diagram

33

The UART at the transmitting mode stores the data comes from the APB interface in a

buffer called write buffer, then the write buffer passes the data to the transmitter shift

register to convert the parallel bus of data to a serial stream of data to be transmitted

and asserts the TX interrupt flag. as shown in Fig. 2.15.

A New character can be stored to the write buffer while the shift register is sending out

a character, and when the write buffer is full the TX overrun interrupt flag is asserted.

The UART at the receiving mode the UART asserts the RX interrupt flag, then passes

the serial stream of the received data through a bit synchronizer to synchronize the

received data with the clock of the system, then the synchronizer passes it to the receiver

shift register to convert the serial stream of data to a parallel bus of data, then the

receiver shift register stores the received parallel data in a buffer called read buffer, then

the data is forwarded to the APB interface. As shown in Figure 2.155

The shift register can receive the next character while the data in the read buffer is

waiting for the APB interface to read it, and when the read buffer is full the RX overrun

interrupt flag is asserted.

 We have two configuration registers the control register which called CTRL and the

baud divider register which called the BAUDDIV these registers can be configured by

the processor according to the running application.

The APB UART supports a high-speed test mode, which is useful for simulation during

SoC or ASIC development. When CTRL [6] is set to 1, the serial data is transmitted at

one bit per clock cycle. This enables you to send text messages in a much shorter

simulation time. If required, you can remove this feature for silicon products to reduce

the gate count. You can do this by removing bit 6 of the control register CTRL.

After doing synthesis to the design, we found that the maximum operating clock

frequency of the system is 246 MHZ, and the signals PCLK and PCLKG must be equal

as shown in the following Fig. 2.16.

Figure 2.15 - APB UART

34

Figure 2.16 - UART block

Chapter 3: Polar Decoder Modeling.

3.1 Introduction

In this chapter, we will discuss the implemented polar decoder models, but first

we will briefly talk about polar codes history then explain the basic operations of the

polar encoder and the CRC operation using illustrative examples. Then, we will go into

the details of the implemented algorithms while comparing their performance with an

existing paper. Finally, we will explain the fixed-point analysis done on the selected

model and the trials done to achieve the optimum word length.

3.2 Literature Survey

Polar codes, introduced by Erdal Arıkan in 2009 [3], are a class of error-

correcting codes that have gained significant attention in recent years due to their

remarkable performance and low encoding and decoding complexity. These codes have

found widespread applications in various communication systems, including the fifth-

generation New Radio (5G NR) technology. This literature survey explores the

fundamental concepts of polar codes, polar decoders, and their role in 5G NR

technology, specifically the Physical Broadcast Channel (PBCH).

Polar codes have been shown to have the capacity achieving property. They can achieve

the capacity of any discrete memoryless channel with a small error probability. This

makes them a strong candidate for use in modern communication systems, especially

in the 5G NR standard.

The code construction is based on multiple recursive concatenations of a short kernel

code which transforms the physical channel into virtual outer channels of varying

capacity. Polar codes have modest encoding and decoding complexity, which renders

them attractive for many applications.

One of the main advantages of polar codes is their simplicity. Unlike turbo codes or

low-density parity-check (LDPC) codes, polar codes do not require any iterative

35

decoding process. Instead, they can be decoded using a simple successive cancellation

(SC) decoder having linear complexity.

There are several decoding techniques for polar codes, including:

- Successive Cancellation (SC) Decoding: This is the original decoding algorithm

proposed by Arıkan for polar codes. It is a low-complexity algorithm that uses a

recursive structure to cancel out the effect of previously decoded bits. The main

disadvantage of this method is its error floor, which means that its performance

degrades at low signal-to-noise ratios (SNRs).

- Successive Cancellation List (SCL) Decoding: This is an extension of SC decoding

that keeps a list of the most likely paths and uses a voting scheme to select the final

decision. It offers better performance than SC decoding, especially at low SNRs,

but at the cost of increased complexity [4].

Polar codes are chosen for the control channel of the enhanced mobile broadband

scenario (eMBB) in the 5G standardization process of the 3GPP. For downlink control

information, polar codes are concatenated with distributed cyclic redundancy check

(CRC), whose bits are obtained by interleaving the bits between the CRC encoder and

the polar encoder.

In recent years, many researchers have focused on improving the performance of polar

codes by using various channel coding techniques such as concatenation, puncturing,

and shortening.

3.3 Preliminaries

In this section, we describe the fundamental concepts necessary to understand the

operation of polar decoders such as the CRC operation, the general encoding process

and the encoding specs used in 5G standard for PBCH.

3.3.1. Polar Encoder

Polar encoder is a type of block code that takes K input bits and encodes them

into N bits word, where N > K, Fig. 3.1. K can be of any integer value, but N must be

an even number, why? We will see that soon.

Figure 3.1 - Polar Block Code

The idea of Polar encoder is that it takes the K bits and adds (N-K) frozen bits to them

to make the total number of bits equal to N bits. Then by performing some operations

on the N bits, we can obtain the final encoded word.

The first step of the encoding process is putting the frozen bits and data bits at certain

indices dependent on reliability sequence (RS). The reliability sequence (RS) is a

sequence that contains the reliability of each subchannel, these reliabilities are

computed offline, and the ordered sequence is stored for a maximum code length. [5]

36

The RS is defined in the 3GPP standard and is used to know which channel to transmit

data and frozen bits on. Hence, it contains the indices of the channels ordered from the

worst channels (Least reliable) to the best ones. After selecting the N first channels in

the sequence, we put the data bits at the indices of the best K channels and put the frozen

bits at the remaining channels, where the frozen bits value is zero. In the following

paragraphs we will present an example to further illustrate the polar encoder operation.

[5]

3.3.1.1. Encoding Process using Tree Diagrams

Assume that the data that we want to encode is (1011) which means that K = 4,

and we want to encode it into 8 bits code word then N = 8, this means that the number

of the frozen bits is 4 (N-K). Now, we want to determine our reliability sequence to

know where to put our data and frozen bits. From Fig.3.2, we can see a section of the

RS provided by the 3GPP, by selecting the first 8 channels which are (1,2,3,4,5,6,7,8),

we obtain their order as follows: Channels order = [1 2 3 5 4 6 7 8] [6].

Figure 3.2 - Part of the reliability sequence provided by the 3GPP

From this, we can conclude that channels (4,6,7,8), the last 4 channels, are the best and

they are reserved for the data bits, while the remining 4 channels are filled with zeros

(frozen bits) [6].

This means that the code word will consist of N = [F F F D F D D D] where F means

frozen and D means data. Hence, N = [0 0 0 1 0 0 1 1], after that we start doing some

calculations to get the final code word. To illustrate these calculations, we explain it

using tree diagram and to do so, we follow the rules presented in Fig. 3.3.

Where 𝑣𝑦
𝑥: 𝑣 means vector, 𝑥 means the number of elements in the vector and 𝑦 means

the index of the vector. The steps to obtain the encoded codeword are explained by

following the rules in the previous figure:

37

Figure 3.3 - Encoding Tree diagram containing the encoding rules.

Figure 3.4 - Step 1 of the encoding process

Step 1: Put elements of vector N in the leaves of the tree diagram, Fig. 3.4.

Step 2: Propagate through the tree diagram from the leaves to the root, then calculate

the parent nodes of each leaf node. Each node, from the parent nodes, consists of 2 bits,

the 1st bit is calculated by XORing the 2 child nodes and the 2nd bit is the right child.

Then 𝑣1
2 = [0⨁0, 0] = [0,0] , 𝑣2

2 = [0⨁1,1] = [1,1] and so on. So, the leaf nodes’

parents are updated, Fig. 3.5.

38

Figure 3.5 - Step 2 of the encoding process

Step 3: Repeat step 2 but with a larger size of child and parent nodes vectors. Half of

the parent vector is obtained by XORing the 2 child nodes vectors, and the other half

equals to the right child vector.

Then 𝑣1
4 = [[0 0]⨁[1 1], [1 1]] = [[1 1], [1 1]] = [1,1,1,1] and so on. So, the parent

nodes are updated, Fig. 3.6.

Step 4: Similar to step 3 but with vectors double the size of those in step 3. In this step,

we reach the root node, which is the final step to get the final code word that we send

through the channel.

Then 𝑣8 = [[1 1 1 1]⨁[0 1 0 1], [0 1 0 1]] = [[1 0 1 0], [0 1 01]] = [1,0,1,0,0,1,0,1]

and this is the final code word, Fig. 3.7.

Figure 3.6: Step 3 of the encoding process.

39

Figure 3.7 - Step 4 of the encoding process

After encoding the data, we can transmit it through the channel. The encoding process

is done to increase the error correcting capabilities and decrease the probability of error

caused by the channel to our data while transmitting it [6].

From this example, we can infer that the depth of the tree is calculated by log2𝑁, and

in the given example, the depth of the tree is log2 8 = 3 (excluding the root). Now, we

can understand why N must be even, because to apply these tree diagram rules, we need

the number of leaf nodes to be even, it can’t be odd.

This method is used to illustrate how the polar encoder works and is not the main

encoding process nor the method that we used to implement the polar encoder

algorithm. Hence, we will explain how the main method works [6].

3.3.1.2. Polar Encoder Main Method

This method uses matrices multiplication, Kronecker product and a generator

matrix G to encode the K data bits into N bits code word. The idea is to generate an

NxN permutation matrix, by doing Kronecker product to G matrix (n-1) times, where

n = log2𝑁. By multiplying the vector N in the previous example of tree diagram with

the permutation matrix, we can get the final code word [7].

First, we prepare the N vector as we’ve done in the previous example, N = [0 0 0 1 0 0

1 1]. Second, we prepare the permutation matrix P and by assuming the same

assumptions in the previous example, then n = 3. By doing Kronecker product 2 times

to G matrix, we can get P matrix.

𝐺 = (
1 0
1 1

) , 𝑃 = 𝐺⨂2 = (
1 0
1 1

)
⨂2

Kronecker product is done by extending the G matrix from the size 2x2 to 4x4 then to

8x8. At each extension, the matrix rows and columns are extended by 2. This is done

by copying the 2x2 G matrix at the location of the elements that are equal to 1 and

putting a 2x2 zero matrix at the location of the elements that are equal to 0 [7].

40

𝑀 = 𝐺⨂𝐺 = 𝐺⨂(
1 0
1 1

) = (
𝐺 0
𝐺 𝐺

) = (

1 0
1 1

 0 0
 0 0

1 0
1 1

1 0
1 1

)

To obtain P, repeat the last step again, but this time, do the Kronecker product between

M and G.

𝑃 = 𝐺⨂𝑀 = 𝐺⨂(

1 0
1 1

 0 0
 0 0

1 0
1 1

1 0
1 1

) = (

𝐺 0
𝐺 𝐺

 0 0
 0 0

𝐺 0
𝐺 𝐺

𝐺 0
𝐺 𝐺

)

=

(

1 0
1 1

 0 0
 0 0

1 0
1 1

1 0
1 1

 0 0
 0 0

 0 0
 0 0

 0 0
 0 0

0 0
0 0

1 0
1 1

 0 0
 0 0

1 0
1 1

1 0
1 1

 1 0
 1 1

 0 0
 0 0

 1 0
 1 1

1 0
1 1)

The last step is to multiply N vector with P matrix to get the final code word, as the

following:

𝑐𝑜𝑑𝑒 𝑤𝑜𝑟𝑑 = 𝑁𝑋𝑃 = (0 0 0 1 0 0 1 1)1𝑥8𝑋

(

1 0
1 1

 0 0
 0 0

1 0
1 1

1 0
1 1

 0 0
 0 0

 0 0
 0 0

 0 0
 0 0

0 0
0 0

1 0
1 1

 0 0
 0 0

1 0
1 1

1 0
1 1

 1 0
 1 1

 0 0
 0 0

 1 0
 1 1

1 0
1 1)

8𝑥8

= (1 0 1 0 0 1 0 1)

We can also get the code word by binary adding the 4th, 7th and 8th rows in the P matrix.

These rows correspond to the one’s elements in the N vector.

This is the main method of Polar encoder which was presented by Arikan and we used

it to implement the Polar encoder model, since dealing with matrices is much easier

than dealing with trees that need recursion in their implementation. The explained Polar

encoder algorithm is shown in Algorithm 1. [7]

Algorithm 1: Polar encoder function algorithm

1 Function Code_Word = Polar_ENC_func(K,N,Data)

2 calculate n

3 initialize G matrix

4 Extract RS and determine data and frozen indices

5 initialize U vector with zeros and j = 0 // where U vector length is N and j is a

data bits counter

// U vector is like N vector that we talked about in the previous examples

6 for i = 1 to N do // in this for loop, we prepare the U vector

41

7 if i is from Data_indices then

8 j = j + 1

9 U(i) = Data(j)

 end

 end

10 initialize P matrix with G

11 for i = 1 to n-1 do // in this for loop, we prepare the P matrix

12 P = kron(P,G) // do Kronecker product between G and P matrices then

update the P matrix

 end

13 Code_Word = mod(U*P,2) //multiplying U and P, gives a vector with decimal

numbers

 // so, to convert it to binary, take modulus of 2 of the resulted vector

 End

3.3.2. Cyclic Redundany Check (CRC)

Cyclic redundancy check (CRC) is an error detecting code commonly used in

digital communications and storage devices to detect accidental errors to digital data.

CRC plays a critical part in ensuring data integrity and reliability by identifying

unintentional modifications or faults that could happen during transmission or storage.

It enables the receiver to confirm the accuracy of the data received by adding a

checksum to the data.

This method creates a different checksum by using polynomial division-based

mathematical procedures. The sender computes the CRC checksum and appends it to

the data during transmission, and the receiver recalculates the checksum after receiving

the data. The data is regarded as accurate and proper if the calculated and received

checksums agree.

3.3.2.1. CRC at transmitter side

CRC generation at transmitter side is as follows:

First: determine length of divisor which is L + 1 bits, Where L is number of CRC bits.

The CRC length (L) in our system is equal to 24 bits and the divisor expressed as

polynomial expression equals to 𝑥24 + 𝑥23 + 𝑥21 + 𝑥20 + 𝑥17 + 𝑥15 + 𝑥13 + 𝑥12 +

𝑥8 + 𝑥4 + 𝑥2 + 𝑥 + 1 according to 3GPP standard [8].

Second: append L zero bits to the transmitted message (MIB) whose length is K bits,

where K equals to 32 bits according to 3GPP standard, So A length is K + L zero bits

as shown in Fig. 3.8.

Third: perform a binary division operation, this operation is illustrated in Algorithm 2.

Figure 3.8 - CRC block at Tx side

42

After performing binary division operation, we get a reminder and a quotient. The

reminder is the CRC bits, and its size is equal to L bits, and they are appended to MIB

payload. Finally output of CRC block is a message whose length is K + L bits.

Algorithm 2: CRC generation at transmitter side

1 Data: Message // input K – bits data

2 Data: Divisor // L + 1 bits Divisor

3 Data: CRC_output // K + L output data bits

4 Function CRC_func (Message, K, L, Divisor)

5 M_CRC = concatenate (Message, zeros(1,L)) // append L zero bits to

Message

6 Intermediate_data = M_CRC

7 quotient = [] // empty vector

8 for i = 1 to K do

9 MS_bit = intermediate_data(1) // Most significant bit

10 quotient = concatenate (quotient, MS_bit)

11 if MS_bit = 1 then

12 Intermediate_data = xor (intermediate_data,Divisor)

13 if i ≠ K then

14 intermediate_data = concatenate

(intermediate_data(2:end),M_CRC(i+L))

15 end

16 else

17 intermediate_data = xor (intermediate_data,zeros(1,L))

18 if i ≠ K then

19 intermediate_data = concatenate

(intermediate_data(2:end),M_CRC(i+L))

20 end

21 end

22 end

23 CRC_bits = intermediate_data(2:end)

24 CRC_output = concatenate (Message,CRC_bits) // append CRC bits to

Message

25 end

3.3.2.2. CRC at Receiver Side

At the receiver side, CRC plays a crucial role in ensuring the integrity of data

transmission. Upon receiving the data, the receiver performs the same binary division

operation calculation as at the transmitter side using the same predetermined

polynomial expression.

The received decoded K data bits along with the appended CRC bits, is divided by the

generator polynomial as shown in Fig.3.9. This operation is illustrated in Algorithm 3.

If the resulting remainder is zero, it indicates that the data has been transmitted without

any errors.

43

However, if a non-zero remainder is obtained, it signifies the presence of errors during

transmission. In such cases, the receiver can request retransmission of the data to ensure

accuracy. By employing CRC at the receiver side, data integrity can be effectively

validated, enhancing the reliability of the communication system.

Algorithm 3: CRC check at receiver side

1 Data: Message // input K + L – bits data

2 Data: Divisor // L + 1 bits Divisor

3 Data: flag // flag indicates if there is an error

4 Function CRCcheck_func (Message, K, L, Divisor)

5 M_CRC = Message

6 Intermediate_data = M_CRC

7 quotient = [] // empty vector

8 for i = 1 to K do

9 MS_bit = intermediate_data(1) // Most significant bit

10 quotient = concatenate (quotient, MS_bit)

11 if MS_bit = 1 then

12 Intermediate_data = xor (intermediate_data,Divisor)

13 if i ≠ K then

14 intermediate_data = concatenate

(intermediate_data(2:end),M_CRC(i+L))

15 end

16 else

17 intermediate_data = xor (intermediate_data,zeros(1,L))

18 if i ≠ K then

19 intermediate_data = concatenate

(intermediate_data(2:end),M_CRC(i+L))

20 end

21 end

22 end

23 CRC_bits = intermediate_data(2:end)

24 Check if all CRC bits equal zero

25 end

Figure 3.9 - CRC Block at Rx Side

44

3.4 Successive Cancellation (SC) Decoder

As discussed before, Arıkan constructed the first class of error correcting codes

that provably achieve the capacity of any symmetric binary-input discrete memoryless

channel (B-DMC) with efficient encoding and decoding algorithms based on channel

polarization.

He proposed a low-complexity successive cancellation (SC) decoder and proved that

the block-error probability of polar codes under SC decoding vanishes as their block-

length increases.

3.4.1 Channel Splitting

Consider a Bit Erasure Channel (BEC), as shown in Fig.3.9, that has an erasure

probability equals to 𝜖 and channel capacity 𝐶 equals to 1 − 𝜖. [4]

After combining independent B – DMC channels and splitting into N synthetic channels

𝑊𝑁with varying reliabilities where N is channel block length equals to 512. As shown

in Fig. 3.11, We split the combined channel into 2 synthetic channels 𝑊2
(−)(𝑦0, 𝑦1|𝑢0),

𝑊2
(+)(𝑦0, 𝑦1, 𝑢0|𝑢1). 𝑊2

(−)
 has 𝑦0, 𝑦1output of its channel and can decode 𝑢0 . While

𝑊2
(+)

has 𝑦0, 𝑦1and 𝑢0, so we can decode 𝑢1 by the knowledge of 𝑢0. These 2 channels

are theoretical channels not physical constructs. They are mainly defined by the order

of how to decode the bits [4].

To calculate the bit erasure probability for the 2 channels. First, the 𝑊2
(−)

 channel has

2 inputs 𝑦0, 𝑦1 and has input equal to 𝑢0. So, to decode this channel, we will go to

decide what is the 𝑢0 transmitted by knowing 𝑢0̂. All the possible combinations for the

𝑊2
(−)

 channel are shown as in Fig.3.12 and all the possible combinations for the 𝑊2
(+)

channel are shown as in Fig.3.13 [4].

Figure 3.10: Binary Erasure Channel

(BEC)

Figure 3.11 - Two synthetic channels

45

In BEC, any value XORed with erasure gives erasure. In 𝑊2
(−)

, we can decode correctly

only in the first combination, while others give incorrect decision. So, the bit erasure

probability for 𝑊2
(−)

 equals to 𝑝𝑏 = 1 − (1 − 𝜖)
2 = 2𝜖 − 𝜖2 ≥ 𝜖. While in 𝑊2

(+)
,

we have 3 outputs and 𝑢0 always received correctly, so this leads to one incorrect case

lead to an erasure. The bit erasure probability for 𝑊2
(+)

 equals to 𝑝𝑏 = 𝜖
2 ≤ 𝜖. [4]

𝐴𝑣𝑔. 𝐵𝑖𝑡 𝐸𝑟𝑎𝑠𝑢𝑟𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

2
(2𝜖 − 𝜖 + 𝜖2) = 𝜖

The Average bit erasure probability and capacity are preserved. The bit erasure channel

of the first channel is greater than erasure probability, while the second channel has less

erasure probability that’s why its takes symbol 𝑊2
(+)

 as it better and more reliable

channel than 𝑊2
(−)

, less reliable channel [4].

3.4.2 Decoder Core Description

As mentioned before, The SC is a sequential decoder. It decodes bit by bit, for

example we decode the channel 𝑊2
(−)

 Immediately as its output are ready 𝑦0, 𝑦1. But

for the channel 𝑊2
(+)

, we cannot decode it immediately as we are waiting for the

estimated bit of the previous channel 𝑢̂0. So, we cannot decode the bit index 𝑖 until all

the previous bits from0 𝑡𝑜 𝑖 − 1 are estimated and decoded.

The decoder receives from the channel N LLRs (log likelihood ratio) which can be

calculated by the following equation 𝐿𝐿𝑅𝑖 = log (
p(yi|𝑥𝑖 = 0)
p(yi|𝑥𝑖 = 1)

) where 𝑖 is the bit index

from 0 to N-1 [4].

The SC Decoder takes these channel LLRs and perform some processing on these inputs

till it reaches the estimation of the bits; as the SC Decoder is soft decision. The Decoder

operation can be represented using a tree diagram representation, as shown in Fig.3.14,

showing how the processing on the LLRs take place until reach the leaf nodes where

final decision of the bits takes place.

Figure 3.12 - 𝑊2

(−)
 channel outputs Figure 3.13 - 𝑊2

(+)
 channel outputs

46

3.4.2.1 Basic Building Blocks N = 2

Considering N = 2, after receiving 2 LLRs from the channel. First, we go to the

left child node do a 𝑓 operation as shown in Fig.3.15 The 𝑓 operation is expressed as

in equation 3.1 [4].

𝑓(𝐿𝐿𝑅1, 𝐿𝐿𝑅2) = 𝑡𝑎𝑛ℎ
−1(2 ∗ 𝑡𝑎𝑛ℎ

𝐿𝐿𝑅1
2

∗ 𝑡𝑎𝑛ℎ
𝐿𝐿𝑅2
2
) (3.1)

Figure 3.15: f operation on left child node N = 2

The previous 𝑓 function which involves exponentiations and logarithms. For a

hardware implementation of the SC decoder this function is hard to be implemented so,

the 𝑓 function replaced by another approximation hardware easy implementation such

an approximation is called the “min-sum approximation” of the decoder as in equation

3.2 [9].

𝑓(𝐿𝐿𝑅1, 𝐿𝐿𝑅2) = 𝑠𝑖𝑔𝑛(𝐿𝐿𝑅1) ∗ 𝑠𝑖𝑔𝑛(𝐿𝐿𝑅2) ∗ 𝑚𝑖𝑛(|𝐿𝐿𝑅1|, |𝐿𝐿𝑅2|) (3. 2)

Figure 3.14 - SC tree diagram

47

The 𝑓 function produce a LLR value depend on its sign we decide the value of the bit

𝑢1 [4].

𝑢1 = {

1 𝑖𝑓 𝐿𝐿𝑅𝑖 < 0 𝑎𝑛𝑑 𝑢1 ∈ 𝐴
0 𝑖𝑓 𝐿𝐿𝑅𝑖 > 0 𝑎𝑛𝑑 𝑢1 ∈ 𝐴

0 𝑖𝑓 𝑢1 ∉ 𝐴
(3.3)

 Where 𝐴 is set contain information bit.

Second, after estimating value of 𝑢1, we return to the upper node with the estimated bit

𝑢̂1 and go to the right child node and do a 𝑔 operation as shown in Fig. 3.16. The 𝑔

operation is expressed as in equation 3.4. The 𝑔 function produce a LLR value depend

on its sign we decide the value of the bit 𝑢2 [9].

𝑔(𝐿𝐿𝑅1, 𝐿𝐿𝑅2, 𝑢̂1) = (−1)
𝑢̂1 ∗ 𝐿𝐿𝑅1 + 𝐿𝐿𝑅2 (3.4)

After estimating the second bit, we are done estimating all the bits but there is a final

step which isn’t meaningful in case N = 2. As the root node have the hard decisions

from its child nodes, now the root node can decide the return back operation which is

expressed in equation 3.5 and shown in Fig.3.17 [9].

𝑢̂ = [𝑢̂1 + 𝑢̂2 𝑢̂2] (3.5)

Figure 3.16 - g operation on right node N = 2

Figure 3.17 - Return back operation N = 2

48

3.4.2.2 Operation at any interior node

The above section is for decoding block length N = 2, so let’s discuss the

operation at any interior node and any block length N. The interior node here is any

node in the tree except for the leaf nodes [9].

First, any interior nodes can receive several LLRs, for example if the number of LLR

received at a node is M. The parent will send this M LLRs to the left child node to do

the 𝑓 operation. The result of the 𝑓 operation is M/2 LLRs as 𝑓 operation inputs are

𝑓(𝐿𝐿𝑅
1:
𝑀

2

, 𝐿𝐿𝑅𝑀
2
+1:𝑀

), so it takes the 2 corresponding LLRs in each vector and do the

minsum approximation as shown in Fig. 3.18 [9].

Second, the parent node takes the decision bits from the left node whose number are

M/2 bits and pass them with M LLRs to the right node to perform 𝑔 operation. The

result of g operation is M/2 LLRs as shown in Fig. 3.19 [9].

Third, after evaluating 𝑔 operation and estimating right decision bit whose number are

M/2 bits. The parent node evaluates the return back bits by XOR the left and right nodes

and pass the right node bits as it is as shown in Fig. 3.20 [9].

Figure 3.18 - Left node f operation

Figure 3.19 - Right child g operation

Figure 3.20 - Return back operation

49

3.4.2.3 Operation on a leaf node

The decision of the bit occurs at the leaf node, and it depends on the sign of the

LLR entering the leaf node [4].

𝑢𝑖 = {

1 𝑖𝑓 𝐿𝐿𝑅𝑖 < 0 𝑎𝑛𝑑 𝑢𝑖 ∈ 𝐴
0 𝑖𝑓 𝐿𝐿𝑅𝑖 > 0 𝑎𝑛𝑑 𝑢𝑖 ∈ 𝐴

0 𝑖𝑓 𝑢𝑖 ∉ 𝐴
(3.6)

Where 𝐴 is set contain information bit. If 𝑢𝑖 is a frozen bit always decide this bit equal

zero.

3.4.2.4 Sequence of operation

1. Start at the root node.

2. Traverse tree and at each non-leaf node perform the following:

I. Go to the left child node and perform 𝑓 operation.

II. Go to the right child node when the left decisions received and perform

𝑔 operation.

III. Perform the return back operation when the right decisions received and

go to parent node.

3. If it is a leaf node, take the decision and return to the parent node.

As shown in Fig. 3.21 illustrating the sequence of operation [9].

3.4.3 Proposed Algorithm

In tree diagram representation, we have total 𝑁-LLRs at each stage(depth)

starting from root node to leaf nodes. We have number of stages(depth) equals to

𝑛 ,where 𝑛 = log2𝑁. We will store all the LLRs in LLR matrix of dimensions (𝑛 +

1, 𝑁) as we have 𝑛 + 1 stages and each stage store 𝑁 LLRs as shown in Fig. 3.22.

At each stage (depth) at any node we have 2𝑛−𝑑+1 input LLRs to this node at

stage(depth) 𝑑 𝑤ℎ𝑒𝑟𝑒 𝑑 𝑖𝑠 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑛.To get the LLRs of node 𝑖 at depth 𝑑 equals to

the following equation 𝐿𝐿𝑅(𝑑, 2𝑛−𝑑 𝑖 + 1: 2𝑛−𝑑 (𝑖 + 1)) [9].

50

Any interior node in the tree has one of the 4 states of operation: 0 means idle (inactive)

node, 1 means done 𝑓 operation, 2 means done 𝑔 operation, 3 means done return back

operation. The state of each node is saved inside a vector called state node vector whose

dimension equals to (1,2(𝑛+1) − 1). The value state of node 𝑖 at depth 𝑑 in this vector

is calculated by the formula (2𝑑 − 1) + 𝑖 + 1 [9].

Figure 3.21 - Sequence of operation

Figure 3.22 - Tree Representation

51

A node 𝑖 at depth 𝑑 to know its left child node is calculated by 2 ∗ 𝑖 at depth 𝑑 + 1. It

has a right child is calculated by (2 ∗ 𝑖) + 1 at depth 𝑑 + 1. The parent node is

calculated by 𝑓𝑙𝑜𝑜𝑟(
𝑖

2
) at depth 𝑑 − 1. These equations are applied only for non-leaf

node or non-root node [9].

The algorithm sequence is as follow check first if the decoder reaches level 𝑛. If it

reaches leaf node level, it checks if it reaches final bit whose index is N. If it reaches

the final bit, it terminates the loop of operation of the decoder, if not return to parent

node. If this node isn’t a leaf check first the state of this node and determine the input

LLRs for this node and do 𝑓 or 𝑔 operation if its state is 1 or 2 and go to its child. If its

state is 3 do return back operation and return to parent node. More details are illustrated

in the Algorithm 4.

Algorithm 4: SC Decoder [9]

1 Data K // number of Data bits + CRC bits

2 Data 𝑁 // number of bits in codeword

3 Data r // received channel 𝑁 𝐿𝐿𝑅𝑠
4 Data 𝐿𝐿𝑅 // 2D buffer (𝑛 + 1, 𝑁) to store the 𝐿𝐿𝑅𝑠
5 Data state nodes // 1D buffer (1,2𝑛+1 − 1) to store the state of each node

6 Data estimated_U // 2D buffer (𝑛 + 1,𝑁) to store the return back bits

7 Function SC_decoder(N,K,r)

8 𝐿𝐿𝑅 (1,:) = r // store the channel 𝐿𝐿𝑅 in the first row in 𝐿𝐿𝑅 matrix

9 Level = 0, node = 0 //start from root node

10 finish_flag = 0 // initialize finish flag = 0

11 while finish_flag = 0 then

12 node_position = (2𝑙𝑒𝑣𝑒𝑙 − 1) + 𝑛𝑜𝑑𝑒 + 1

13 if level = 𝑛 then

14 Estimated_U(𝑛 + 1,node+1) = h(𝑁, 𝐾,node,𝐿𝐿𝑅(𝑛 + 1,node+1))

//decisions of leaf nodes

15 if node = 𝑁 − 1 then

16 finish_flag = 1

17 else

18 // move to parent node

19 end

20 else

21 Check_state_node() // check state of each node

22 end

23 end

24 received_code_word = estimated_U(𝑛 + 1,:)
25 end

52

Algorithm 5: Decisions of leaf nodes

1 Function h(𝑁,𝐾,node,𝐿𝐿𝑅(𝑛 + 1,node+1))

2 for i to size(frozen_bits) then

3 if node + 1 = frozen_bits(1,i) then

4 flag = 1

5 end

6 end

7 if flag = 1 then

8 result = 0

9 else

10 if 𝐿𝐿𝑅 > 0 then

11 result = 0

12 else

13 result = 1

14 end

15 end

16 end

Algorithm 6: Check state node

1 Function Check_state_node()

2 if state_node(node_position) = 0 then

3 𝐿 = 𝐿𝐿𝑅(𝑙𝑒𝑣𝑒𝑙, 2𝑛−𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 + 1))
4

𝑎 = 𝐿 (1:
2𝑛−𝑙𝑒𝑣𝑒𝑙

2
) , 𝑏 = 𝐿 (

2𝑛−𝑙𝑒𝑣𝑒𝑙

2
+ 1: 𝑒𝑛𝑑)

5 𝐿𝐿𝑅(𝑙𝑒𝑣𝑒𝑙, 2𝑛−𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 + 1)) = 𝑓(𝑎, 𝑏) // go to left

child then perform 𝑓 operation

6 state_node(node_position) = 1 // move node to next state

7 else if state_node(node_position) = 1 then

8 𝐿 = 𝐿𝐿𝑅(𝑙𝑒𝑣𝑒𝑙, 2𝑛−𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 + 1))

9
𝑎 = 𝐿 (1:

2𝑛−𝑙𝑒𝑣𝑒𝑙

2
) , 𝑏 = 𝐿 (

2𝑛−𝑙𝑒𝑣𝑒𝑙

2
+ 1: 𝑒𝑛𝑑)

10 U = estimated_U(𝑙𝑒𝑣𝑒𝑙 + 1, 2𝑛−𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 + 1)) //

%go to left child then get the decision bits

11 𝐿𝐿𝑅(𝑙𝑒𝑣𝑒𝑙, 2𝑛−𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 + 1)) // go to right child and

perform 𝑔 operation

12 state_node(node_position) = 2 // move node to next state

13 else if state_node(node_position) = 2 then

14 U_left = estimated_U (𝑙𝑒𝑣𝑒𝑙 + 1, 2𝑛−𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 + 1))
// incoming decisions from left child

15 U_right = estimated_U (𝑙𝑒𝑣𝑒𝑙 + 1, 2𝑛−𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 +

1)) // incoming decisions from right child

16 estimated_U(𝑙𝑒𝑣𝑒𝑙 + 1, 2𝑛−𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 + 1))=

[bitxor(U_left,U_right),U_right] // return back

17 // go to parent node

18 end

19 end

53

3.4.1 SC Decoder Limitations

The SC Decoder have major limitations as its complexity is 𝑂(𝑁𝑙𝑜𝑔𝑁) and it is

challenging to achieve a high throughput and low latency due to limited parallelism as

we only one active node at a time. The error correcting performance of SC isn’t

competitive at moderate block length and can be bad as the decision node can’t be

revisited [4].

3.5 Successive Cancellation List (SCL) Decoder

SCL decoder is like SC decoder but with more error correcting capability. Its idea

is to proceed in L parallel paths instead of one as in SC and calculate a path matric (PM)

for each path as we are proceeding in them. The PM is used to select one of the paths

at the end [4].

This means that we have L decoded codewords at the end of the decoding operation.

The selected codeword is the one that has the minimum path metric value. Hence, the

path metric is like a penalty that we pay while proceeding in the paths, so we need to

select the path with minimum penalty.

But as Thomas Sowell said “There are no solutions. There are only tradeoffs”. The

increased error correcting capability of the SCL comes with an increase in latency and

the number used hardware resources, and a decrease in throughput. The operation of

the SCL decoder will be explained in the following paragraphs.

3.5.1 SCL decoder Operation

The decoder inputs are N log-likelihood ratio (LLR) values and the number of

paths that we can proceed through L. To explain the SCL algorithm in a clearer way,

we will use an example with a tree diagram visualization. Let’s assume that we have 8

LLR values, L equals 2 and the PM is initialized with zero [4].

𝐿𝐿𝑅 = [𝑢0 𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7] = [𝐹0 𝐹1 𝐹2 𝐷0 𝐹3 𝐷1 𝐷2 𝐷3]

Where according to the reliability sequence 𝐹𝑖 is the frozen bit index and 𝐷𝑖 is the data

bit index.

The first step is to check whether the index of the LLR value is that of a frozen bit or

not. If it is frozen, estimate the bit as zero as illustrated in Fig. 3.23 and check the

following condition to update the PM value:

 − 𝐢𝐟 LLR > 0 t𝐡𝐞𝐧 // LLR is a positive number

 DM = 0 // DM represents the penalty that we pay if the estimated bit is wrong

 // when DM = 0 then this means that the estimation is right

 − 𝐞𝐥𝐬𝐞

 DM = |LLR| // when DM ≠ 0 then this means that the estimation is wrong

 − 𝐏𝐌𝐧𝐞𝐰 = 𝐏𝐌𝐨𝐥𝐝 + 𝐃𝐌

54

If the index of the LLR value indicates data index then the main path is split into 2

paths, one estimates the data bit as 0 and the other estimates it as 1, Fig. 3.23. The PM

is calculated for the 2 paths, and we proceed in both paths in parallel since L equals 2

in this example, even if the PM of one of them is lower than the other.

The PM is updated using the following steps:

Estimate the data bit as 0 Estimate the data bit as 1

 − 𝐢𝐟 LLR > 0 t𝐡𝐞𝐧 − 𝐢𝐟 LLR > 0 t𝐡𝐞𝐧

 DM = 0 DM = |LLR|

 − 𝐞𝐥𝐬𝐞 − 𝐞𝐥𝐬𝐞

 DM = |LLR| DM = 0

 − 𝐏𝐌𝐧𝐞𝐰(𝐩𝐚𝐭𝐡𝟏) = 𝐏𝐌𝐨𝐥𝐝 + 𝐃𝐌 − 𝐏𝐌𝐧𝐞𝐰(𝐩𝐚𝐭𝐡𝟐) = 𝐏𝐌𝐨𝐥𝐝 + 𝐃𝐌

If there is an LLR value that comes at a frozen index after a data index then no splitting

occurs as illustrated in Fig. 3.24 and the penalty DM of the estimation of the bit for this

LLR value is added on the existing paths, so in our example, the DM is added to the 2

paths.

Figure 3.23 - Decoding Tree Steps

55

Figure 3.24 - Decoding Tree Steps

Figure 3.25 - Decoding Tree Steps

When a new LLR value at a data index comes, a new splitting occurs for the 2 paths,

this means that each path is split into 2 new paths to estimate the new data. Now, the

problem is that we have a total of 4 paths, and we can only proceed in 2 paths due to

the limitation imposed by the hardware resources. In this case, we sort the 4 paths

ascendingly according to PM then select the best 2 paths having the least PM to proceed

through as illustrated in Fig. 3.25.

56

Figure 3.26 - Decoding Tree Steps

We repeat the last step every time we get an LLR value at a data index. Note that if the

2 chosen paths from the 4 new paths are from the same main path, we discard the old

path side, and continue in the 2 new paths as illustrated in Fig. 3.26, where we can see

that the right main path is discarded, and the left main path is split into 2 paths that

becomes the new main paths. We proceed in the same way as illustrated in the previous

steps, Fig. 3.27.

Figure 3.27 - Decoding Tree Steps

57

Figure 3.28 - Decoding Tree Steps

The decoder path updating algorithm is summarized in Algorithm 7.

Algorithm 7: update paths function algorithm

1 Function update_paths()

2 if bit_index is frozen_bit_index then // frozen bit

3 no_splitting and estimated_bit = 0

4 calculate DM and PMnew

5 else // data bit

6 if number_of_paths != L then

7 split each path into 2 paths, one for estimated_bit = 0 and the other

for estimated_bit = 1

8 calculate DM and PMnew for each path

9 else

10 split each path into 2 paths, one for estimated_bit = 0 and the other

for estimated_bit = 1

11 sort the 2L paths ascendingly according to PM

12 choose L paths from them // as max number of paths is L

13 calculate DM and PMnew for each path

 end

 end

 end

The full SCL decoder algorithm is shown in algorithms 8 to 11.

Algorithm 8: SCL decoding algorithm [10]

𝐃𝐚𝐭𝐚: L // number of paths
𝐃𝐚𝐭𝐚: LLR // 2D buffer (L, 2N-1) to store the LLRs.
𝐃𝐚𝐭𝐚: BITS // 2D buffer (L, N) to store the bits.

1 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 SCL_decoder(N, oLLR, oBITS)

58

2 N1
2
 = N/2

3 𝐢𝐟 N > 1 𝐭𝐡𝐞𝐧 // not a leaf node

4 for j = 1 to L do // loop over the paths

5 for i = 1 to N1
2

 do // apply the 𝑓 (Left) function

6 LLR (j, oLLR+N+i) = Left(LLR(j, oLLR+i),LLR(j, oLLR+N1
2

+i))

 end

 end

7 SCL_decoder(N1
2

, oLLR+N, oBITS)

8 for j = 1 to L do

9 for i = 1 to N1
2

 do // apply the 𝑔 (Right) function

10 LLR (j, oLLR+N+i) = Right (LLR(j, oLLR+i),LLR(j,
oLLR+N1

2

+i),BITS(j, oBITS+i))

 end

 end

11 SCL_decoder(N1
2

, oLLR+N, oBITS+N1
2

)

12 for j = 1 to L do

13 for i = 1 to N1
2

 do // update the partial sums or return to the parent node

14 BITS(j, oBITS+i: N1
2

:oBITS+N1
2

+i) = Return_Back(BITS(j,

oBITS+i),BITS(j, oBITS+N1
2

+i))

 end

 end

15 else // a leaf node

16 update_paths() // update, create and delete paths

 end

 end

17 SCL_decoder(N,0,0) //launch the decoder

18 select_best_path()

Algorithm 9: Left function algorithm Algorithm 10: Right function

algorithm

1 Function α = Left(a,b) 1 Function β = Right(a,b,u)

2 if a*b > 0 then 2 β = (1 - (2*u)) * a + b

3 sign = 1 end

4 else

5 sign = -1 Algorithm11: Return_Back function

algorithm

 end 1 Function return_bits

=Return_Back(ua,ub)

6 α = sign * min (|a|, |b|) 2 return_bits = [ua ⨁ ub , ub]

 end end

59

3.6 Results

In this section, we will display the simulation results of SC and SCL decoders

implementations using MATLAB. We will present and discuss the following: Polar

decoder models verification, 3GPP specifications and selecting the appropriate list size

(L).

3.6.1 Polar Decoder Model Verification

After implementing the SC and SCL algorithms of the Polar decoder, we verified

their operation by comparing the obtained Frame Error Rate (FER) curves with the

curves found in the paper [11].

The Polar decoder specifications for the curves in the paper are N=1024, R=1/2, K=512,

with no rate matching and CRC was not used, where R is the rate, and it is the ratio

between the input and the output of the decoder.

After applying these specifications into our decoder implementations, we obtained the

curve in Fig. 3.29, where the solid lines are the paper (reference) curves, and the dashed

lines are our simulation results, and as shown, our results are very close to the paper

curves which means that our implementation is working correctly.

3.6.2 3GPP Encoding/Decoding Specs

Before turning this model into hardware, we need to determine the encoding and

decoding specs set by the 3GPP so that the hardware designer designs the decoder

according to these specifications since any difference in the specifications gives a

different performance and results.

Figure 3.29 - SC and SCL decoders comparison with paper

60

We followed the 3GPP standard specifications [8] for using the polar decoder in the

Physical Broadcast Channel (PBCH) and these specifications are listed in table (3.1).

Table 3.1 - 3GPP Specs for PBCH

N 512

A 32

E 864

Rate Matching

Type
Repetition

CRC-24
𝑥24 + 𝑥23 + 𝑥21 + 𝑥20 + 𝑥17 + 𝑥15 + 𝑥13 + 𝑥12 + 𝑥8 + 𝑥4

+ 𝑥2 + 𝑥 + 1

Where N is the code word length, A is the number of data bits, E is the final codeword

length after using rate matching. There are several types of rate matching and in PBCH,

the 3GPP standard has specified its type as repetition which means that we take the first

(E-N) bits in the N code word and concatenate them at the end.

CRC (Cyclic Redundancy Check) adds 24 bits at the end of the data to help in detecting

the errors. The input of the Polar encoder is (A + CRC) and its output is N, and the

input of the rate matching is N, and its output is E, and all of that is illustrated in Fig.

3.30.

3.6.3 Selecting the appropriate list length (L)

L represents the number of hardware resources used to implement the SCL

decoder. Increasing the L means increasing the number of used resources, while

increasing the error correcting capability. From hardware point of view using a very

large L is not optimum, but using a very low L decreases the error correcting capability

while optimizing hardware.

We simulated our implementation with different L values as shown in Fig. 3.32, and as

L increases, the FER (frame error rate) curve decreases which means less errors

happened. To choose which L to continue the design with, we compared these curves

Figure 3.30 - TX-RX chain starting from channel encoder and ending at channel decoder.

61

with the reference point of 1 RX provided by the 3GPP. Below this point means that

we met the specification and above it means that we didn’t meet the specification.

This point tells us about the maximum accepted error at specific SNR. In the 3GPP

standard, we found the reference point of 2 RX but not the 1 RX. Usually, 1 RX

reference point has the same maximum accepted error as in 2 RX but at higher SNR

(SNR 2 RX + 2 dB).

After adding the reference point of 1 RX to the graph, Fig. 3.31, we found that all the

curves meet the specification as they are below the reference point at the specific SNR.

We found that L = 2 or higher is accepted. Even though the difference between L = 4

and L = 2 is too small, we selected L = 4 to add more safety margin since the simulations

are using AWGN channel which has lower noise effect compared to fading channel.

We conclude that our implementation for the SC and SCL decoder is verified, and it

works correctly. Then the decoder specs are determined from the 3GPP standard specs

for PBCH, and we completed with SCL decoder as its better than SC in error correcting

capability. Finally, the appropriate L for SCL decoder is chosen by taking into

consideration the simulation channel type which is AWGN [12].

3.7 Fixed-Point Analysis

In this section, we will discuss the last step in the specification selection process.

Before converting an algorithm into hardware, we need to determine the width of the

signals, and answer the question of how many bits we need to represent the signals of

our algorithm in binary with acceptable quantization error.

Figure 3.31 - Selecting the appropriate L.

62

We simulate our signals on MATLAB which represents them in double. To represent

the signals in fixed point, Fig. 3.32, we need to lose some precision which leads to

losing some accuracy, causing quantization error. First, we need to determine the

following:

- The signal is signed or unsigned (always positive). If signed, we assign 1 bit for the

sign value, otherwise we discard the sign bit.

- The number of bits the integer and fraction parts take. If the signal’s dynamic range

is small and its values lie between -1 and 1 then no integer part is needed, and most

of the bits are assigned to the fraction part and vice versa, if the dynamic range is

high, the integer part is assigned most of the bits.

Since the channel noise is random, this makes the received signal dynamic range

random. To solve this problem, we simulated the behavior of the AGC (automatic gain

controller) block at the starting of the receiver chain to normalize the received signal

(multiply the received signal by gain to make its values lie between -1 and 1).

The signal normalization removes the need for the integer part, so the received signal

has sign bit and fraction part only. But the internal signals have an integer part due to

the addition operation done on them which makes their values become bigger. We can

conclude that the decoder’s input has sign bit and fraction part but no integer part, the

internal signals have sign bit and fraction and integer parts, and there is no need to

quantize the output.

Now, we need to understand how to determine the number of bits for the integer (I) and

fraction (Q) parts. For the integer part, we monitored the internal signals to obtain the

maximum of integer part that they reach. After determining this number, we represent

it in number of bits equals to ⌈log2 integermax⌉.

For the fraction part, we sweep Q through the range 4 to 8 and compare the resulting

FER curves with the curve that resulted from the signals when its double (the floating

curve), and the result is shown in Fig. 3.33.

Figure 3.32 - Fixed-Point Representation

63

In Fig. 3.33, we can notice that as Q increases, the resulting curve becomes closer to

the floating curve due to the increase of accuracy (less quantization noise). But this

leads to more bits which means using more hardware resources (not optimized for

hardware).

We can determine the suitable value for Q from the maximum accepted error. The

maximum accepted error is 0.1 dB SNR which means that at the same FER value, the

difference between the corresponding SNR in the floating curve and the quantized

curve is 0.1 dB. After applying this spec on Fig. 3.33, we found that the minimum value

of Q that meets the requirement is 6 and this is clearer in Fig. 3.34.

Figure 3.33: Comparing the resulting curves from quantization with the floating one. The X-axis range is -

12: -6 with step 0.1 dB.

Figure 3.34 - The quantized curve at Q = 6 with the floating curve to show that the difference between

the 2 curves is 0.1 dB approximately. The X-axis range is -12:-7 with step 0.1 dB.

64

Figure 3.35 - Summary of the results of fixed-point analysis first trial

We can summarize the results of fixed-point analysis as shown in Fig. 3.35, where

IN_LLR is the input signal and INT_LLR and PM are the internal signals. As we can

see, the internal signals width is very high which leads to a large internal memory size.

All of that happened due to the high dynamic range of these signals, so to achieve lower

width, we need to decrease it.

From the decoder specs N equals 512, this means that we have 9 levels in the tree

diagram. By doing statistical analysis on the variation of the dynamic range of the

INT_LLR signal at each level, we found that at level 4 the dynamic range is high

compared to the remaining levels. To control the variation in the dynamic range, we

need to decrease the integer part of this signal while maintaining an acceptable

quantization error. So, we decided that 1 bit for integer part is enough for the INT_LLR.

To fit the INT_LLR signal into 1 bit integer, we divided the integer part of the whole

internal signal at the 4th level by 2 when the maximum and minimum values exceed the

range that can be tolerated by 1 integer bit. At the other levels, when the signal exceeds

the upper and lower limits of 1 bit, we just saturate or truncate the signal.

Saturation is done on all the levels, but why we don’t saturate the other levels like the

4th level after dividing by 2? Because quantization error caused from saturation of the

other levels is small compared to that in 4th level, so first we need to decrease the signal

values and then saturate them to decrease this error.

As shown in Fig. 3.36, the division of the 4th level mainly happens at the right node.

This is due to the addition operation that happens at the right node that causes the signal

value to increase while in the left one, only the sign changes.

Figure 3.36: The first 4 levels of the total 9 levels of the tree diagram. The division by 2

happens at the 4th level, mainly at the right node.

65

But to decrease the dynamic range of PM, we subtract the signal by 1. This subtraction

happens at any level as soon as the signal maximum integer value exceeds the

maximum threshold. After the subtraction, we also saturate to be sure that all the signal

values fit in the range of the 1 bit which is specified for the integer part.

We treat the PM signal differently because its nature is different from INT_LLR signal.

As soon as any path reaches the maximum limit of the 1-bit integer, any truncation after

that doesn’t create problems as this means that this path is from the worst ones then the

probability of choosing it is very low. The subtraction leads to the appearance of

negative values in PM; hence the PM becomes a signed signal and not unsigned as

before since it consists of adding the magnitudes of the LLR signals.

To summarize what we have reached till now, the integer part of the INT_LLR and PM

signals becomes 1 bit, and the PM becomes signed. But the fraction part value increases

from the previously obtained value. After sweeping the value of Q, we got the results

shown in Fig. 3.37, which tells us the same results as in Fig. 3.37. The difference here

is that the curve that contains the minimum Q which meets the requirement of

maximum accepted error is at Q = 7 not 6 as before and this becomes clearer in Fig.

3.38.

Figure 3.37 - Comparing the resulting curves from quantization with the floating one after

decreasing the dynamic range of the internal signals.

66

Figure 3.38 - The quantized curve at Q = 7 with the floating curve to show that the difference between

the 2 curves is 0.1 dB approximately

We can conclude that decreasing the dynamic range of the signals decreases the integer

part and increases the fraction part but not with the same ratio. The 7-bit integer part is

substituted with 1 bit integer part and only one additional bit is added to the fraction

part, Fig. 3.39. This shows the power of decreasing the dynamic range of a signal and

its effect on reducing the signals width representation which in turn reduces the used

hardware especially of the internal memories size.

Figure 3.39 - Summary of the results of the fixed-point analysis after decreasing the dynamic range of

the internal signals.

The algorithms of reducing the dynamic range of the internal signals INT_LLR and PM

are mentioned in Algorithm 12 and 13 respectively. Algorithm 12 is inserted after the

loop of right function in SCL decoding algorithm (Algorithm 7 in SCL decoder

algorithm section), and Algorithm 13 is inserted at the end of the update path’s function

algorithm (Algorithm 6 in SCL decoder algorithm, section).

Algorithm 12: Decreasing dynamic range of INT_LLR algorithm

1 if we are in 4th level then

2 MAX_condition = integer (max (LLR (j, :)) > MAX_value // MAX_value is

the upper bound of 1 bit as

 // integer part.

3 MIN_condition = integer (min (LLR (j, :)) < MIN_value // MIN_value is the

lower bound of 1 bit as

 // integer part.

67

4 if MAX_condition or MIN_condition then

5 LLR (j, :) = LLR (j, :) / 2

6 LLR (j, :) = Quantize (LLR (j, :), signed, 1 bit integer, 7 bits fraction)

7 else

8 LLR (j, :) = Quantize (LLR (j, :), signed, 1 bit integer, 7 bits fraction)

 end

9 else

10 LLR (j, :) = Quantize (LLR (j, :), signed, 1 bit integer, 7 bits fraction)

 end

Algorithm 13: Decreasing dynamic range of PM algorithm

1 Condition = integer (max (PM) > MAX_value // MAX_value is the upper bound

of 1 bit as integer part.

2 if Condition then

3 PM = PM - 1

4 PM = Quantize (PM, signed, 1 bit integer, 7 bits fraction)

 end

3.8 Conclusion

Now, we have completed the fixed-point analysis and our algorithm is ready with

its determined specifications for hardware implementation.

68

Chapter 4: Hardware Literature Survey.

4.1 Introduction.

In the past few years, many researches proposed many papers on their work in

the field of polar codes. Our scope in this thesis is to implement the hardware

architecture of the successive cancellation list decoder for polar codes.

We are going to focus on different architectures for the successive cancellation

decoder and analyze their merits and demerits to decide which one is suitable for

implementing the list decoder.

4.2 Pipelined Tree Architecture.

4.2.1 Methodology.

The architecture divides the decoding operation into number of stages which

can be calculated from the code length (N) using the formula

𝑙 = log2𝑁 (4.1)

There are 2𝑙 operations in each stage divided into 2 types, the first one is the F

function which takes 2 inputs (LLRs) and calculates output LLR. Whereas the g

function takes 3 inputs (2 LLRs and a partial sum) and calculates output LLR.

4.2.2 Processing Element Architecture.

The pipelined architecture PE has 2 function blocks Figure 4.1, each calculates

one type of operation only either F or G function which corresponds left and right nodes

in the decoding algorithm [13], Where the F function is calculated through the

following equation

𝐹(𝐿1, 𝐿2) = 𝑠𝑖𝑔𝑛 (𝐿1) ∗ 𝑠𝑖𝑔𝑛(𝐿2) ∗ min(| 𝐿1|, |𝐿2|) (4.2)

While the G function is calculated through the following equation

𝐺(𝐿1, 𝐿2) = 𝐿1 ∗ (−1)
𝑢 + 𝐿2 (4.3)

The number of processing elements (P) used in each stage is dedicated for that stage

only and cannot be used in any other stage.

𝑃 = 2𝑙 (4.4)

69

4.2.3 Advantages.

Compared to other SC architectures [14], Pipelined architecture has higher

throughput and higher frequency due to its pipelined nature that results in breaking the

critical path of the data path.

Easier HW implementation as there are dedicated PEs for each stage therefor

there is no need for a complicated multiplexing network so as to avoid high routing

congestion.

4.2.4 Disadvantages.

From the disadvantages of the pipelined architecture is its large area compared

to other architecture as there are number of PEs dedicated for each stage so there is no

resource sharing, also there are 64 PEs (for N=512) which are used only twice

throughout the whole decoding operation in the highest decoding tree node 𝑙 =

log2(𝑁) − 1 .

Another area inefficiency source is having 2 function blocks in each PE

however, we only need either of them in each clock cycle and the other one will be idle

until the next operation as shown in Table 4.1 in addition to the used registers due to

the pipelined nature of each decoder as shown in Figure 4.2.

Figure 4.1- PE Pipelined architecture

70

Table 4.1-Pipelined architecture scheduling

CC 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S1 F G

S2 F G F G

S3 F G F G F G F G

Ui U0 U1 U2 U3 U4 U5 U6 U7

4.3 Line Architecture.

4.3.1 Methodology.

In order to reduce the number of PEs used in the pipelined architecture, the line

architecture was introduced while maintaining the same throughput using N/2 PEs only

by merging some of the PEs used in the pipelined architecture which makes this

architecture simpler than the other [13] despite the extra multiplexing logic required to

route the data throughout the line as shown in Figure 4.3.

 The name “Line” comes from the fact that the PEs are arranged in a line while

the used registers retain a tree structure emulated by a multiplexing network connecting

them.

Figure 4.2-Pipelined architecture data path for N=8

71

4.3.2 Processing Element Architecture.

Unlike the pipelined architecture PE Figure 4.1, the line architecture PE has

only one function block to perform both the F and G functions using the same equations

described in the pipelined architecture (4.2),(4.3) allowing resource sharing which

introduce area optimization.

Figure 4.3- Line Architecture for N=8

Figure 4.4 - Line architecture PE

72

4.3.3 Advantages.

Compared to the pipelined architecture, the line architecture has more area

efficiency in terms of the used PEs due to reducing the number of processing elements

while maintaining the same throughput in addition to using only one function block

inside each PE.

The PE architecture modifications over the pipelined architecture PE in terms

of their number and internal structure (function blocks) makes the line architecture

simpler.

4.3.4 Disadvantages.

The storage of the internal LLRs that are needed throughout the decoding

process are implemented using registers and multiplexing and de-multiplexing

networks which add more area. It was reported that for large code length (N) required

polar codes synthesis results cannot be implemented on most FPGAs [14].

Compared to the semi-parallel architecture, the line architecture uses a huge

number of PEs which can be reduced to N/4 instead of using N/2 while maintaining

nearly the same latency (2 cycles more) [14].

4.4 Semi-parallel Architecture.

4.4.1 Methodology.

The semi-parallel architecture introduces the usage of dual port read RAM to

store the internal LLRs required through the decoding process. Moreover, the used

number of PEs are
𝑁

4
 which is considered a good modification over the line architecture

which uses
𝑁

2
 processing elements.

One of the aims of this architecture is to complete the whole operation of the

PE in a single cycle, but that would require simultaneous read and write from the

memory in some cases hence, they came up with a solution for this problem which is

bypassing the previous output to be used in the current LLR calculation [14] as it can

be seen in Figure 4.5.

73

4.4.2 Processing Element Architecture.

Extra multiplexers are added as a modification over the line architecture PE to

choose between the 2 functions it can perform using a function select signal. The sign

and magnitude implementation of the LLRs saves 20% of the total area during the

synthesis compared to the 2’s complement implementation [14].

Figure 4.5 - Semi-parallel architecture

Figure 4.6 - Semi-parallel architecture PE

74

4.4.3 Advantages.

50% reduction in the used number of PEs over the line architecture. In addition

to introducing the dual port read RAM which supports large code length (N) required

by the polar codes during synthesis with only 2 clock cycles extra latency compared to

the line architecture which can be ignored [14].

4.4.4 Disadvantages.

𝑁

4
 Processing elements is still a huge number to be used with the fact that we

will use all of them in the higher decoding tree stage only and then most of them will

be idle 50% of the decoding operation.

 The used dual port read RAM introduces area inefficiency and cannot be found

in most FPGAs. In addition, it introduces routing problems in the ASIC flow.

4.5 Summary.

There is no perfect design, some designs focus on optimizing the number of PEs

without any considerations for the memory organization used, some design used dual

port read memory which introduce area overhead in addition to bypass buffer while

some others use register banks which is not feasible for large code length (N).

Synthesis results discussed in the literature, that the memory organization is the

main contributor for the area. Therefore, in the next chapters we are going introduce

some memory organizations which are more area efficient than the used organizations

in the literature architectures without severely affecting the throughput.

Table 4.2 - Comparison between the 3 architectures for N=512

POC Pipelined Line Semi-parallel

Number of PEs N-1 = 511 N/2 = 256 N/4 = 128

Memory

organization

Register banks Register banks Dual port read RAM

Latency 2N-4 = 1020 2N-4 = 1020 2N-2 = 1022

75

Chapter 5: Hardware Design Specifications.

5.1 Memory Specifications.

According to the Target FPGA (ZYNQ ULTRASCALE+), the maximum word

length is 72 bits in order to infer BRAMs without using the logic fabric of the FPGA as

a storage element.

As mentioned before, Dual port RAM is not preferable when targeting FPGAs

hence, we are going to use single port RAM as a constraint in order to optimize the area

as no other design in the literature targeted area optimization.

5.2 Clock Frequency Specifications.

Maximum clock frequency is 61.44 MHZ since our sampling frequency

𝑓𝑠𝑎𝑚𝑝𝑙𝑒 = 256 ∗ 15𝐾 = 3.84 𝑀𝐻𝑍, then the clock frequency must be a multiple of

fsample. Hence, it was decided to be 16 multiples of the sampling frequency so that the

FFT block has an extra cycle between every 2 samples to process then our working

clock frequency becomes 𝐹 = 16 ∗ 3.84 𝑀𝐻𝑍 = 61.44𝑀𝐻𝑍 .

According to NR 5G, there 14 symbols in one slot, since in our case the sub

carrier spacing is 15 KHZ therefore slot time is 1ms, then with clock frequency 61.44

MHZ we have 61440 clock cycles in 1ms. The decoding process is allowed to consume

50% of the total latency of the chain.

Chapter 6: Hardware Design Iterations.

6.1 First design iteration.

During the first design iteration, we saw that the outputs from the LLR memory

have to be delivered to all the PEs at the same time, So the memory word size should

be PQ so that all the PEs take their inputs at the same time, where P is the number of

processing elements needed while Q is the total size of LLR as a number of bits. Using

a single port RAM introduced a delay of 4N clock cycles.

As for the number of locations, it will be (log2𝑁) − 1 each of size PQ.

(log2𝑁)

− 1

PQ

76

For N = 512, P = N/4 = 128, Q = 6 memory size will be 8 code words each of size

128Q.

Stages’ LLR output were arranged as follows, Where the input to each stage is the

output of its previous stage.

0 Channel LLR

1 Channel LLR

2 Channel LLR

3 Channel LLR

4 L8

5 L8

6 L7

7 L6:L0

As the input is serial of size Q, A buffer was needed to accumulate the channel

LLR to form a word and then write it into the memory.

Indexing of the memory depend on the stage number during reading and writing.

Table 6.1 - Iteration 1 memory indexing

Stage (Layer) Number Size Number of Words Word no.

Channel LLR 512 Q 4 0,1,2,3

L8 256 Q 2 4,5

L7 128 Q 1 6

L6 64 Q Less than 1 7 [0:63]

L5 32 Q Less than 1 7 [64:95]

L4 16 Q Less than 1 7 [96:111]

L3 8 Q Less than 1 7 [112:119]

L2 4 Q Less than 1 7 [120:123]

L1 2 Q Less than 1 7 [124:125]

L0 1 Q Less than 1 7 [126]

6.2 Second design iteration.

We used number of processing elements P = N/16 = 32 as there were many PEs

in the idle state during the first iteration in the lower decoding stage (0) so reduced them

to N/16 to optimize in the area.

A new memory organization was introduced as we used one memory for each

decoding stage as it can be seen in Figure 6.1, each word contains 5 LLRs each of size

14 bits then the memory word length was 70 bits which meets the constraint of the 72

bits word length.

77

That design iteration was a good one according to the area, but it had 2 major

problems. The first one was the latency which increased from 4N = 2048 to 2200 which

is considered a performance degradation. The second problem was memory

misalignment, it happened when we needed to read LLRs which were not in the same

memory word.

Figure 6.1 - One memory for each stage

6.3 Third design iteration.

The number of processing elements used in this design iteration was P = N/64.

The memories used were single port memory for each stage as shown in Figure 6.1 with

P LLRs in each word then the number of bits equals to PQ which met the memory word

length constraint for channel LLRs but it did not meet the constraint for internal LLRs.

The latency increased to 2560 clock cycles which was another performance degrading

yet it was acceptable compared to the maximum latency of the decoding process.

6.4 Fourth design iteration.

The number of used processing elements was 5 PEs to further optimize the area

as most of the PEs were in the idle in the last decoding stage (stage 0) so it was advisable

to remove the unused PEs.

Only one memory was used for each stage as shown in Figure 6.1. Each memory

word contains 5 LLRs, therefore the word length became equal to PQ = 70 bits which

led to meeting the word length constraint for internal LLRs in this design iteration.

78

Due to area optimization in the number of PEs and memory organization, the

latency increased to 3000 clock cycle which was a huge performance degradation

compared to the other design iterations mentioned.

6.5 Fifth design iteration.

4 PEs were used in this design iteration to further optimize the area for the reasons

mentioned before. As for the memory organization, two single port RAM were used for

each stage starting from the channel LLR memory down to the last stage memory as

shown in Figure 6.3 Each memory word contains 5 LLRs with a total word size of PQ

= 70 bits.

Latency of this iteration was a first step to a huge success as it was reduced to

2400 clock cycles instead of 3000 clock cycles in the last iteration.

This iteration suffered from complexity in controlling the signals of the data paths

due to memory misalignment that happened when it was necessary to read LLRs from

two different memory words due to the mismatch between the number of LLRs in one

word and the number of the PEs used in that stage as shown in Figure 6.2, hence adding

latency for staling everything until the input LLRs for each PE is ready.

We were forced to use only 4 LLRs in each word instead of 5 to avoid the

mismatch mentioned earlier which came in favor of the latency as it was reduced to

1570 clock cycles for the whole decoding process which is considered an intermediate

latency among the latency mentioned earlier in the previous design iterations and the

idle latency of the semi-parallel decoder [14] which consumes huge area compared to

the area consumed in this iteration.

Figure 6.2 - Memory misalignment

79

6.6 Sixth design iteration.

A new fixed-point analysis was introduced in this design iteration Figure 6.4, the

channel LLRs are now expressed in 8 bits instead of 7 bits in the previous iterations

while internal LLRs are now expressed in 9 bits instead of 14. This reduction in the

number of bits gave this iteration a huge advantage over the previous iterations as it

decreased the memory word length from 56 to 36 which led to area reduction while

keeping the number of processing elements and the memory organization Figure 6.3

the same as before.

Figure 6.3 - Two memories for each stage.

Figure 6.4 - First Vs second fixed point

80

Chapter 7: SC Proposed Architecture.

7.1 Introduction.

Our aim in this design is to reduce the area as much as possible without severely

affecting the latency. This goal was achieved by many methods, the first of which is

using four PEs only each of them contains only one function block to perform both F

and G functions and choose between them by a function select signal.

 The second method is using block RAM instead of register banks which are not

feasible with large code length and significantly affects the area and using two

memories for each stage to decrease the latency.

The third and final method is to avoid using dual port read memory since its

size is nearly double the single port memory in addition to the fact that dual port

memories are not available as a BRAM in most FPGAs.

7.2 SC Interface.

SC wrapper as shown in Figure 7.1 contains many input and output ports for

interfacing with the outside world. The ports are as follows Table 7.1 - SC port

mapping.

Start pulse port function is to trigger the SC decoder to start the decoding

operation by reading the channel LLRs from the external memory that is split into two

memories which connects the decoder with the preceding block (post FFT).

Busy signal function is to indicate that the decoder has not finished the decoding

operation yet so that the decoder cannot be interrupted also the external channel LLR

memories cannot be modified until the decoder finishes its operation.

Figure 7.1 - SC interface

81

Estimated bit port to store the current decoded bit in the external estimated bits

memory to be available for the CRC check block to determine if the received bits are

correct or they had been corrupted during the receiving operation.

 Valid port to determine whether the estimated bit is a frozen bit or a data bit to

be stored in the external memory, where the frozen bits are redundant bits added to the

payload to improve the bit error rate.

Channel LLR a and b are two input ports coming from the two channel LLR

memories where they are the outputs of the post FFT block.

Table 7.1 - SC port mapping.

Port Name Direction Width Parameter Active edge

channel_llr_a input 28 bits WORD_LENGTH_CH N/A

channel_llr_b input 28 bits WORD_LENGTH_CH N/A

start_pulse input 1 bit N/A high pulse

clk input 1 bit N/A N/A

rst input 1 bit N/A low

busy output 1 bit N/A high

valid output 1 bit N/A high pulse

estimated_bit output 1 bit N/A N/A

Read_addr_channel output 6 bits log2(log2(𝑁) −1) + 2 N/A

en_rd_ch_out output 1 bit N/A high

7.3 SC Top-level.

As shown in Figure 7.2 the SC module contains many sub-modules each

perform a different task in the decoding operation staring from reading the channel LLR

memories until the decoding process is done by writing the estimated bits in the external

estimated bits memory.

The main sub-modules are:

• Control Unit.

• PE.

• PSN.

• Decision Unit.

• Memory Bank.

82

7.4 SC Operation Overview.

The operation starts when a start pulse triggers the decoder. Staring with reading

the channel LLRs which are sign extended from channel LLR word length to internal

LLR word length then use them as an input to the PE to perform either F or G function

and output a new LLR to be saved in stage 8 memories, this operation is repeated until

we finish the channel LLRs. Each LLR we read from the internal LLR memories or

channel LLR memories is fed to the PE through a multiplexing network to multiplex

between the memory banks of our decoding stages.

As mentioned before, each word read from the memory contains P LLRs then

we need to split them so that each PE takes one of these P as one of its inputs. This is

done by a sub-module called split word which takes one word of 𝑃 ∗ 𝐿𝐿𝑅 𝑤𝑜𝑟𝑑 𝑙𝑒𝑛𝑔𝑡ℎ

bits as an input and outputs P LLRs each of word length bits, where P is the number of

PEs.

Then the operation continues by concatenating the PEs outputs to form a new

internal LLR word of size 𝑃 ∗ 𝐿𝐿𝑅 𝑤𝑜𝑟𝑑 𝑙𝑒𝑛𝑔𝑡ℎ to be stored in internal LLR memories

of the current stage.

Down to stage 0 where we have to decide whether the bit is ‘1’ or ‘0’, the final

LLR of stage 0 is fed to a decision unit which decides on the final LLR sign bit as

follows:

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑏𝑖𝑡 = {
1, 𝑖𝑓 𝑆𝑔𝑛 (𝐿𝐿𝑅) = 1

0, 𝑖𝑓 𝑆𝑔𝑛 (𝐿𝐿𝑅) = 0
 (7.1)

Figure 7.2 - SC top level

83

This estimated bit is stored in the estimated bits memory and is fed to the PSN

to perform its function and gives out the partial sum which is needed in the next G

function as shown in equation (4.3).

All the mentioned modules should be enabled in their proper time, this is done

by the control unit which is also responsible for memory address generation and

determining current stage number and current decoded bit index. It also decides the

function select signal for the PE to perform the intended function for that part of stage,

in addition to the selection lines of the multiplexing network mentioned earlier.

7.5 Control Unit Sub-Module.

7.5.1 Module Description.

As it can be seen in Figure 7.4 ,the controlling operation of the SC decoder can

be expressed in controlling three counters each of which for a specific task to be done

in the decoding operation. It starts its operation when the decoder is triggered by an

external start pulse, then it continues until all decoded bits done.

Figure 7.3 - SC Operation.

84

The first counter is an incremental counter for the part of stage index, used to

count the number of cycles inside each stage depending on the number of processing

elements. It starts from zero until it reaches the number of needed cycles in that stage,

where each clock cycle includes memory read, PE operation and memory write.

𝑃𝑆 =
2𝑙

𝑃
 𝑤ℎ𝑒𝑟𝑒 𝑙 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝐸𝑠 (7.2)

The second counter is a decremental counter for the current decoding stage

index. It starts from stage 8 which is the highest node in the decoding tree down to stage

zero which is an estimate node for the current decoded bit. After that it goes back to a

higher node depending on a function called FFS as shown in equation (7.3) which

decides the index of the first leading one in the next decoded bit index. Hence the stage

index is loaded with the return value of the FFS function.

𝐹𝐹𝑆(𝑖𝑚−1𝑖𝑚−2… . . 𝑖0) = {
min(𝑚) : 𝑖𝑚 = 1 , 𝑖𝑓 𝑖 > 0
𝑚 − 1 , 𝑖𝑓 𝑖 = 0

 (7.3)

𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑐𝑜𝑑𝑒𝑑 𝑏𝑖𝑡 𝑖𝑛𝑑𝑒𝑥 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑖𝑡𝑠 𝑤𝑖𝑑𝑡ℎ

The third counter is an incremental counter for the decoded bit index, its value

changes when the stage index reaches zero, to indicate reaching a leaf node. Upon

Figure 7.4 - Control Unit Operation

85

reaching stage zero, the decision unit is activated to take a decision on the final LLR to

estimate whether the bit is ‘0’ or ‘1’.

The control unit is also responsible for address generation for both read and

write operations depending on the stage number as it can be seen in …, in addition to

the enable signals of those memories. Moreover, it is also responsible for choosing

which memory is feeding the PE with LLRs by controlling the selection lines of the

multiplexing network.

7.5.2 Port Mapping.

Table 7.2 - CU port mapping

Port Name Direction Width Parameter

clk Input 1 N/A

rst Input 1 N/A

start Input 1 N/A

busy output 1 N/A

en_Wr_8_a output 1 N/A

en_Wr_7_a output 1 N/A

en_Wr_6_a output 1 N/A

en_Wr_5_a output 1 N/A

en_Wr_4_a output 1 N/A

en_Wr_3_a output 1 N/A

en_Wr_2_a output 1 N/A

en_Wr_1_a output 1 N/A

en_Wr_0_a output 1 N/A

Figure 7.5 - CU Multiplexing for N=8.

86

en_Wr_8_b output 1 N/A

en_Wr_7_b output 1 N/A

en_Wr_6_b output 1 N/A

en_Wr_5_b output 1 N/A

en_Wr_4_b output 1 N/A

en_Wr_3_b output 1 N/A

en_Wr_2_b output 1 N/A

en_Wr_1_b output 1 N/A

en_Wr_0_b output 1 N/A

en_rd_ch output 1 N/A

en_rd_7 output 1 N/A

en_rd_6 output 1 N/A

en_rd_5 output 1 N/A

en_rd_4 output 1 N/A

en_rd_3 output 1 N/A

en_rd_2 output 1 N/A

en_rd_1 output 1 N/A

enable_psn output 1 N/A

address_psn output 7 bits N/A

stage_index output 4 bits log2(log2(𝑁) −1)

part_stage_index output 6 bits N/A

dec_bit_index output 8 bits log2(𝑁) − 1

Figure 7.6 - CU port mapping

87

7.6 Decision Unit Sub-Module.

7.6.1 Module Description.

Error! Reference source not found. illustrates that this module is the

estimated bit decision making module based on the final LLR of stage zero which is

the input to this module. The output of this module is the estimated bit which is either

‘0’ or ‘1’ as demonstrated in equation (7.1). Hence, the estimated bit is stored in the

estimated bit memory and used to calculate the next partial sum in the PSN sub-module.

 This module includes a ROM which stores frozen bits indices, during the

estimation operation, we compare the decoded bit index with its corresponding index

in that ROM, if that index contains a value equals to 1 then this is a data bit and is

decoded according to equation (7.1), on the other hand, if it contains a value equals to

0, then this bit is decoded to zero automatically since that was an indication that it is a

frozen bit.

 The decision unit outputs a valid flag indicating that the currently decoded bit

is a data bit not a frozen bit. This signal is an output from the SC decoder as mention in

Table 7.1 to the external decodes bit memory.

Figure 7.7 - DU operation

88

7.6.2 Port Mapping

Table 7.3 - DU port mapping

Port Name Direction Width Parameter

clk Input 1 N/A

rst Input 1 N/A

dec_bit_index Input 8 bits log2(𝑁) − 1

en_dec_unit Input 1 N/A

valid Output 1 N/A

est_bit Output 1 N/A

7.7 Processing Element Sub-Module.

7.7.1 Module Description.

The PE sub-module (Figure 4.6) is considered an internal core inside the SC

decoder, it is in charge of the LLR calculations. PE deals with the LLRs in sign and

magnitude format, since that format produces synthesis results 20% better than that of

two’s complement format as it was reported in [14].

It performs both F and G operations according to equations (4.2) and (4.3)

where the sign and magnitude are driven by a multiplexer with function select as its

selection line.

𝜓(ƛ𝐿𝑙,𝑖) = {
𝜓(ƛ𝑓) 𝑤ℎ𝑒𝑛 𝐵(𝐿, 𝑖) = 0

𝜓(ƛ𝑔) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.4)

|ƛ𝐿𝑙,𝑖| = {
|ƛ𝑓| 𝑤ℎ𝑒𝑛 𝐵(𝐿, 𝑖) = 0

|ƛ𝑔|𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.5)

Figure 7.8 - DU port mapping

89

 Where the F function takes the 2 input LLRs only as it can be seen in Figure

7.10 while the G function takes the 2 input LLRs and a partial sum input as it can be

seen in Figure 7.9.

These operations are performed using

a single XOR gate and a comparator in addition to a SM adder/subtractor needed to

perform G operation. The relationship between the magnitude of the input LLRs is

represented by equation (5.6), this parameter 𝛾𝑎𝑏 is used as a multiplexer select to

choose between the maximum and the minimum of the magnitude of the 2 input LLRs.

𝛾𝑎𝑏 = {
1 𝑖𝑓 |ƛ𝑎| > |ƛ𝑏|
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.6)

In case of performing F function, we choose the minimum magnitude of the 2

LLRs, where the output sign is computed by performing an XOR operation on the signs

of the 2 LLRs, however in case of G function we choose the maximum magnitude of

the 2 LLRs where the output sign is computed by performing an XOR operation on the

signs of the 2 LLRs in addition to the partial sum coming from the PSN.

We can summarize the PE calculations for both F and G functions using the

following Boolean equations

𝜓(ƛ𝑔) = 𝛾𝑎𝑏̅̅ ̅̅̅. 𝜓(ƛ𝑏)+ 𝛾𝑎𝑏. (𝑠̂ ⊕ 𝜓(ƛ𝑎)) (5.7)

|ƛ𝑔| = 𝑚𝑎𝑥(|ƛ𝑎|, |ƛ𝑏|)+ (−1)
𝑋𝑚𝑖𝑛(|ƛ𝑎|, |ƛ𝑏|) (5.8)

𝑋 = 𝑠̂ ⊕𝜓(ƛ𝑎) ⊕ 𝜓(ƛ𝑏) (5.9)

𝜓(ƛ𝑓) = 𝜓(ƛ𝑏)⊕𝜓(ƛ𝑎) (5.10)

|ƛ𝑓| = min(|ƛ𝑎|, |ƛ𝑏|) (5.11)

Figure 7.10 - F function node Figure 7.9 - G function node

90

7.7.2 Port Mapping.

As shown in Figure 7.11 Where previous estimate is the output of the PSN calculated

from the previous estimated bit.

Table 7.4 - PE port mapping

Port Name Direction Width Parameter

Func_sel Input 1 bit N/A

Previous_estimate Input 1 bit N/A

llr_a Input 14 bits WORD_LENGTH

llr_b Input 14 bits WORD_LENGTH

llr_output Output 14 bits WORD_LENGTH

7.7.3 Fixed Point Modifications.

For further area optimization, the word length size is reduced for the internal

LLRs from 14 bits to 9 bits so the size of the internal memories is reduced in addition

to the data bus width.

Figure 7.11 - PE port mapping

91

It was required to detect overflow of the LLRs so as to prevent them from

exceeding the maximum number that can be expressed in 9 bits. That was performed

by a sub-module named overflow check which asserts a flag when it detects an overflow

in LLRs of stages 5,6,7 or 8 as the quantization error in these mentioned stages cannot

be bearable. That flag is input to another sub-module named divider which is used to

divide the input LLRs to the PE by 2 then we perform quantization operation on the

divider output to ensure that the input LLRs to the PE is saturated if they still exceeding

the maximum number to be expressed in 9 bits. Any other stage would require

quantization only.

7.8 Partial Sum Network.

7.8.1 Module Description.

As previously mentioned, The SC decoder consists of 3 main components which

are the control unit, PSN, PE, memory banks. The PSN unit is responsible for

calculating the partial sums required by the PEs to calculate the G function as it takes

3 inputs 2 LLRs and 1 partial sum as shown in Figure 7.9.

It was reported in [14] that in the synthesis result of the semi-parallel decoder,

the memory banks take about 75% of the total decoder area and the rest is occupied by

the PSN, in addition to the critical path of the SC decoder is in the PSN which will

impact the maximum frequency as it decreases as N increases.

Figure 7.12 - PE after fixed point modifications

92

There are
𝑁

2
∗ log2(𝑁) partial sums to be calculated throughout the decoding

process. When a new bit is decoded, the PSN should update all the partial sums that

includes this bit as shown in Figure 7.13. For example, when 𝑢4̂ is decoded, the partial

sums 𝑆4,0 𝑎𝑛𝑑 𝑆4,1 should be updated while the partial sums that do not contain the last

decoded bit should keep their values unchanged.

It was clarified in [14] that the PSN required storage was reduced from
𝑁

2
∗

log2(𝑁) to 𝑁 − 1, in addition to introducing the indicator function which was defined

to specify which DFF should be updated with the current decoded bit. The indicator

function was implemented as a combinational logic and its hardware complexity

increases linearly with N so it would add area overhead for large code length. Also, it

would make the critical path worse.

A new technique was used for implementing the PSN based on the idea of LFSR

to replace the indicator function PSN of the semi-parallel decoder. For the best of our

knowledge, this technique was only tested with the line decoder [15] and was not

integrated with the semi-parallel decoder. This technique (SR-PSN) has a decreased

critical path and provide a better performance than the indicator function.

Figure 7.13 - Partial sums calculations

93

It was stated in [15] that a SR-PSN of size
𝑁

2
 was implemented by

𝑁

2
 DFFs,

𝑁

2

AND gates,
𝑁

2
 XOR gates and a matrix generation unit as shown in Figure 7.14.

Whenever a new bit is decoded, the SR-PSN is activated in addition to the matrix

generation unit and the partial sums are updated according to the equation (5.12).

{
𝑅0 ← 𝑢𝑖 ̂ 𝐴𝑁𝐷 𝐶𝑖,0

𝑅𝑘 ← 𝑅𝑘−1 𝑋𝑂𝑅 (𝑢𝑖 ̂ 𝐴𝑁𝐷 𝐶𝑖,0), 𝑖𝑓 𝑘 > 0
(5.12)

The main contributor in this SR-PSN architecture is the matrix generation unit

which is responsible for the generation of the Kronecker matrix which was used in the

encoding process so the same matrix has to be used in the decoding operation.

Figure 7.14 - SR-PSN internal structure

94

The matrix generation unit could have been implemented using a
𝑁

2
∗ 𝑁 ROM,

which will produce a 16 KB memory for 𝑁 = 512 that would affect the area severely.

Therefore, in [15] LFSR of size
𝑁

2
 as it can be seen in Figure 7.15 was used to overcome

this area overhead. The LFSR is updated whenever a new estimate is produced

according to the following equations.

{

𝐶𝑖,0 = 1 , 0 ≤ 𝑖 ≤ 𝑁 − 1

𝐶𝑖+1,𝑘 = 𝐶𝑖,𝑘−1 𝑋𝑂𝑅 𝐶𝑖,𝑘 , 0 ≤ 𝑖 < 𝑁 − 1 𝑎𝑛𝑑 1 ≤ 𝑘 ≤
𝑁

2
− 1

(5.13)

{
𝑀0 ← 1

𝑀𝑘 ← 𝑀𝑘 𝑋𝑂𝑅 𝑀𝑘−1 𝑖𝑓 𝑘 > 0
(5.14)

The SR-PSN produces
𝑁

2
 partial sums and in our decoder, we only use 4 PEs, so

we needed to use a memory to store them as it can be seen in Figure 7.17 and route

them to the PE properly according to their indices.

To use the SR-PSN with the semi-parallel decoder, a multiplexing network is

needed since the output partial sums must be ordered before they can be used as inputs

to the PEs as shown in Figure 7.16.

Figure 7.15 - Matrix generation unit

95

To summarize, The PSN sub-module contains 3 essential modules in addition

to AND and XOR gates. These essential modules are the matrix generation unit, SR

and a memory to store the output partial sums to be passed to the PEs whenever needed.

Figure 7.16 - PSN operation

Figure 7.17 - PSN internal structure

96

7.8.2 Port Mapping.

Figure 7.18 - PSN port mapping

Table 7.5 - PSN port mapping

Port Direction Width Parameter

clk Input 1 bit N/A

rst Input 1 bit N/A

enable_psn Input 1 bit N/A

estimated_bit_psn Input 1 bit N/A

part_stage_index Input 7 bits
log2(

2𝑙

𝑝
)

stage_index_psn Input 4 bits log2(log2(𝑁) −1)

top_address_psn Input 7 bits N/A

97

7.9 SC Pipelined

As shown in Figure 7.19 the data path of SC decoder consists of a multiplexing

network and processing element. As a conservative approach we decided to break this

combinational path so we can prevent any timing violation when we reach synthesis

stage. Thus, we modified the data path and accordingly we needed to schedule the read

and write enables of the memories in addition to the addresses so we can synchronize

the decoding operation.

As shown in Figure 7.19 , the first modification to the data path is adding a flip

flop to the output of the processing element to break the pipeline of the data path, since

there is a new added clock cycle latency we will need to delay the write and read enables

of the memories to prevent storing or reading invalid data as a result of this change each

LLR is computed and stored in 3 cycles due to the pipelining.

 Another modification to the SC decoder, we will add a flip flop to delay the

partial sums produced by the PSN so that they become synchronized with the

processing element at the same stage and operation.

Figure 7.19 SC Pipelined Top level

The last modification to the SC decoder in the pipelined register is registering

the output of any RAM in the design which was necessary to synchronize the read

operation to be compatible with the pipelining modification. This change will make the

memories compatible with most FPGAs as most of them doesn’t have asynchronous

read BRAMs. However, if the BRAM is asynchronous the FPGA can simply modify it

by adding a register to the output and we will still utilize the BRAM, the synchronous

BRAM cannot be modified to become asynchronous BRAM. Therefore, the synthesis

engine will use the logic fabric to create a memory which is a waste of resources.

98

As shown in Figure 7.20 in the start of the operation of the pipelined decoder

the first 3 cycles contain 3 separate operations memory read, LLR calculations, memory

write. Then as shown in Figure 7.21 after passing the first 3 clock cycles the actual

pipeline will start and the 3 operations will move simultaneously till the end of the

decoding process therefore the throughput will increase as expected due to the

pipelining modifications.

Figure 7.20 First 3 cycles in pipeline operation

Figure 7.21 Normal pipeline operation

7.10 SC Block level verification:

To properly verify the design, that the hardware matches the MATLAB model

using test cases generated from the model sweeping over the SNR range from -

12 to 5 dB and we need to check the internal LLR values and the output bits from

the decoding process.

We tested the design with 1500 test cases over the SNR range with no failed test

cases as shown in Fig 7.22 and Fig 7.23. The verification also tested the decoder

capability of decoding multiple frames.

Figure 7.22 - Test bench outputs

99

Figure 7.23 Output decoded bits

Chapter 8: SCL Proposed Architecture

8.1 Introduction.

This architecture is based on the SC decoder as a building block where four SC

decoders were used. Hence during the decoding operation there were eight paths I some

cases and we have to choose only four of them according to a metric called path metric.

During the design phase of this architecture, there was two approaches, the first

is to modify the SC decoder to operate as a SCL decoder with pointer memory and a

multiplexing network to decide which PE reads from which memory. This design

approach has some major problems as it does not utilize the SC decoder as a black box,

its pointer introduces extra hardware complexity and it is not easily scalable if it is

required to increase the number of decoders [11].

The second approach is to use the SC decoder as a black box with a master control

unit which is implemented using a FSM, in addition to some modules such as a metric

sorter and another module for the copying logic to handle the operation between the

decoders and a multiplexing network between these L decoders. This design approach

does not introduce much hardware complexity compared to the previous one. It utilizes

the SC decoder as a black box which makes this approach scalable if it is required to

increase the number of paths.

The internal blocks or modules of the SC decoder were modified to match the

new architecture and be suitable for copying to match the SCL algorithm. The modified

blocks were the SC control unit, PSN, and the decision unit which had the greatest

modification as it is responsible for the PM calculations.

100

The SCL is integrated with the CRC block which is in charge of detecting the

payload errors after receiving the data which passes through AWGN channel which

may deteriorate the data. That deterioration leads to decoding errors.

8.2 Operation Overview.

The operation starts by triggering the SCL with a start pulse. When the operation

starts, all the decoders perform the same operation for the frozen bits until reaching the

first data bit where the decoders split into two groups. upon reaching the second data

bits, the two groups split into four groups which are split into eight groups after

decoding the third data bit. Each decoder contains two paths and calculates a path metric

for each one of them. These path metrics are arranged ascendingly by a module called

metric sorter where only the least four path metrics are allowed to continue the decoding

operation. If any decoder contains more than one of the survival paths, then copying is

required from that decoder to any other decoder which does not contain any of the

survival paths.

After the decoding operation is done, we have to choose which path contains the

correct payload, this is done based on the PM sorting. After choosing, we have to

sperate the data bits from the frozen bits and store the data bits in an external memory.

Hence, the CRC is activated to indicate whether the decoded payload is received

without any errors or there were errors during the data transmission in the AWGN

channel.

The list decoding operation is controlled by a FSM which passes through many

states including the normal operation state, copying state and CRC state.

Figure 8.1 - SCL architecture

101

Figure 8.2 - SCL operation

102

8.3 Controller FSM Sub-Module.

8.3.1 Module Description.

The operation starts in the Idle state waiting for a start pulse to trigger the SCL

decoder. When the SCL is triggered, we move to the normal operation state where

actual decoding takes place by enabling all the SC decoders. The FSM keeps the normal

operation state until the available paths become 8 paths after decoding the third data

bit.

After reaching the third data bit the FSM moves to the metric sorting state. The

metric sorting decides which 4 path out of the 8 available paths by sorting the PMs

ascendingly and produces an end of sorting pulse to indicate the finishing of its

operation to trigger the FSM again.

We then move to the estimate selection state to choose the estimated bit of each

decoder since each decoder contains two paths each with a different decoded bit. One

of those estimated bits inside each decoder is decided according to the decision unit

while the other is its opposite. The FSM informs each decoder to go along with one of

its estimated bits according to which one of its 2 paths is surviving.

Figure 8.3 FSM of SCL Top Controller

103

The FSM keeps the estimate selection state for only one cycle and then moves to

the copying logic state where a module with the same name is enabled to decide if there

would be any copying from any decoder to another or not. This is done based on the

valid flags vectors which is the output of the metric sorter. This valid flags vector is

composed of 8 bits each one of them corresponds to one of the paths. The metric sorter

puts 1 in the bits corresponding to the survival paths, then the copying logic module

takes that vector and checks on the 2 bits of each decoder to decide if that decoder

requires copying from/to any other decoder. If there is any copying, all the decoders are

disabled and the decoding operation is paused until the 2 decoders finish copying their

internal memories. During copying, the FSM has to control the selection lines of the

multiplexing network between the decoders depending on the valid flags vector so that

each decoder performs copying with the proper selected decoder. When copying is

finished, a flag named copying finished is asserted by the decoders involved in the

copying operation to indicate that they have finished so that the FSM can move to the

next state.

The next state is the PM load state. Before we dive into the operation of this state

there are 2 PM registers in each decoder PM_data and PM_data_bar these 2 registers

should be equal during the operation until we reach stage 0 then PM_data_bar is

penalized as it selects the path opposite to the decoded path based on the LLR of stage

0. During the copying stage, we load PM_data and PM_data_bar with PM_in signal

copied from another decoder. However, we need to load both PM_data and

PM_data_bar with the same PM value if no copying occurred so that we can continue

decoding for the same path with both PMs equal. After finishing PM_load state we

return to the normal operation state until we finish decoding the N bits.

After completing the decoding process, we have 4 paths with 4 different PMs we

need to choose the path with the least PM so that we can extract the payload from this

path to perform the CRC on this payload.

The last state in the operation of SCL is to perform CRC on the extracted payload

from the path with the least PM to detect if there is any error in the decoded payload.

104

8.4 Port mapping.

Figure 8.4 Controller FSM port mapping

Table 8.1 Controller FSM port mapping

port direction width parameter

clk input 1 N/A

rst input 1 N/A

start input 1 N/A

estimate_flag input 1 N/A

frozen_flag_FSM input 1 N/A

copy_flag_FSM input 1 N/A

copy_finished_dec1_FSM input 1 N/A

copy_finished_dec2_FSM input 1 N/A

copy_finished_dec3_FSM input 1 N/A

copy_finished_dec4_FSM input 1 N/A

EOS_FSM input 1 N/A

105

copying_dec1_FSM input 1 N/A

copying_dec2_FSM input 1 N/A

copying_dec3_FSM input 1 N/A

copying_dec4_FSM input 1 N/A

copy_from_or_to_dec1_fsm input 1 N/A

copy_from_or_to_dec2_fsm input 1 N/A

copy_from_or_to_dec3_fsm input 1 N/A

copy_from_or_to_dec4_fsm input 1 N/A

CRC_Done_FSM input 1 N/A

ps_done_FSM input 1 N/A

dec_bit_index_FSM input 8 log2(𝑁) − 1

valid_flags_FSM input 8 N/A

path_num_FSM input 2 N/A

PM_load_FSM_dec1 output 1 N/A

PM_load_FSM_dec2 output 1 N/A

PM_load_FSM_dec3 output 1 N/A

PM_load_FSM_dec4 output 1 N/A

PM_bar_load_FSM_dec1 output 1 N/A

PM_bar_load_FSM_dec2 output 1 N/A

PM_bar_load_FSM_dec3 output 1 N/A

PM_bar_load_FSM_dec4 output 1 N/A

enable_DU_FSM output 1 N/A

enable_PSN_FSM output 1 N/A

enable_dec1_FSM output 1 N/A

enable_dec2_FSM output 1 N/A

enable_dec3_FSM output 1 N/A

enable_dec4_FSM output 1 N/A

enable_CL_FSM output 1 N/A

enable_MS_FSM output 1 N/A

enable_CRC_FSM output 1 N/A

enable_PSEL_FSM output 1 N/A

path_sel_FSM_dec1 output 1 N/A

path_sel_FSM_dec2 output 1 N/A

path_sel_FSM_dec3 output 1 N/A

path_sel_FSM_dec4 output 1 N/A

mem_mux_sel_dec1_FSM output 2 N/A

mem_mux_sel_dec2_FSM output 2 N/A

mem_mux_sel_dec3_FSM output 2 N/A

mem_mux_sel_dec4_FSM output 2 N/A

est_mux_sel_dec1_FSM output 1 N/A

est_mux_sel_dec2_FSM output 1 N/A

est_mux_sel_dec3_FSM output 1 N/A

106

est_mux_sel_dec4_FSM output 1 N/A

survival_counter_dec_bits output 9 N/A

enable_write_survival_memory output 1 N/A

soft_rst output 1 N/A

busy output 1 N/A

8.5 Metric Sorter Sub-Module.

8.5.1 Module description

Metric sorter is one of the major blocks in the list decoder which is responsible

for arranging the path metrics ascendingly to choose the least 4 path metrics as the

survival paths, there are a lot of sorting algorithms used in literature. We used the

bubble sorting algorithm due to its low area which matched our target to reduce the

area. Moreover, the latency of the bubble sorting algorithm is lower than both pruned

bitonic and the proposed sorter in [16]. However, it has higher latency than radix-2L

sorter for L=4.

The bubble sorting algorithm is one of the simplest and hardware efficient

algorithms, it consists of comparators to compare between the adjacent PMs which are

stored in memory then if the PM stored in the next index in the memory is greater than

the current index swapping will occur till we scan the memory for 2𝐿 − 1 times then

the bubble sorting algorithm is completed.

The metric sorter is activated in the metric sorting state during the list decoding

process, the sorting starts when the enable signal is received from the FSM and when

the sorting is completed it produces an EOS pulse.

To determine which 4 paths will continue the decoding process and signal them

to the SC decoder a comparison is made inside the metric sorter between the 2𝐿 input

path metrics and the 𝐿 output path metrics then produce an 2𝐿 bit valid flags vector to

index which paths will continue the decoding process. The valid flags register has only

𝐿 ones at a time.

Figure 8.5 - Comparison between sorting algorithms [16]

107

8.5.2 Port mapping.

Figure 8.6 - metric sorter port mapping

Table 8.2 metric sorter port mapping

Port Width direction Parameter

clk 1 input N/A

rst 1 input N/A

enable_met_sort 1 input N/A

PM1 10 input WIDTH_OF_PM

PM2 10 input WIDTH_OF_PM

PM3 10 input WIDTH_OF_PM

PM4 10 input WIDTH_OF_PM

PM5 10 input WIDTH_OF_PM

PM6 10 input WIDTH_OF_PM

PM7 10 input WIDTH_OF_PM

PM8 10 input WIDTH_OF_PM

PM_ORDERD1 10 output WIDTH_OF_PM

PM_ORDERD2 10 output WIDTH_OF_PM

PM_ORDERD3 10 output WIDTH_OF_PM

PM_ORDERD4 10 output WIDTH_OF_PM

EOS 1 output N/A

valid_flags 8 output L_MUL_2

108

8.6 Copying Logic Sub-Module.

8.6.1 Module description.

This module is responsible for determining when it is required to copy a path

from one decoder to another decoder this is done based on the valid flags that are

produced from the metric sorter. This vector contains 2 bits for each decoder when a

bit is equal to one this imply that this is a survival path, if there are 2 ones for a decoder

then copying is required from this decoder to another idle decoder. On the other hand,

if the decoder has 2 zeros, copying is required to this decoder. If no decoder has 2

survival paths there will be no need for copying.

Another function for the copying logic module is to configure the decoder whether it

will copy its survival path including all the internal memories, the previously decoded

bits and the partial sums to another decoder or from another decoder.

The copying between the 2 decoders will continue until a flag is asserted from the

decoders that are involved in the copying process. This flag is named copying_finished

based on a counter implemented in a newly modified control unit.

Figure 8.7 - Copying logic operation

109

8.6.2 Port mapping

Figure 8.8 - Copying logic port mapping.

Table 8.3 Copying logic port mapping.

Port Width direction Parameter

enable_CL 1 input N/A

index_vect 8 input L_MUL_2

copying_finished_dec1_CL 1 input N/A

copying_finished_dec2_CL 1 input N/A

copying_finished_dec3_CL 1 input N/A

copying_finished_dec4_CL 1 input N/A

copying_dec1 1 output N/A

copying_dec2 1 output N/A

copying_dec3 1 output N/A

copying_dec4 1 output N/A

copy_flag 1 output N/A

110

8.7 Path Selection Sub Module.

8.7.1 Module Description.

As previously explained in the FSM operation we need to select the path with the least

path metric so we can extract the pay load and perform CRC check, this path_sel

module is responsible for selecting the survival path from the decoding process.

8.7.2 Port Mapping.

Figure 8.9 - Path_sel port mapping

Table 8.4 - Path_sel port mapping

port width direction parameter

PM_Data_dec1 10 input PM_WIDTH

PM_Data_dec2 10 input PM_WIDTH

PM_Data_dec3 10 input PM_WIDTH

PM_Data_dec4 10 input PM_WIDTH

PM_ORDERD 10 input PM_WIDTH

clk 1 input N/A

rst 1 input N/A

enable_PSEL 1 input N/A

sel_done_ps 1 output N/A

path_num 2 output N/A

111

8.8 Remove Frozen Sub-Module.

8.8.1 Module Description.

After decoding the N bits, it will be required to remove the frozen bits from the

N decoded bits so that we get the 56 data bits for CRC checking and to be stored in the

external memory. Hence, this module was developed for that purpose, to remove the

frozen bits and output the 56 data bits.

8.8.2 Port Mapping.

Figure 8.10 - Remove frozen port mapping

Table 8.5 - Remove frozen port mapping

Port Width Direction Parameter

clk 1 input N/A

rst 1 input N/A

enable_remove_frozen 1 input N/A

decoded_bit 1 input N/A

survival_counter_dec_bits_top 9 input N/A

MEM_CRC 56 output N/A

8.9 CRC Check Sub-Module.

8.9.1 Module Description.

The payload can be affected by the channel which may lead to decoding errors.

Hence, we need a checker to take a decision on the received payload whether it is

received correctly or not. This checker is the CRC check which divides the received

payload by a certain number, if the reminder is equal to zero, then the received payload

has a high probability to be correctly decoded. If the reminder is not equal to zero, then

the received payload is corrupted.

112

The CRC check is a part of the SCL decoding operation which runs after the

operation is done, then it can be considered the last decoding step. This module output

two signals to the top controller of the PBCH chain. The first is the CRC done signal

which indicates finishing of its operation, the second is the CRC pass to indicate

whether the received payload is corrupted or not.

8.9.2 Port Mapping.

Figure 8.11 - CRC check port mapping

Table 8.6 - CRC check port mapping

Port Width direction Parameter

data_bits 56 Input N/A

enable_CRC 1 Input N/A

CRC_pass 1 Output N/A

Done_CRC 1 Output N/A

8.10 PM Sorter Sub-Module.

8.10.1 Module Description.

This module is in charge of watching over the calculated PMs of the L SC

decoders in all decoding stages. Knowing that an extra bit is added to each PM to detect

the overflow that may happen, if any one of the least 4 PMs exceeds the maximum

number that can be represented in 8 bits, the PM sorter asserts a flag indicating overflow

and quantization and normalization are required.

Unlike the metric sorter, the PM sorter does not require an enable signal to

perform its function, it has to be functioning all the time to detect any overflow. It was

developed to allow area optimization by asserting the overflow flag which is considered

an enable signal to the PM quantizer.

113

8.10.2 Port Mapping.

Figure 8.12 - PM sorter port mapping

Table 8.7 - PM sorter port mapping

Port Width Direction Parameter

PM1 10 input WIDTH_OF_PM

PM2 10 input WIDTH_OF_PM

PM3 10 input WIDTH_OF_PM

PM4 10 input WIDTH_OF_PM

PM5 10 input WIDTH_OF_PM

PM6 10 input WIDTH_OF_PM

PM7 10 input WIDTH_OF_PM

PM8 10 input WIDTH_OF_PM

ov_flag 1 output N/A

8.11 PM Quantizer Sub-Module.

8.11.1 Module Description.

When the PM sorter detects an overflow in the least 4 PMs, it asserts a flag.

This flag is an input to the PM quantizer acting as its enable. This module subtracts 128

from the PM magnitude and then compares it with the maximum number that can be

represented in 8 bits, if it exceeds that number, saturation is done so that the new PM

will be equal to 255. This saturation allows area optimization as the PM registers are 9

bits, one sign bit and 8 bits for the magnitude instead of 12 bits in the previous fixed

point.

114

8.11.2 Port Mapping.

Figure 8.13 - PM quantizer port mapping

Table 8.8 - PM quantizer port mapping

Port Width Direction Parameter

word_in 9 bits Input N/A

ov_pm_ext 1 Input N/A

word_out 9 bits Output N/A

8.12 Modified SC Control Unit Sub-Module.

8.12.1 Module Description.

Some modifications were added to the SC control unit to match the new SCL

architecture. Some of those modifications were for the copying between the L decoders.

When copying is required, each control unit of the 2 decoders involved in the copying

has to generate addresses for the internal memories of its decoder in addition to the read

or write enable of each memory depending on the copying state whether it is copying

from or copying to that decoder.

Some of those modifications were introduced due to the existence of a new

control unit for the SCL which controls the decoding flow. The FSM informs the control

units of each of the L decoders when to enable its decision unit, it also informs them

when to enable their PSN.

115

8.12.2 Port Mapping.

Table 8.9 - Modified CU New ports

Port name Direction Width Parameter

enable 1 Input N/A

done_cu 1 Input N/A

soft_rst 1 Input N/A

coping 1 Input N/A

copy_from_or_to 1 Input N/A

path_sel 1 Input N/A

enable_DU_FSM 1 Input N/A

enable_PSN_SCL 1 Input N/A

copying_finished 1 Output N/A

8.13 Modified Decision Unit Sub-Module.

8.13.1 Module Description.

During the SCL architecture design, some modifications had to be made to the

SC decision unit. The first and the most important modification is that the decision unit

Figure 8.14 - Modified control unit port mapping

116

became in charge of the PM calculations. Each decoder contains two registers for PMs

which corresponds to the two paths of that decoder. The first register is the PM data

register which corresponds to the path of the estimated bit while the other is the PM

data bar which corresponds to the path of the estimated bit bar. The estimated bit is

decided according to the input LLR sign while the estimated bit bar is its opposite.

While decoding a frozen bit which is a zero bit, if the estimate is equal to one,

magnitude of the LLR will be added to both PM data and PM data bar, if it is estimated

correctly, their values will stay the same. During estimation of a non-frozen bit, the PM

data register remains unchanged while the PM data bar register is penalized as it

chooses a wrong path, it is updated by adding the LLR magnitude to its previous value.

The second modification was done in the estimated bit path. Two multiplexers

were added to that path, the first to choose between the estimated bit and estimated bit

bar depending on the valid flags vector which comes out from the metric sorter to

inform that decoder which of its two paths will survive so that the chosen bit is stored

in the estimated bits memory. The second multiplexer is used during copying where we

choose between the estimated bit bar of the 𝐿 − 1 decoders, the selection line of that

multiplexer is derived from the FSM depending on the valid flags vector.

8.13.2 Port Mapping.

Figure 8.15 - DU New port mapping

117

Table 8.10 - DU New Ports

Port name Direction Width Parameter

PM_Data_in input 10 PM_WIDTH

copy_from_or_to_DU input 1 N/A

copying_DU input 1 N/A

estimate_mux_sel input 1 N/A

mem_mux_sel_DU input 2 N/A

est_bit_in_dec2 input 1 N/A

est_bit_in_dec3 input 1 N/A

est_bit_in_dec4 input 1 N/A

load_PM input 1 N/A

load_PM_barov_pm_ext input 1 N/A

soft_rst input 1 N/A

estimated_bit_bar output 1 N/A

frozen_flag output 1 N/A

valid_data_flag output 1 N/A

end_of_frozen output 1 N/A

done_DU output 1 N/A

PM_Data_bar output 10 PM_WIDTH

PM_Data output 10 PM_WIDTH

8.14 SCL Block Level Verification

To completely verify the functionality of the SCL decoder we need to verify that the

branched paths match the MATLAB model, and the PMs completely match those in

the model. In addition to, checking the payload and the CRC check. Therefore, we

tested the list decoder with 1000 test cases over all the SNR range. All the test cases

are successful as shown in Fig 8.16 and Fig. 8.17.

Figure 8.16 - SCL Functional verification

118

Figure 8.17 SCL Modelsim waveform

Chapter 9: PHY integration

In this chapter, we will discuss the PHY integration, and the blocks used to

facilitate its integration with the bus matrix from one side, and the integration of the

subsystems from the other side. We will also introduce the algorithm used to find the

correct iSSB and report the MIB payload to the processor.

Figure 9.1 - PHY block diagram

9.1 Integrate the DL chain

9.1.1 Register Interface (RIF)

It acts as an AHB interface for the PHY by translating the incoming AHB signals

into signals understood by the PHY. It also fills the memories needed by the post-FFT

subsystem to operate correctly and provides the top controller with the control signals

needed to start or end operations, Fig. 9.1.

119

The RIF consists of 2 parts:

- AHB interface: responsible of transferring the AHB bus protocol to simple register

read write protocol and making sure that the data and address signals arrive at the

same time to the PHY.

- Register file: It contains the address map section assigned to PHY based on which

the input AHB data is written in a certain register. It also reads some flags from

the PHY and transfers them to the processor when requested.

The PHY address map, presented in table (9-1), is translated such that whenever the

RIF receives an address, it translates it into a chip select (enable) signal to a certain

part/register of the RIF. All the registers in RIF have 32 bits width.

Table 9.1: PHY Memory map

Reg# Register Name Start Address End Address Description

1

RIF_SW_FLAGS_REG 0x4001_1000 -

Contains the 3

Flags reported

to SW and the

correct iSSB

index

Read by AHB,

written by

PHY

2 RIF_PARAM_REG 0x4001_1004 -

Contains the

RIF

Parameters

Read by PHY,

written by

AHB

3 RIF_CONTROL_REG 0x4001_1008 -

Contains the

control signals

required by

the top

controller

Read by PHY,

written by

AHB

4 MIB_Payload 0x4001_100C -

Written by

PHY, Read by

AHB

120

5 RIF_MMSE_MSB_REG1 0x4001_1010 0x4001_3710

MMSE

Coefficient 1

The 32 MSB

are sent to

address

having third

LSB = 0

Read by PHY,

written by

AHB

6 RIF_MMSE_MSB_REG2 0x4001_3718 0x4001_5E18

MMSE

Coefficient

reg 2 (MSB)

The 32 MSB

are sent to

addr. having

third LSB = 0

Read by PHY,

written by

AHB

7 INT_CLR_REG 0x4001_5E1C -

Clear interrupt

Reg

The LSB

contain the

clear bit

Written by

PHY, Read by

AHB

Each of these registers contains information important to the PHY operation, where:

1. The “RIF_SW_FLAGS_REG” register contains the SW flags reported by the

controller so that the processor can know which subsystem has completed its

operation, whether it must issue some control signals, and to read the decoded MIB

when the decoding process is complete. This register consists of the following flags,

table (9-2):

- Trial done: a single blind decoding trial is done. This signal is needed in SW

mode where the processor is responsible of the blind decoding process not

the HW controller.

- All done: all the subsystems have completed their operation. When this flag

is issued and the CRC check fails, it means that the decoding chain has fails

to decode the MIB correctly.

121

- CRC Result: indicates whether the CRC check passes or fails.

- FFT done: the FFT subsystem has completed its operation and the processor

can start the blind decoding process in SW mode.

- iSSB success: the correct iSSB value reported to the processor after

successfully decoding the MIB payload.

Since all the registers are of 32 bits width, the remaining bits are zero padded.

Table 9.2: RIF_SW_FLAGS_REG content

RIF_SW_FLAGS_REG

0's

(26

bits)

iSSB_success

(2bit)

FFT_done

(1 bit) CRC_result

(1bit)

ALL_done

(1bit)

Trial_done

(1bit)

2. The “RIF_PARAM_REG” register contains the needed parameters for the PHY

subsystems to operate properly. These parameters can be updated after each full

MIB decoding operation, and they are, table (9-3):

- Scale: a value used to change the decoder subsystem’s input gain in certain

cases.

- N half-frame and cell ID: needed by the post-FFT subsystem to

- Timestamp: used by the FFT subsystem

- iSSB: sent by the processor during SW mode only and is updated every blind

decoding trial until the correct MIB is found or it equals 3 and the decoding

fails.

- Blind decoding mode: It sets the operating mode of the blind decoding

process, when asserted the SW mode is activated.

Table 9.3: RIF_PARAM_REG content

3. The “RIF_CONTROL_REG” register contains the control signals needed by the

controller to start operation, and these signals are, table (9-4):

- Rx Start: Start operation signal sent to controller in both SW and HW modes.

When asserted the FFT subsystem starts operating.

- Rx Stop: Stop read new data signal sent to Rx Frame memory feeding the

FFT subsystem in both SW and HW modes. It is enabled after the FFT

subsystem finishes operation.

- Trial Start: indicates the start of a new blind decode operation in SW mode

only, when asserted the new iSSB value (from RIF) is used.

Table 9.4 RIF_CONTROL_REG content

RIF_CONTROL_REG
0's (29

bits)

Trial_start_RIF

(1bit)

Rx_Stop_RIF

(1bit)

Rx_Start_RIF

(1bit)

These signals are transformed into pulses by the controller.

RIF_PARAM_REG
Scale (3

bits)

N_HF

(1

bit)

TimeStamp

(15 bits)

NCellID

 (10

bits)

iSSB

(2

bits)

Blind_dec_mode

(1 bit)

122

4. The “MIB PAYLOAD” register contains the decoded 32 bits of the MIB and is read

by the processor upon successful decoding operation.

5. The “RIF_MMSE_MSB_REG1” and “RIF_MMSE_MSB_REG2” hold the 32

most significant bits of the MMSE coefficient memory used by the post-FFT

subsystem.

These memories consist of 1248 elements of 48 bits width; hence the processor

sends the memory content using 2 transfers. The first data transfer contains the 32

most significant bits of the data, and it must be followed by the 16 least significant

bits using consecutive addresses.

The 32 most significant bits are sent using addresses whose third least significant

bit is equal to zero, then the remaining 16 bits are sent on the following address.

For example, address 0x4001_1010 is used to write the most significant bits of the

memory in an internal register in RIF. Then, the remaining 16 bits are sent on the

following address 0x4001_1014 (address [2] = 1).

If this sequence is not followed, the coefficient values won’t be written correctly.

6. The least significant bit of the “INT_CLR_REG” is asserted by the processor to

clear the interrupt signal sent by the PHY (interrupt is served).

9.1.2 RX Frame Memory

The RX Frame Memory is an interface block between the RX Half Frame

Memory and the FFT subsystem. It’s functionality is to take a sample from the RX Half

Frame Memory each 16 CLK cycle and store this sample and after 16 CLK cycle sends

this sample to FFT with a valid pulse and take the next sample from RX Half Memory.

The RX Frame Memory contains a FSM controller which controls the operation of the

RX Frame Memory as shown in Fig. 9.2.

123

Figure 9.2 - RX Frame Memory FSM

It starts its functionality after receiving a RX start pulse which move it from IDLE state

to Read state where in it the RX Frame Memory starts read from the RX Half Frame

Memory. When it receives a RX Stop pulse, it moves to IDLE state again and stop its

functionality. The functionality of RX Frame Memory is shown in Fig. 9.3.

9.1.2.1 Port Mapping

Table 9.5: Half Frame Memory port mapping

Port Direction Width Description

CLK Input 1 Clock signal

RST_n Input 1 Reset signal

RX_Start_pulse Input 1 Start flag from controller to start operation

RX_Start_pulse Input 1 Stop flag from controller to stop operation

Data_IQ Input 24 Input sample from RX Half Frame Memory

Data_real Output 12 Real part of the sample to FFT

Data_real Output 12 Imaginary part of the sample to FFT

address Output 16 Address to Half frame Memory

Valid Output 1 Valid signal to FFT subsystem to start

processing in the given input

Figure 9.3 - RX Frame Memory Waveform

124

Figure 9.4 - RX Frame Memory block diagram

9.2 The DL chain controller

9.2.1 Module Overview

The Top chain controller Module is responsible for controlling all the

subsystems modules throughout its output control signals. The controller takes action

according to its input status signals.

The Top controller module is divided into two sub-modules controllers. A sub-

controller module to control the operation of the sub-modules and a hardware Blind

Decoder controller which will be discussed later. The sub-controller module is

responsible for generating an interrupt signal to cortex INT_PHY = 1 when it receives

from FFT subsystem a TTI pulse equals to 1. The interrupt is cleared by the controller

also when the cortex sends a INT_PHY_CLR signal equals to 1. The sub-controller

module FSM is shown in Fig. 9.5.

Initially, the sub-controller is at IDLE state where all its outputs equal to zero. The

controller stays in the IDLE state until it reads that RX_Start signal in RIF equals to

1. The controller goes to the next state which is FFT state, while transitioning the

controller converts the RX_Start to a pulse signal and sends it into RX Frame

Memory and FFT subsystem to start operation.

At the FFT state, the controller waits the FFT subsystem to sends a symbol done pulse

three times which means that the FFT finishes the processing on all the symbols of the

SSB block. When it receives this signal three times, it moves to next state which is

Wait_Trial_Trig.

In Wait_Trial_Trig, the next state depends on decision signal from Hardware Blind

Decoder Controller which will be discussed later. If the controller receives a Start_trial

= 1 from BD controller means that CRC fails and iSSB index less than 3, so next state

is Post-FFT and the controller here generates a start pulse to the post-FFT subsystem

Start_trial_PFFT = 1 to start operation. If it receives Terminate = 1 means that CRC

passes, so next state is IDLE or means that CRC fails and iSSB index more than 3, so

125

next state is IDLE, else it will remain in the same state until the controller receives a

decision signal from HW-BD controller.

In Post-FFT state, the controller next state is Polar Decoder state and the controller here

generates a start pulse to the Decoder subsystem Start_trial_Dec = 1 to start operation

when the controller receives Trial_done_PFFT = 1 from Post-FFT subsystem else it will

remain in the same state.

In Polar Decoder state, the controller next state Finish state when the controller receives

Trial_done_dec = 1 from Post-FFT subsystem else it will remain in the same state.

In Finish state, the controller wait a single CLK cycle until the CRC reaches the HW

BD controller and return to Wait_Trial_Trig state and send Trial_done = 1 signal to

alert the HW BD controller that the chain finishes a single trial.

Figure 9.5 - Controller's FSM diagram

9.2.2 Port Mapping

Table 9.6: Top controller memory map

Port Direction Width Description

CLK Input 1 Clock signal

RST_n Input 1 Reset signal

RX_Start_RIF Input 1 Start flag from RIF to controller

Trial_start_RIF Input 1 Flag from RIF to controller to start

a new trial in case of SW BD

where SW_Start_trial equals to

posedge of this signal

ISSB_RIF Input 2 iSSB index from RIF register

Blind_Dec_mode Input 1 To choose type of Blind decoder

0 : HW

1: SW

126

CRC_result Input 1 CRC Flag from Polar Decoder

block

Symbol_done Input 2 Flag from FFT must be received

three times to ensure that the FFT

block finished processing on the 3

symbols

Trial_done_PFFT Input 1 Flag from the Post-FFT system

Trial_done_Dec Input 1 Flag from the Post-FFT system

ISSB_index Output 2 iSSB index value to Post FFT

system whether it from BP(HW) or

from RIF(SW)

Start_trial_PFFT Output 1 Flag to Post FFT system to enable

its operation

Start_trial_Dec Output 1 Flag to Decoder system to enable

its operation

INT_PHY_CLR Input 1 Signal from cortex to clear

interrupt signal

FFT_done Output 1 To alert Cortex that FFT

subsystem finishes through RIF

Trial_done Output 1 To alert Cortex that a single trial

finished through RIF

INT_cleared Output 1 To clear the INT_PHY_CLR

register value inside the RIF

Start_Trial_Dec Output 1 Flag to Polar Decoder subsystem

to enable its operation

Start_Trial_PFFT Output 1 Flag to Post FFT subsystem to

enable its operation

INT_PHY Output 1 Interrupt signal to Cortex

Terminate From BD

to sub-

controller

1 Flag to return controller to IDLE

state due to failure or success

Start_Trial From BD

to sub-

controller

1 Signal to indicate a start of new

trial in the RX chain, it is output of

2x1 MUX according to type of BD

mode

127

Figure 9.6: Top controller block diagram

9.3 The Blind Decoder procedure

In 5G systems, decoding the Master Information Block (MIB) transmitted by the

base station is a critical process that enables a reliable connection between the UE and

the base station. However, due to various factors such as channel impairments,

multipath fading, and interference, accurately decoding the MIB can be challenging,

especially when the Initial Synchronization Signal Block (iSSB) index is unknown.

The term "blind decoding" refers to the process of decoding the MIB without prior

knowledge of the iSSB index, relying solely on the received signal. The blind decoding

algorithm is typically implemented in the receiver of the mobile device. It operates by

searching through a set of possible iSSB indices and evaluates the likelihood of each

index based on the received signal characteristics.

The algorithm explores different possibilities until the correct iSSB index is found. This

process involves using known synchronization signals and exploiting statistical

properties of the received signal, such as signal strength, timing, and correlation.

In this section, we will explore the used blind decoding algorithm and its

implementation as hardware or software.

9.3.1 Blind Decoding Algorithm

The blind decoding algorithm connects the PHY subsystems to find the correct

iSSB and to decode the MIB payload, the decoding steps are shown in Algorithm 14

[17]. The decoding algorithm acts like a controller and issues the enable signals

required for each of the subsystems to operate, and this will be discussed in more detail

in the following section.

128

The decoded payload is reported whenever the CRC is valid.

Algorithm 14: Blind decoding algorithm

Inputs: Recovered SSB OFDM grid from SSB signal

Inputs: PBCH and DMRS positions and samples

1 Blind Decoding loop

2 for iSSB ∈ [0, Lmax -1] then

3 - Compute corresponding DMRS sequence

4 - Perform channel estimation and equalization

5 - Compute LLR values

6 - Implement de-rate matching

7 - Decode the input LLRs

8 If CRC is valid then

9 - Report the decoded MIB and the correct iSSB

10 Break

11 end

 end

9.3.2 HW implementation

The Hardware Blind Decoder implementation is implemented as a FSM

controller as shown in Figure (9-7) in the Top controller module. It is responsible for

generating an iSSB index each time it receives from sub-controller Trial_done signal

equals 1. It is also responsible for monitoring the CRC_result from Polar Decoder

subsystem to decide this trial is a success one or a failure trial.

The Hardware Blind Decoder is initially at an IDLE state, where all its outputs equal

to zero. When the HW-BD controller receives a RX_start and Blind_Dec_mode = 0

(HW), it moves to Wait_FFT state.

At the Wait_FFT state, the HW-BD controller remains in this state until it receives

from sub-controller that FFT-done = 1 and moves to Process_trial state

At Process_Trial state, the HW-BD controller starts the ISSB index = 0 and moves to

Check_Trial state if Trial_done = 1 from sub-controller. At this state the Start_Trial

signal equals to 1.

At Check_Trial state, the HW-BD controller checks the value of CRC_result and the

ISSB index and the decides its next state. If CRC_result = 0 and iSSB index less than

3, so next state is Process_trial. If CRC_result = 0 and ISSB_index more than 3, so

next state is Fail. If CRC_result = 1, so next state is Success.

At Fail state, the next state is IDLE and the HW-BD controller asserts the Terminate

signals equals to 1.

At Success state, the next state is IDLE and the HW-BD controller asserts the

Terminate signals equals to 1.

129

Figure 9.7:Hardware Blind Decoder FSM

9.3.3 SW implementation

The Software implementation of Blind Decoder is discussed at chapter 2 at

System Core section 2.2.

Chapter 10: FPGA

10.1 Synthesis.

Before diving in the synthesis flow results, efficient RTL simulation was done to

get the correct output which will be used as a reference through the FPGA flow results.

Since, the post synthesis simulation (GLS) and post implementation are

exhaustive, this comparison between the results was done on a few test cases. In this

Chapter we will use only one test case for comparing between them.

130

Figure 10.1 - RTL simulation

ZYNQ ULTRASCALE+ is our target FPGA, the clock frequency constraint is

61.44 MHZ.

As it can be seen in Figure 10.2, there was no setup time violation but there was hold

time violations in some paths which will be fixed after implementation but the tool by

adding buffers in the violating paths.

As shown in Figure 10.3 and Figure 10.1, The post synthesis simulation matchs the

RTL simulation which indicates a proper translation of the synthesizable RTL to a

functioning gate level netlist.

10.2 Implementation.

Implementation is a step in which the gate level netlist is placed and routed on

the FPGA fabric, any hold time violation can be fixed in this step as the timing between

any 2 flipflops can be determined thus, the software knows how much delay is required

to add buffers to fix the hold time violation.

Figure 10.4 - Post implementation simulation.

As shown in Figure 10.1 and Figure 10.5, the payload of the post implementation

simulation match that of the RTL simulation which indicates the correctness of the

implementation.

Figure 10.2 - Synthesis timing analysis.

Figure 10.3 - Post synthesis simulation

131

Figure 10.5 - Implementation timing analysis.

As it can be seen in the previous figure, hold time violations are fixed with a slack of

0.013 ns compared to the synthesis result in Figure 10.2.

10.3 Design Wrapper.

To prepare the design for bit stream generation we need to identify the ports of

the design and synchronize them with the pins of the FPGA board, so we need a reset

synchronizer and a bit synchronizer for the start pulse of the decoder.

The clock source of the ULTRASCALE+ board produces a differential clock of

frequency 125 MHZ so we used the clock wizard IP to produce a single ended clock

with frequency 61.44 MHZ.

We also used the memory generator block as the interface memories to the SCL

decoder and they were loaded with the same test case used before to verify the

functionality of the wrapper.

The ILA block is used for hardware debugging after we program the FPGA with the

generated bit stream to be able to analyze the outputs.

132

Figure 10.6 - Design block

Figure 10.7 - FPGA utilization

Chapter 11: Conclusion

As a conclusion, our polar decoder hardware implementation was verified

against the MATLAB model and meets all the hardware constraints (Clock frequency

and target FPGA resources) with optimal area without severely affecting the latency.

Our decoder was implemented on ZYNQ ULTRASCALE+ and succeeded in decoding

a few test cases.

The downlink chain was integrated as slave on the APB with many IPs such as

the UART IP, Timer IP and the WDT IP. The APB was connected to the AHB through

a bridge. It receives its commands from the Cortex-M0 through the RIF. The PBCH

decoding processor succeeded in decoding the MIB payload at the proper iSSB index

and it saves the results in internal registers inside the RIF.

133

Chapter 12: Future Work

 The decoder was tested through block level verification using some test benches

and generated test cases from the MATLAB model. Hence as a future work it can tested

using UVM test benches which will be more effective.

Another task to be done is to synthesize the integrated downlink chain and

implement it on FPGA. In addition, it can be also tested using UVM test benches.

134

References

[1] Ericsson. [Online]. Available:

https://www.ericsson.com/49f1c9/assets/local/5g/documents/07052021-ericsson-

this-is-5g.pdf. [Accessed 10 jun 2023].

[2] Telcoma. [Online]. Available: https://telcomaglobal.com/p/mib-master-

information-block-in-5g. [Accessed 10 jun 2023].

[3] E. Arikan.

[4] A. Balatsoukas-Stimming, "IEEE information theory society," 2020. [Online].

Available: https://www.itsoc.org/video/efficient-decoding-polar-codes-

algorithms-and-implementations. [Accessed Dec 2022].

[5] N.-N. IITM, "youtube," 2019. [Online]. Available: https://youtu.be/9b2z6bua0xY

. [Accessed feb 2023].

[6] N.-N. IITM, "youtube," 2019. [Online]. Available: https://youtu.be/1uYEq4ueOok

. [Accessed feb 2023].

[7] N.-N. IITM, 2019. [Online]. Available: https://youtu.be/rB0rhQKyV34 .

[Accessed feb 2023].

[8] 3GPP, "etsi," july 2018. [Online]. Available:

https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/15.02.00_60/ts_138

212v150200p.pdf. [Accessed feb 2023].

[9] N.-N. IITM, "youtube," [Online]. Available:

https://www.youtube.com/watch?v=O3JWkvEY8Lc&list=PLyqSpQzTE6M81HJ

26ZaNv0V3ROBrcv-Kc&index=33&ab_channel=NPTEL-NOCIITM. [Accessed

jan 2023].

[1

0]

A. C. C. L. &. C. J. Mathieu Léonardon, "Fast and Flexible Software Polar List

Decoders".

135

[1

1]

Alexios Balatsoukas-Stimming, Alexandre J. Raymond, Warren J. Gross, and

Andreas Burg, "Hardware Architecture for List Successive Cancellation Decoding

of Polar Codes," IEEE Transactions on Circuits and Systems II: Express Briefs,

vol. 61, pp. 609-613, 2014.

[1

2]

3GPP, "etsi," may 2019. [Online]. Available:

https://www.etsi.org/deliver/etsi_ts/138100_138199/13810101/15.05.00_60/ts_1

3810101v150500p.pdf. [Accessed jan 2023].

[1

3]

Camille Leroux, Alexandre J. Raymond, Gabi Sarkis, Ido Tal, Alexander Vardy

and Warren J. Gross, "Hardware architectures for successive cancellation decoding

of polar codes," 2011 IEEE International Conference on Acoustics, Speech and

Signal Processing, pp. 1665-1668, 2011.

[1

4]

Camille Leroux, Alexandre J. Raymond, Gabi Sarkis, and Warren J. Gross, "A

Semi-Parallel Successive-Cancellation Decoder for Polar Codes," "IEEE

Transactions on Signal Processing", vol. 61, pp. 289-299, 15 Jan 2013.

[1

5]

Guillaume Berhault, Camille Leroux, Christophe Jego, Dominique Dallet, "Partial

sums generation architecture for successive cancellation decoding of polar codes,"

SiPS 2013 Proceedings, pp. 407-412, 2013.

[1

6]

B. a. Y. H. a. P. I.-C. Yong Kong, "Efficient Sorting Architecture for Successive-

Cancellation-List Decoding of Polar Codes," IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 63, pp. 673-677, 2016.

[1

7]

A. d. Javel, "5G RAN : physical layer implementation and network".

[1

8]

N.-N. IITM, 2019. [Online]. Available:

https://www.youtube.com/watch?v=10cnv-

vik90&list=PLyqSpQzTE6M81HJ26ZaNv0V3ROBrcv-Kc&index=36.

[Accessed Nov 2022].

136

[1

9]

N.-N. IITM, 2019. [Online]. Available:

https://www.youtube.com/watch?v=WbC5Ux5Pjp8&list=PLyqSpQzTE6M

81HJ26ZaNv0V3ROBrcv-Kc&index=37. [Accessed Jan 2023].

[2

0]

Z. B. a. X. L. a. M. R. G. a. H. L. Kaykac Egilmez, "The Development, Operation

and Performance of the 5G Polar Codes," IEEE Communications Surveys &

Tutorials, 2020.

