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Abstract 

The 5G technology aims at achieving an enhanced mobile broadband, ultra-

reliable and low latency communications, and massive machine-type communications. 

To achieve these goals, 3GPP has introduced a unified network architecture, with a new 

physical layer design, namely the New Radio (NR), that supports very high carrier 

frequencies (mmWaves), large frequency bandwidths, and new techniques such as 

massive multiple-input and multiple-output (MIMO), and beamforming. 

The NR modem includes many basic building blocks such as the carrier scanning, cell 

selection, physical channels decoding, measurements, and more. In this project, 

although we consider a system on chip solution, we focus on only one building block 

within the NR modem. For simplicity, we will treat this building block as a complete 

independent processor despite that fact that it is one gear in the whole NR system. This 

processor is basically the full decoding chain for the Physical Broadcast Channel 

(PBCH) that carries the important Master Information Block (MIB). 

The PBCH Decoding processor is a purely digital processor that is customized to 

decode the PBCH channel within the NR modem. Form the overall system perspective 

and the microprocessor point-of-view, this processor is employed as a HW accelerator 

that receives a command from the microprocessor through its register interface. The 

command is mainly to decode the PBCH channel. However, this command should be 

associated with various system parameters (such as the cell ID, the time stamp, … etc) 

that enables the PBCH Decoding processor to decode the PBCH. In return, the PBCH 

Decoding processor would inform the microprocessor that the processing is complete 

through an interrupt system and/or a register polling mechanism. The PBCH Decoding 

processor would save the results in some internal registers that are accessible through 

the register interface. The results are mainly the MIB payload if the PBCH is decoded 

successfully, and an indicator whether the PBCH is decoded successfully or not. 

The PBCH Decoding processor implements the typical receiver chain for the PBCH 

detection. This processor has some mandatory building blocks including the FFT, 

channel estimation and equalization, demodulation process, and the channel decoding 

stage. One important feature about this processor is its ability to control the various 

building blocks within the blind decode trials. 
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Chapter 1: Introduction 

1.1 Motivation 

5G New Radio (NR) is the latest global wireless network protocol developed by 

the Third Generation Partnership Project (3GPP) that provides faster and better mobile 

services compared to previous generations. 5G can connect billions of devices that 

share information in real time while providing stable and reliable connectivity. It 

introduces a massive shift in applications that require secure and reliable real time 

connectivity such as the Internet of Things (IoT), virtual reality (VR), and many more 

[1]. 

To support the evolution from 4G to 5G and the different functionalities offered by the 

5G network, the 3GPP defined a large set of protocols for transmitting user data and 

control information across all network layers.  

In the physical (PHY) layer (Layer 1), the 3GPP defines a new signaling block, Master 

Information Block (MIB).  It contains the critical system parameters needed for radio 

resource management, channel quality reports, and higher layers’ information. This 

block is broadcasted on the physical broadcast channel (PBCH), where the PBCH 

resources are mapped with synchronization signals in a special segment of the resource 

grid called Synchronization Signal Block (SSB).  

The SSB consists of 3 signals: Primary synchronization signal (PSS), Secondary 

synchronization signal (SSS), and Physical broadcast channel (PBCH). PSS and SSS 

are responsible for time domain synchronization while the PBCH Payload contains the 

MIB. Hence, one of the PHY layer’s main procedures is the downlink cell’s 

synchronization which consists of time synchronization and MIB decoding.  

MIB enables the synchronization of the user equipment (UE) with the network, it 

conveys the UE and network entities parameters and capabilities, such as the carrier 

frequency, bandwidth, modulation, coding rate, and access control parameters of 5G 

NR. The UE must detect the MIB during the initial cell attach procedure. Hence, it plays 

a key part in the 5G network connection and is said to be the highest-priority data block 

in the 5G network and is defined as the first information element in a message [2].  

Multiple SSBs are periodically transmitted through the channel in a single 

Synchronization Signal (SS) burst. Each SSB within the burst contains the same MIB 

payload and is transmitted with a unique index, the SSB index, which corresponds to a 

specific beam. The goal of our processor is to successfully identify the SSB index and 

decode the MIB.  

In this thesis, we are focusing on one building block within the NR modem and are 

treating it for simplicity as an independent processor. This processor represents the full 

decoding chain of the MIB payload found in the PBCH. It consists of 3 main 

subsystems: FFT subsystem, post-FFT subsystem and the Decoder Subsystem.   



16 

 

1.2 Organization of the Thesis  

In this thesis, our main focus is the decoding process (Polar decoders) used in 

NR technology including the cyclic redundancy check (CRC) operation.   

The rest of this thesis is organized as follows. Chapter 2 details the full system on chip 

specs and components starting from the used core, the Advanced High-performance 

Bus (AHB) address map, and down to the used Advances Peripheral Bus (APB) slaves. 

Chapter 3 provides a literature survey of polar codes and polar decoders in specific the 

successive cancellation (SC) and successive cancellation list (SCL) decoders. Then, 

introduces the 2 implemented decoders model in detail and discusses their operation 

including CRC operation in addition to some hardware architectures found in the 

literature. It also presents the work done to select the appropriate decoder and the fixed-

point analysis operations. 

Chapters 4:8 discuss the implemented hardware architecture and the steps followed to 

obtain an optimum design. Chapter 9 introduces the system integration including the 

blind decoding process and how the processor operates to successfully decode the MIB 

payload. Finally, the conclusion and the possible future work are stated in Chapters 

11:12. 
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Chapter 2: System on Chip (SoC) Integration 

2.1 Introduction 

In this chapter, we will discuss the full system components, starting from the 

core (Cortex-M0) to the APB slaves. The Core is connected to multiple AHB slaves 

through an AHB Bus matrix that uses a unique memory map. 

In our system, we had the following AHB slaves: Instruction and Data memories, 

General purpose input output (GPIO), the AHB to APB bridge and the PHY that 

contains the implementation of the MIB decoding chain that will be discussed in the 

upcoming chapters, Fig. 2.1.  

 

 

The AHB to APB bridge connects the Bus matrix to the following slaves: Timer, 

Watchdog and the UART. These slaves and their usage will be explained in the 

following sections.  

2.2 System Core (Cortex-M0) 

Could you imagine moving your limps without your brain? Of course not, so as 

a system, the system has many peripherals, but they want to talk with each other but 

how when each one has its own signals, standard and sequence? This is the processor 

mission. In this section, we talk about the kind of processor that we use to control our 

system which is cortex M0. 

This processor is one of the smallest arm processors available. It has an exceptionally 

small silicon area, low power, and low cost. It is a 32-bit RISC ARM processor core 

licensed by ARM limited. The ultra-low gate count of the processor enables its 

Figure 2.1 - Full System Block Diagram 
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deployment in analog and mixed devices. The block diagram of Cortex-M0 is shown 

in Fig. 2.2. We discuss each of the main blocks of this diagram in the following sub-

sections.

 

Figure 2.2 - Cortex-M0 Block Diagram 

2.2.1 Wakeup Interrupt Controller 

The device might include a Wakeup Interrupt Controller (WIC), an optional 

peripheral that can detect an interrupt and wake the processor from deep sleep mode. 

The WIC is enabled only when the DEEPSLEEP bit in the SCR is set to 1. The WIC is 

not programmable and does not have any registers or user interface. It operates entirely 

from hardware signals. 

When the WIC is enabled and the processor enters deep sleep mode, the power 

management unit in the system can power down most of the Cortex-M0 processor. This 

has the side effect of stopping the SysTick timer. When the WIC receives an interrupt, 

it takes several clock cycles to wake up the processor and restore its state before it can 

process the interrupt. This means interrupt latency is increased in deep sleep mode. 

2.2.2 Nested Vector Interrupt Controller (NVIC) 

This section describes the NVIC and the registers it uses. The NVIC supports: 

- An implementation-defined number of interrupts, in the range 1-32. 

- A programmable priority level of 0-192 in steps of 64 for each interrupt. A 

higher level corresponds to a lower priority, so level 0 is the highest interrupt 

priority. 

- Level and pulse detection of interrupt signals. 

- Interrupt tail-chaining. 

- An external NMI. 

The processor automatically stacks its state on exception entry and unstacks this state 

on exception exit, with no instruction overhead. This provides low latency exception 

handling. The hardware implementation of the NVIC registers is shown in table (2-1). 
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Table 2.1: NVIC Registers 

Address Name Type Reset value Description 

0xE000E100 ISER RW 0x00000000 Interrupt Set-enable Register  

0xE000E180 ICER RW 0x00000000 Interrupt Clear-enable Register  

0xE000E200 ISPR RW 0x00000000 Interrupt Set-pending Register  

0xE000E280 ICPR RW 0x00000000 Interrupt Clear-pending Register  

0xE000E400-

0xE000E41C 

IPR0-7 RW 0x00000000 Interrupt Priority Registers  

2.2.2.1 Interruput Set-enable Register 

The ISER enables interrupts and shows the interrupts that are enabled. The bit 

assignments are shown in table (2-2). 

Table 2.2: ISER Register 

Bits Name Function 

[31:0] SETENA Interrupt set-enabled bits. 

Write: 0 = no effect, 1 = enable interrupt. 

Read: 0 = interrupt disabled, 1 = interrupt enabled 

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. 

If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to 

pending, but the NVIC never activates the interrupt, regardless of its priority. 

2.2.2.2 Interrupt Set-pending Register 

The ISPR forces interrupts into the pending state and shows the interrupts that 

are pending. The bit assignments are shown in table (2-3). 

Table 2.3: ISPR Register 

Bits Name Function 

[31:0] SETPEND Interrupt set-pending bits. 

Write: 0 = no effect, 1 = changes interrupt state to 

pending. 

Read: 0 = interrupt is not pending, 1 = interrupt is 

pending 

Writing 1 to the ISPR bit corresponding to: 

- An interrupt that is pending has no effect. 

- A disabled interrupt sets the state of that interrupt to pending. 

2.2.2.3 Interrupt Clear-pending Register 

The ICPR removes the pending state from interrupts and shows the interrupts 

that are pending. The bit assignments are shown in table (2-4). 

 

 

https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-set-enable-register?lang=en
https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-clear-enable-register?lang=en
https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-set-pending-register?lang=en
https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-clear-pending-register?lang=en
https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-priority-registers?lang=en
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Table 2.4: ICPR Register 

Bits Name Function 

[31:0] CLRPEND Interrupt clear-pending bits. 

Write: 0 = no effect, 1 = removes pending state interrupt. 

Read: 0 = interrupt is not pending, 1 = interrupt is 

pending 

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt. 

2.2.2.4 Interrupt Priority Register  

The interrupt priority registers provide an 8-bit priority field for each interrupt, 

and each register holds four priority fields is shown in table (2-5). This means the 

number of registers is implementation-defined and corresponds to the number of 

implemented interrupts. These registers are only word accessible. 

Table 2.5: IPR Registers 

Bits Name Function 

[31:24] Priority, byte offset 

3 

Each priority field holds a priority value, 0-192. The 

lower the value, the greater the priority of the 

corresponding interrupt. The processor implements 

only bits [7:6] of each field, bits [5:0] read as zero 

and ignore writes. This means writing 255 to a 

priority register saves value 192 to the register. 

[23:16] Priority, byte offset 

2 

[15:8] Priority, byte offset 

1 

[7:0] Priority, byte offset 

0 

The following steps show how to find the IPR number and byte offset for an 

interrupt M: 

- The corresponding IPR number, N, is given by N = N DIV 4. 

- The byte offset of the required Priority field in this register is M MOD 4, 

where: 

o byte offset 0 refers to register bits [7:0]. 

o byte offset 1 refers to register bits [15:8]. 

o byte offset 2 refers to register bits [23:16]. 

o byte offset 3 refers to register bits [31:24]. 

2.2.3 Debug Access Port (DAP) 

The processor has a low gate count Debug Access Port (DAP). This provides a 

Serial Wire or JTAG debug-port and connects to the processor slave port to provide full 

system-level debug access. The DAP enables communication between the core and the 

device pins during debug.  

The Debug Access Port enables the following: 

- Halting, resuming, and single stepping of program execution. 

- Access to processor core registers and special registers. 

- On-the-fly memory access. 

- Data watchpoints. 

- HW/SW breakpoints. 

- PC sampling for basic profiling. 
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2.2.4 Vector Table 

The vector table contains the reset value of the stack pointer, and the start 

addresses, also called exception vectors, for all exception handlers. Table (2-6) shows 

the order of the exception vectors in the vector table. The least-significant bit of each 

vector must be 1, indicating that the exception handler is written in Thumb mode. The 

vector table is fixed at address 0x00000000. 

 

Exception number IRQ number Vector Offset 

16 + n n IRQn  

0x40+4n 

. 

. 

. 

 . 

. 

. 

 

. 

. 

. 

18 2 IRQ2  

0x48 

17 1 IRQ1  

0x44 

16 0 IRQ0  

0x40 

15 -1 SysTick, if implemented  

0x3C 

14 -2 PendSV  

0x38 

13 

12 

  

Reserved 

 

 

 

11 -5 SVCall  

0x2C 

10 

9 

8 

7 

6 

5 

4 

  

 

 

Reserved 

 

 

 

 

 

 

 

 

 

 

0x10 

3 -13 HardFault  

0x0C 

2 -14 NMI  

0x08 

1  Reset  

0x04 

  Initial SP value  

0x00 
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2.2.5 PHY Application on Cortex-M0 

The algorithm the cortex working with is as follows: 

- First, the cortex is reset. Then the PC is loaded with address 0x00000000 

- The processor reads the value from 0x00000000 location to MSP. 

- Then the processor reads the address of the reset handler from location 

0x00000004 

- Then it jumps to reset handler and start executing the instructions 

- The main application (as illustrated in table (2-7)) is included in the reset 

handler. 

- The interrupt TTI_INT is enabled using the NVIC_EnableIRQ() function. 

So that when it arrives, it is served by the processor then it returns to the 

main application again. 

The flow chart in Fig. 2.3, implements the firmware of the PHY which decodes the 

MIB and checks its correctness then transmits the MIB and its succeeded iSSB through 

UART IP to a monitor to print them. 

Table 2.6: PHY Program Steps 

1  Fill MMSE coefficient memories. 

2  Transmit PHY subsystems parameters 

3  - Assert Rx_Start_RIF signal. (Start FFT subsystem 

operation) 

- De-assert Rx_Stop_RIF signal. 

4 

 If FFT_done is asserted: 

- De-assert Rx_Start_RIF signal. 

- Assert Rx_Stop_RIF signal.  

SW 
Assert the trial_start_rif signal so that the blind decoding 

starts (Start Post-FFT subsystem operation).  

HW De-assert trial_start_rif.  

5 
SW 

If trial_done is asserted: 

- De-assert trial_start_rif. 

- check CRC_result value. 

HW If All_done is asserted, check CRC_result value. 

6  

If CRC_result equals 1: 

The correct iSSB was found and the MIB was decoded 

successfully.  

Report the correct iSSB and MIB payload to the processor, 

then go to step 2. 

7 

 If CRC_result equals 0 

SW 
iSSB < 3 

Transmit new iSSB value.  

Assert trial_start_rif 

Go to step 5 

iSSB = 3 Failed to decode MIB. Go to step 2 

HW Go to step 2 
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2.2.6 Results 

The PHY application is implemented in C language. We have loaded the code in 

the instruction memory, sent the required parameters to the PHY and started simulating 

the system on ModelSim, and we have tested output then compared it with the data 

from the reference model (which is implemented on MATLAB). In the chosen test case, 

the iSSB is 1. So, we have the following results: 

- When the iSSB index is 0, the iteration fails as shown in Fig. 2.4. 

Figure 2.3 - Flow Chart of PHY Program 



24 

 

- When the iSSB index is 1, the iteration is passed as shown in Fig. 2.5, since this 

is the value of iSSB index the processor sent. 

Hint: All inputs of the cortex must take a value (you must not leave an input floating). 

For the outputs, connect what you need and leave the rest floating. 

2.3 AHB Bus Matrix and Slaves  

The AHB bus is a widely used bus protocol in the ARM cortex-M architecture. 

It connects the various components with the system-on-chip (SoC) design, enabling 

data transfer while maintaining ease of use. Each slave is set a certain address range in 

the cortex memory map. 

The memory map for the system was set according to the specified ranges outlined in 

the Cortex design manual. We generated the bus matrix using XML file where we 

specified the address range for each slave as indicated in table 1. 

A section of the block diagram of the bus matrix is presented in Fig.2.6, where the input 

and output signals are shown, and the description of the main signals is shown in table 

(2). 

Table 2.7: Memory Map set for cortex-M0. 

Slave 

number 
Slave Name Start address End address  Size  

0 Instruction Memory 0x0000_0000 0x000F_FFFF 1 M 

 Reserved 0x0010_0000 0x1FFF_FFFF 511 M 

1 Data Memory 0x2000_0000 0x200F_FFFF 1 M 

 Reserved 0x2010_0000 0x3FFF_FFFF 511 M 

2 Bridge  

UART 0x4000_0000 0x4000_0FFF 4 K 

Watchdog 0x4000_1000 0x4000_1FFF 4 K 

Timer 0x4000_2000 0x4000_2FFF 4 K 

 Reserved 0x4000_3000 0x4000_FFFF 52 K 

Figure 2.5 - Failed iteration when iSSB is zero 

Figure 2.4 - The passed iteration when iSSB is 1 
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3 GPIO 0x4001_0000 0x4001_0FFF 4 K 

4 PHY 0x4001_1000 0x4001_5FFF 20 K 

Whenever the processor needs to access a certain AHB slave, it writes its specified 

address from the memory map. 

 

Table 2.8: Signal Description of some of the important AHB signals 

Signal Description 

HCLK System clock, Logic is triggered on the rising edge of the clock. 

HRESETn Activate LOW asynchronous reset. 

HADDR Address from AHB 

HSEL When enabled means a specific slave is selected 

HSIZE Indicate the size of transfer either word or half word or Byte 

HWRITE 
When enabled indicates a write transfer otherwise a read transfer 

occurs 

HWDATA/ 

HRDATA 
Data transferred from/to bus matrix 

HTRANS Indicates transfer type (IDLE, BUSY, NONSEQ, SEQ) 

 

Figure 2.6 - Part of the AHB Bus matrix block diagram 
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2.3.1 Instruction and Data Memories.  

The memories are connected to the AHB Bus matrix through a special interface 

AHB to SRAM interface. This interface translates the incoming AHB signals into 

signals understood by the SRAM module, Fig. 2.7 

 

• Instruction Memory: contains the instruction needed for the system to function. 

• Data Memory: contains the data needed for each subsystem in the PHY to 

operate correctly. 

2.3.2 GPIO 

GPIO is an essential component in any SoC integration. It is a general purpose 

I/O interface unit of 16 bits with some properties such as programmable interrupts and 

alternate functions. 

 

Figure 2.8 - GPIO interface 

  

 

Figure 2.7 - Memories Block diagram showing the interface with the bus matrix 
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Interrupt generation feature can be programmed through three registers which are 

interrupt enable, interrupt polarity and interrupt type, each register has separate set and 

clear addresses. Each bit of the I/O pins can be configured through these three registers. 

Interrupt polarity can be set to high or low while interrupt type can be set to level or 

edge triggered. When an interrupt is triggered, its corresponding bit in INSTATUS 

register and GPIOINT are asserted. To de-assert these two bits and clear the interrupts, 

one has to be written inside INTCLEAR register. During interrupt generation, three 

cycle latency is introduced, two or input synchronization and another cycle for 

registering the interrupt status. 

Each pin in the GPIO can be used as an I/O pin or an alternate function such as timer 

or UART or any other supported feature, this is done through out a multiplexing 

network for each bit as shown in Fig. 2.9. This alternate function feature is enabled by 

default for all GPIO pins and can be disabled by writing one inside the alternative 

function clear register. 

 

 

 

 

 

 

Masked access is another feature which allows reading from or writing to individual 

bits or multiple bits, this avoids read-modify-write operations which are not thread safe. 

The GPIO slave was synthesized for FPGA and it was found that its frequency upper 

limit is 602 MHZ. 

2.3.3 PHY.  

It contains the main part of our project, which is the physical (PHY) layer 

implementation. It consists of the following blocks, Fig. 2.10: 

- 3 main building Subsystems: FFT subsystem, post-FFT subsystem and the decoder 

subsystem. 

- Controller: it implements the blind decoding algorithm (discussed in chapter 9). 

- Register interface: an interface to the AHB bus matrix that connects the PHY to the 

rest of the system (discussed in chapter 9). 

- Memories. 

Figure 2.9 - GPIO Alt. function 
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We will go into further details into the implementation of the PHY in the following 

chapters. 

2.4 APB Subsystem. 

The Advanced High-performance Bus (AHB) to Advanced Peripheral Bus 

(APB) bridge is used in system-on-chip (SoC) designs to connect the AHB bus, which 

is typically a high-performance bus, to the APB bus, which is typically a lower-

performance bus. Here are a few reasons why an AHB to APB bridge is used: 

- Bus Compatibility: In a complex SoC design, different modules or peripherals may 

have different bus interfaces. The AHB bus is commonly used as the main 

interconnect for high-performance components such as GPIO and SRAMs, while 

the APB bus is used for lower-performance peripherals such as Timers and 

watchdogs. By using an AHB to APB bridge, it allows these different bus interfaces 

to communicate with each other seamlessly. 

- Performance Optimization: The AHB bus is designed to provide high-performance 

data transfers between different modules or peripherals within the SoC. On the other 

hand, the APB bus operates at a lower clock frequency and is more suited for 

connecting slower peripherals that don't require high bandwidth. The AHB to APB 

bridge allows for the efficient transfer of data between the high-performance AHB 

bus and the lower-performance APB bus, optimizing the overall system 

performance. 

- Performance Optimization: The AHB bus is designed to provide high-performance 

data transfers between different modules or peripherals within the SoC. On the other 

hand, the APB bus operates at a lower clock frequency and is more suited for 

connecting slower peripherals that don't require high bandwidth. The AHB to APB 

bridge allows for the efficient transfer of data between the high-performance AHB 

bus and the lower-performance APB bus, optimizing the overall system 

performance. 

- Power Management: The AHB bus consumes more power compared to the APB 

bus due to its higher clock frequency and increased bandwidth. By using an AHB 

to APB bridge, it is possible to selectively enable or disable specific peripherals or 

Figure 2.10 - PHY Block Diagram 
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modules connected to the APB bus, thus providing power management capabilities. 

This allows the system to conserve power by only activating the necessary 

peripherals when needed. 

- System Integration: SoCs often consist of multiple IP (intellectual property) blocks 

or subsystems that may have different bus protocols. The AHB to APB bridge acts 

as a protocol converter, enabling seamless integration of these IP blocks into the 

overall SoC design. It provides a standardized interface for communication between 

different subsystems, regardless of their individual bus protocols. 

Overall, the AHB to APB bridge plays a crucial role in enabling communication, 

optimizing performance, facilitating power management, and integrating different 

subsystems within a system-on-chip design. The block diagram of the APB bridge is 

presented in Fig. 2.11 where table explains some of the important output signals.  

 

 

 

 

 

 

 

 

Table 2.9: Some of the important signals coming from the APB Bridge 

Signal Description 

PCLK System clock, Logic is triggered on the rising edge of the clock. 

PRESETn Activate LOW asynchronous reset. 

PADDR LSB of AHB address [15:0] 

PSEL When enabled means a specific slave is selected 

PWRITE 
When enabled indicates a write transfer otherwise a read transfer 

occurs 

PWDATA/ 

PRDATA 
Data transferred from/to bridge 

2.5 APB Slaves  

2.5.1 Timer  

The APB timer is a 32 bit down-counter which generates an interrupt request 

signal, TIMERINT, when the counter reaches 0. The interrupt request is held until it is 

cleared by writing to the INTCLEAR Register.  If the APB timer count reaches 0, and 

Figure 2.11 - AHB to APB bridge block diagram 
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at the same time, the software clears a previous interrupt status, then the interrupt status 

is set to 1. 

The timer peripheral contains a separate clock pin PCLKG for the APB register read or 

write logic that permits the clock to peripheral register logic to stop when there is no 

APB activity. You can turn-off the gated peripheral bus clock for register access 

PCLKG when there is no APB access which has same frequency and synchronous 

PCLK. 

The timer can use external input signal EXTIN as a timer enable through zero to one 

transition of this signal. 

2.5.1.1 Access Timer Peripheral 

1. To enable the timer peripheral interrupt, you should access the timer CTRL 

register through the following steps: 

- Set PADDR to address of CTRL register = 0x000. 

- Set PDATA = 32'd9 to set timer interrupt enable and global enable of module. 

- Set PSEL = 1 and PWRITE = 1. 

2. To reload the counter of the timer with a given value you should access the timer 

RELOAD register through the following steps: 

- Set PADDR to address of RELOAD register = 0x008. 

- Set PDATA to the number you want. 

- Set PSEL = 1 and PWRITE = 1. 

3. To clear the timer interrupt you should access the timer INTCLEAR register and 

set this register through the following steps: 

- Set PADDR to address of INTCLEAR register = 0x00c. 

- Set PDATA = 1 

- Set PSEL = 1 and PWRITE = 1. 

2.5.2 Watchdog timer  

The Watchdog module peripheral is a 32-bit down counter that is 

initialized from the Reload Register. The counter decrements by one on each 

positive clock edge of WDOGCLK when the clock enables WDOGCLKEN 

Figure 2.12 - APB Timer 
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is HIGH. When the counter reaches zero an interrupt is generated. On the 

next enabled WDOGCLK clock edge the counter is reloaded from the reload 

Register and the countdown sequence continues. If the interrupt is not cleared 

by the time that the counter next reaches zero, then the Watchdog module 

asserts the reset signal WDOGRES, and the counter is stopped. This signal 

causes the system to be rested. 

WDOGCLK can be equal to or be a sub-multiple of the PCLK frequency. 

However, the positive edges of WDOGCLK and PCLK must be 

synchronous and balanced. 

The Watchdog module interrupt and reset generation can be enabled or 

disabled through the Control Register WdogControl. When the interrupt 

generation is disabled then the counter is stopped. When the interrupt is re-

enabled then the counter starts from the value programmed in WdogLoad 

and not from the last count value. 

The Watchdog counter only decrements on a rising edge of WDOGCLK when 

WDOGCLKEN is HIGH. The relationship between WDOGCLK and PCLK must 

observe the following constraints: 

-  The rising edges of WDOGCLK must be synchronous and balanced with a 

rising edge of PCLK. 

- The WDOGCLK frequency cannot be greater than the PCLK Frequency. 

 

2.5.2.1 Access WDT Peripheral 

1. Enable APB to access WDT registers by unlocking its registers through accessing 

Lock WDT register. Writing a value of 0x1ACCE551 to the register enables write 

accesses to all the other registers. Writing any other value disables the write 

accesses to all registers except the Lock Register. To access this register  

- Set PADDR to address of WDOGLOCK register = 0xC00. 

- Set PDATA = 0x1ACCE551. 

- Set PSEL = 1 and PWRITE = 1. 

2. Enable INTEN and RESEN bits in WDOGCONTROL control register to enable 

WDOGINT and WDOGRES signals through the following procedures: 

Figure 2.13 - APB Watchdog 
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- Set PADDR to address of WDOGCONTROL register = 0x008. 

- Set PDATA = 32’d2. 

- Set PSEL = 1 and PWRITE = 1. 

3. To Load Watchdog with a value you should access the timer WDOGLOAD 

register and set this register with the value you want to load through the following 

steps: 

- Set PADDR to address of WDOGLOAD register = 0x000. 

- Set PDATA to the number you want. 

- Set PSEL = 1 and PWRITE = 1. 

4. To clear interrupt in Watchdog peripheral, you should access WDOGINTCLR 

register and write in it any number through the following steps: 

- Set PADDR to address of WDOGINTCLR register = 0x00C. 

- Set PDATA to the number you want. 

- Set PSEL = 1 and PWRITE = 1. 

2.5.3 APB UART. 

The design of the APB UART supports 8 bits communications without parity, 

and it supports a one bit start and one bit stop of the transmitting and receiving, which 

means that the total width of the character frame is 10 bits. 

The design has a baud divider buffer to make the baud rate configurable to make the 

design suitable for most simple embedded applications, we can calculate the baud rate 

using the baud divider value which stored in the baud divider register according to the 

following equation.  

𝐵𝑎𝑢𝑑𝑅𝑎𝑡𝑒 =
𝐶𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

𝐵𝑎𝑢𝑑 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 𝑣𝑎𝑙𝑢𝑒  
 (2.1) 

The baud divider value represents approximately the number of cycles at which one bit 

can be transmitted or received.  

The baud rate is used to calculate the number of clock cycles at which one character 

can be transmitted or received, we can calculate the number of the clock cycles at which 

a character can be transmitted or received according to the following equation. 

𝑛𝑢𝑚 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 =
𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 × 𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑟𝑎𝑚𝑒

𝐵𝑎𝑢𝑑𝑅𝑎𝑡𝑒
 (2.2) 

Figure 2.14 - Watchdog timer flow diagram 
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The UART at the transmitting mode stores the data comes from the APB interface in a 

buffer called write buffer, then the write buffer passes the data to the transmitter shift 

register to convert the parallel bus of data to a serial stream of data to be transmitted 

and asserts the TX interrupt flag. as shown in Fig. 2.15. 

A New character can be stored to the write buffer while the shift register is sending out 

a character, and when the write buffer is full the TX overrun interrupt flag is asserted. 

The UART at the receiving mode the UART asserts the RX interrupt flag, then passes 

the serial stream of the received data through a bit synchronizer to synchronize the 

received data with the clock of the system, then the synchronizer passes it to the receiver 

shift register to convert the serial stream of data to a parallel bus of data, then the 

receiver shift register stores the received parallel data in a buffer called read buffer, then 

the data is forwarded to the APB interface. As shown in Figure 2.155 

The shift register can receive the next character while the data in the read buffer is 

waiting for the APB interface to read it, and when the read buffer is full the RX overrun 

interrupt flag is asserted. 

  We have two configuration registers the control register which called CTRL and the 

baud divider register which called the BAUDDIV these registers can be configured by 

the processor according to the running application. 

The APB UART supports a high-speed test mode, which is useful for simulation during 

SoC or ASIC development. When CTRL [6] is set to 1, the serial data is transmitted at 

one bit per clock cycle. This enables you to send text messages in a much shorter 

simulation time. If required, you can remove this feature for silicon products to reduce 

the gate count. You can do this by removing bit 6 of the control register CTRL. 

After doing synthesis to the design, we found that the maximum operating clock 

frequency of the system is 246 MHZ, and the signals PCLK and PCLKG must be equal 

as shown in the following Fig. 2.16.  

Figure 2.15 - APB UART 
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Figure 2.16 - UART block 

Chapter 3: Polar Decoder Modeling. 

3.1 Introduction 

In this chapter, we will discuss the implemented polar decoder models, but first 

we will briefly talk about polar codes history then explain the basic operations of the 

polar encoder and the CRC operation using illustrative examples. Then, we will go into 

the details of the implemented algorithms while comparing their performance with an 

existing paper. Finally, we will explain the fixed-point analysis done on the selected 

model and the trials done to achieve the optimum word length. 

3.2 Literature Survey  

Polar codes, introduced by Erdal Arıkan in 2009 [3], are a class of error-

correcting codes that have gained significant attention in recent years due to their 

remarkable performance and low encoding and decoding complexity. These codes have 

found widespread applications in various communication systems, including the fifth-

generation New Radio (5G NR) technology. This literature survey explores the 

fundamental concepts of polar codes, polar decoders, and their role in 5G NR 

technology, specifically the Physical Broadcast Channel (PBCH). 

Polar codes have been shown to have the capacity achieving property. They can achieve 

the capacity of any discrete memoryless channel with a small error probability. This 

makes them a strong candidate for use in modern communication systems, especially 

in the 5G NR standard. 

The code construction is based on multiple recursive concatenations of a short kernel 

code which transforms the physical channel into virtual outer channels of varying 

capacity. Polar codes have modest encoding and decoding complexity, which renders 

them attractive for many applications. 

One of the main advantages of polar codes is their simplicity. Unlike turbo codes or 

low-density parity-check (LDPC) codes, polar codes do not require any iterative 
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decoding process. Instead, they can be decoded using a simple successive cancellation 

(SC) decoder having linear complexity. 

There are several decoding techniques for polar codes, including: 

- Successive Cancellation (SC) Decoding: This is the original decoding algorithm 

proposed by Arıkan for polar codes. It is a low-complexity algorithm that uses a 

recursive structure to cancel out the effect of previously decoded bits. The main 

disadvantage of this method is its error floor, which means that its performance 

degrades at low signal-to-noise ratios (SNRs). 

- Successive Cancellation List (SCL) Decoding: This is an extension of SC decoding 

that keeps a list of the most likely paths and uses a voting scheme to select the final 

decision. It offers better performance than SC decoding, especially at low SNRs, 

but at the cost of increased complexity [4]. 

Polar codes are chosen for the control channel of the enhanced mobile broadband 

scenario (eMBB) in the 5G standardization process of the 3GPP. For downlink control 

information, polar codes are concatenated with distributed cyclic redundancy check 

(CRC), whose bits are obtained by interleaving the bits between the CRC encoder and 

the polar encoder. 

In recent years, many researchers have focused on improving the performance of polar 

codes by using various channel coding techniques such as concatenation, puncturing, 

and shortening. 

3.3 Preliminaries 

In this section, we describe the fundamental concepts necessary to understand the 

operation of polar decoders such as the CRC operation, the general encoding process 

and the encoding specs used in 5G standard for PBCH.  

3.3.1.  Polar Encoder 

Polar encoder is a type of block code that takes K input bits and encodes them 

into N bits word, where N > K, Fig. 3.1. K can be of any integer value, but N must be 

an even number, why? We will see that soon. 

 
Figure 3.1 - Polar Block Code 

The idea of Polar encoder is that it takes the K bits and adds (N-K) frozen bits to them 

to make the total number of bits equal to N bits. Then by performing some operations 

on the N bits, we can obtain the final encoded word.  

The first step of the encoding process is putting the frozen bits and data bits at certain 

indices dependent on reliability sequence (RS). The reliability sequence (RS) is a 

sequence that contains the reliability of each subchannel, these reliabilities are 

computed offline, and the ordered sequence is stored for a maximum code length. [5]  
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The RS is defined in the 3GPP standard and is used to know which channel to transmit 

data and frozen bits on. Hence, it contains the indices of the channels ordered from the 

worst channels (Least reliable) to the best ones. After selecting the N first channels in 

the sequence, we put the data bits at the indices of the best K channels and put the frozen 

bits at the remaining channels, where the frozen bits value is zero. In the following 

paragraphs we will present an example to further illustrate the polar encoder operation. 

[5] 

3.3.1.1.  Encoding Process using Tree Diagrams 

Assume that the data that we want to encode is (1011) which means that K = 4, 

and we want to encode it into 8 bits code word then N = 8, this means that the number 

of the frozen bits is 4 (N-K). Now, we want to determine our reliability sequence to 

know where to put our data and frozen bits.  From Fig.3.2, we can see a section of the 

RS provided by the 3GPP, by selecting the first 8 channels which are (1,2,3,4,5,6,7,8), 

we obtain their order as follows: Channels order = [1 2 3 5 4 6 7 8] [6]. 

 

Figure 3.2 - Part of the reliability sequence provided by the 3GPP 

From this, we can conclude that channels (4,6,7,8), the last 4 channels, are the best and 

they are reserved for the data bits, while the remining 4 channels are filled with zeros 

(frozen bits) [6]. 

This means that the code word will consist of N = [F F F D F D D D] where F means 

frozen and D means data. Hence,  N = [0 0 0 1 0 0 1 1], after that we start doing some 

calculations to get the final code word. To illustrate these calculations, we explain it 

using tree diagram and to do so, we follow the rules presented in Fig. 3.3. 

Where 𝑣𝑦
𝑥: 𝑣 means vector, 𝑥 means the number of elements in the vector and 𝑦 means 

the index of the vector. The steps to obtain the encoded codeword are explained by 

following the rules in the previous figure: 
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Figure 3.3 - Encoding Tree diagram containing the encoding rules. 

 

 

 

Figure 3.4 - Step 1 of the encoding process 

 

Step 1: Put elements of vector N in the leaves of the tree diagram, Fig. 3.4. 

Step 2: Propagate through the tree diagram from the leaves to the root, then calculate 

the parent nodes of each leaf node. Each node, from the parent nodes, consists of 2 bits, 

the 1st bit is calculated by XORing the 2 child nodes and the 2nd bit is the right child.  

Then 𝑣1
2 = [0⨁0, 0] = [0,0] , 𝑣2

2 = [0⨁1,1] = [1,1] and so on. So, the leaf nodes’ 

parents are updated, Fig. 3.5. 
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Figure 3.5 - Step 2 of the encoding process 

Step 3: Repeat step 2 but with a larger size of child and parent nodes vectors. Half of 

the parent vector is obtained by XORing the 2 child nodes vectors, and the other half 

equals to the right child vector.  

Then 𝑣1
4 = [[0 0]⨁[1 1], [1 1]] = [[1 1], [1 1]] = [1,1,1,1] and so on. So, the parent 

nodes are updated, Fig. 3.6. 

 

Step 4: Similar to step 3 but with vectors double the size of those in step 3. In this step, 

we reach the root node, which is the final step to get the final code word that we send 

through the channel. 

Then 𝑣8 = [[1 1 1 1]⨁[0 1 0 1], [0 1 0 1]] = [[1 0 1 0], [0 1 01]] = [1,0,1,0,0,1,0,1] 

and this is the final code word, Fig. 3.7. 

Figure 3.6: Step 3 of the encoding process. 
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Figure 3.7 - Step 4 of the encoding process 

After encoding the data, we can transmit it through the channel. The encoding process 

is done to increase the error correcting capabilities and decrease the probability of error 

caused by the channel to our data while transmitting it [6]. 

From this example, we can infer that the depth of the tree is calculated by log2𝑁, and 

in the given example, the depth of the tree is log2 8 = 3 (excluding the root). Now, we 

can understand why N must be even, because to apply these tree diagram rules, we need 

the number of leaf nodes to be even, it can’t be odd.  

This method is used to illustrate how the polar encoder works and is not the main 

encoding process nor the method that we used to implement the polar encoder 

algorithm. Hence, we will explain how the main method works [6]. 

3.3.1.2. Polar Encoder Main Method 

This method uses matrices multiplication, Kronecker product and a generator 

matrix G to encode the K data bits into N bits code word. The idea is to generate an 

NxN permutation matrix, by doing Kronecker product to G matrix (n-1) times, where 

n = log2𝑁. By multiplying the vector N in the previous example of tree diagram with 

the permutation matrix, we can get the final code word [7].  

First, we prepare the N vector as we’ve done in the previous example, N = [0 0 0 1 0 0 

1 1]. Second, we prepare the permutation matrix P and by assuming the same 

assumptions in the previous example, then n = 3. By doing Kronecker product 2 times 

to G matrix, we can get P matrix.  

𝐺 = (
1 0
1 1

) , 𝑃 =  𝐺⨂2 = (
1 0
1 1

)
⨂2

  

Kronecker product is done by extending the G matrix from the size 2x2 to 4x4 then to 

8x8. At each extension, the matrix rows and columns are extended by 2. This is done 

by copying the 2x2 G matrix at the location of the elements that are equal to 1 and 

putting a 2x2 zero matrix at the location of the elements that are equal to 0 [7]. 
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𝑀 = 𝐺⨂𝐺 = 𝐺⨂(
1 0
1 1

) = (
𝐺 0
𝐺 𝐺

) = (

1 0
1 1

  
  0 0
  0 0

1 0    
1 1    

1 0
1 1

) 

To obtain P, repeat the last step again, but this time, do the Kronecker product between 

M and G.  

𝑃 = 𝐺⨂𝑀 = 𝐺⨂(

1 0
1 1

  
  0 0
  0 0

1 0    
1 1    

1 0
1 1

) = (

𝐺 0
𝐺 𝐺

  
  0 0
  0 0

𝐺 0    
𝐺 𝐺    

𝐺 0
𝐺 𝐺

)

=

(

 
 
 
 
 

1 0
1 1

  
  0 0
  0 0

1 0    
1 1    

1 0
1 1

   0 0
   0 0

  
  0 0
  0 0

   0 0    
   0 0    

0 0
0 0

1 0
1 1

  
  0 0
  0 0

1 0    
1 1    

1 0
1 1

   1 0
   1 1

  
  0 0
  0 0

   1 0    
   1 1    

1 0
1 1)

 
 
 
 
 

 

The last step is to multiply N vector with P matrix to get the final code word, as the 

following: 

𝑐𝑜𝑑𝑒 𝑤𝑜𝑟𝑑 = 𝑁𝑋𝑃 = (0  0  0  1  0  0  1  1)1𝑥8𝑋

(

 
 
 
 
 

1 0
1 1

  
  0 0
  0 0

1 0    
1 1    

1 0
1 1

   0 0
   0 0

  
  0 0
  0 0

   0 0    
   0 0    

0 0
0 0

1 0
1 1

  
  0 0
  0 0

1 0    
1 1    

1 0
1 1

   1 0
   1 1

  
  0 0
  0 0

   1 0    
   1 1    

1 0
1 1)

 
 
 
 
 

8𝑥8

= (1  0  1  0  0  1  0  1) 

We can also get the code word by binary adding the 4th, 7th and 8th rows in the P matrix. 

These rows correspond to the one’s elements in the N vector. 

This is the main method of Polar encoder which was presented by Arikan and we used 

it to implement the Polar encoder model, since dealing with matrices is much easier 

than dealing with trees that need recursion in their implementation. The explained Polar 

encoder algorithm is shown in Algorithm 1. [7] 

Algorithm 1: Polar encoder function algorithm 

1    Function Code_Word = Polar_ENC_func(K,N,Data) 

2       calculate n 

3          initialize G matrix 

4          Extract RS and determine data and frozen indices 

5        initialize U vector with zeros and j = 0 // where U vector length is N and j is a 

data bits counter 

// U vector is like N vector that we talked about in the previous examples                  

6          for i = 1 to N do    // in this for loop, we prepare the U vector 
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7              if i is from Data_indices then  

8               j = j + 1 

9   U(i) = Data(j) 

                end 

           end 

10 initialize P matrix with G 

11         for i = 1 to n-1 do    // in this for loop, we prepare the P matrix 

12  P = kron(P,G)    // do Kronecker product between G and P matrices then 

update the P matrix 

 end 

13 Code_Word = mod(U*P,2)  //multiplying U and P, gives a vector with decimal 

numbers  

 // so, to convert it to binary, take modulus of 2 of the resulted vector 

      End 

3.3.2.  Cyclic Redundany Check (CRC) 

Cyclic redundancy check (CRC) is an error detecting code commonly used in 

digital communications and storage devices to detect accidental errors to digital data. 

CRC plays a critical part in ensuring data integrity and reliability by identifying 

unintentional modifications or faults that could happen during transmission or storage. 

It enables the receiver to confirm the accuracy of the data received by adding a 

checksum to the data. 

This method creates a different checksum by using polynomial division-based 

mathematical procedures. The sender computes the CRC checksum and appends it to 

the data during transmission, and the receiver recalculates the checksum after receiving 

the data. The data is regarded as accurate and proper if the calculated and received 

checksums agree. 

3.3.2.1. CRC at transmitter side 

CRC generation at transmitter side is as follows: 

First: determine length of divisor which is L + 1 bits, Where L is number of CRC bits. 

The CRC length (L) in our system is equal to 24 bits and the divisor expressed as 

polynomial expression equals to 𝑥24 + 𝑥23 + 𝑥21 + 𝑥20 + 𝑥17 + 𝑥15 + 𝑥13 + 𝑥12 +

𝑥8 + 𝑥4 + 𝑥2 + 𝑥 + 1 according to 3GPP standard [8].  

Second: append L zero bits to the transmitted message (MIB) whose length is K bits, 

where K equals to 32 bits according to 3GPP standard, So A length is K + L zero bits 

as shown in Fig. 3.8.  

Third: perform a binary division operation, this operation is illustrated in Algorithm 2. 

Figure 3.8 - CRC block at Tx side 
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After performing binary division operation, we get a reminder and a quotient. The 

reminder is the CRC bits, and its size is equal to L bits, and they are appended to MIB 

payload. Finally output of CRC block is a message whose length is K + L bits. 

Algorithm 2: CRC generation at transmitter side 

1  Data: Message // input K – bits data 

2  Data: Divisor // L + 1 bits Divisor 

3  Data: CRC_output // K + L output data bits 

4  Function CRC_func (Message, K, L, Divisor) 

5  M_CRC = concatenate (Message, zeros(1,L)) // append L zero bits to 

Message 

6  Intermediate_data = M_CRC 

7  quotient = [ ] // empty vector 

8  for i = 1 to K do 

9   MS_bit = intermediate_data(1) // Most significant bit 

10   quotient = concatenate (quotient, MS_bit) 

11    if MS_bit = 1 then 

12    Intermediate_data = xor (intermediate_data,Divisor) 

13     if i ≠ K then 

14     intermediate_data = concatenate 

(intermediate_data(2:end),M_CRC(i+L)) 

15    end 

16   else 

17    intermediate_data = xor (intermediate_data,zeros(1,L)) 

18      if i ≠ K then 

19     intermediate_data = concatenate 

(intermediate_data(2:end),M_CRC(i+L)) 

20    end 

21   end 

22  end 

23  CRC_bits = intermediate_data(2:end) 

24  CRC_output = concatenate (Message,CRC_bits) // append CRC bits to 

Message 

25 end 

3.3.2.2.  CRC at Receiver Side 

At the receiver side, CRC plays a crucial role in ensuring the integrity of data 

transmission. Upon receiving the data, the receiver performs the same binary division 

operation calculation as at the transmitter side using the same predetermined 

polynomial expression.  

The received decoded K  data bits along with the appended CRC bits, is divided by the 

generator polynomial as shown in Fig.3.9. This operation is illustrated in Algorithm 3. 

If the resulting remainder is zero, it indicates that the data has been transmitted without 

any errors. 



43 

 

However, if a non-zero remainder is obtained, it signifies the presence of errors during 

transmission. In such cases, the receiver can request retransmission of the data to ensure 

accuracy. By employing CRC at the receiver side, data integrity can be effectively 

validated, enhancing the reliability of the communication system. 

 

 

Algorithm 3: CRC check at receiver side 

1  Data: Message // input K +  L – bits data 

2  Data: Divisor // L + 1 bits Divisor 

3  Data: flag // flag indicates if there is an error 

4  Function CRCcheck_func (Message, K, L, Divisor) 

5  M_CRC = Message 

6  Intermediate_data = M_CRC 

7  quotient = [ ] // empty vector 

8  for i = 1 to K do 

9   MS_bit = intermediate_data(1) // Most significant bit 

10   quotient = concatenate (quotient, MS_bit) 

11    if MS_bit = 1 then 

12    Intermediate_data = xor (intermediate_data,Divisor) 

13     if i ≠ K then 

14     intermediate_data = concatenate 

(intermediate_data(2:end),M_CRC(i+L)) 

15    end 

16   else 

17    intermediate_data = xor (intermediate_data,zeros(1,L)) 

18      if i ≠ K then 

19     intermediate_data = concatenate 

(intermediate_data(2:end),M_CRC(i+L)) 

20    end 

21   end 

22  end 

23  CRC_bits = intermediate_data(2:end) 

24  Check if all CRC bits equal zero 

25 end 

 

Figure 3.9 - CRC Block at Rx Side 
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3.4 Successive Cancellation (SC) Decoder 

As discussed before, Arıkan constructed the first class of error correcting codes 

that provably achieve the capacity of any symmetric binary-input discrete memoryless 

channel (B-DMC) with efficient encoding and decoding algorithms based on channel 

polarization.  

He proposed a low-complexity successive cancellation (SC) decoder and proved that 

the block-error probability of polar codes under SC decoding vanishes as their block-

length increases. 

3.4.1 Channel Splitting 

Consider a Bit Erasure Channel (BEC), as shown in Fig.3.9, that has an erasure 

probability equals to 𝜖 and channel capacity 𝐶 equals to 1 −  𝜖. [4] 

After combining independent B – DMC channels and splitting into N synthetic channels 

𝑊𝑁with varying reliabilities where N is channel block length equals to 512. As shown 

in Fig. 3.11, We split the combined channel into 2 synthetic channels 𝑊2
(−)(𝑦0, 𝑦1|𝑢0),

𝑊2
(+)(𝑦0, 𝑦1, 𝑢0|𝑢1). 𝑊2

(−)
 has 𝑦0, 𝑦1output of its channel and can decode 𝑢0 . While 

𝑊2
(+)

has 𝑦0, 𝑦1and 𝑢0, so we can decode 𝑢1 by the knowledge of 𝑢0. These 2 channels 

are theoretical channels not physical constructs. They are mainly defined by the order 

of how to decode the bits [4]. 

To calculate the bit erasure probability for the 2 channels. First, the 𝑊2
(−)

 channel has 

2 inputs 𝑦0, 𝑦1 and has input equal to 𝑢0. So, to decode this channel, we will go to 

decide what is the 𝑢0 transmitted by knowing 𝑢0̂. All the possible combinations for the 

𝑊2
(−)

 channel are shown as in Fig.3.12 and all the possible combinations for the 𝑊2
(+)

 

channel are shown as in Fig.3.13 [4]. 

Figure 3.10:  Binary Erasure Channel 

(BEC) 

Figure 3.11 - Two synthetic channels 
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In BEC, any value XORed with erasure gives erasure. In 𝑊2
(−)

, we can decode correctly 

only in the first combination, while others give incorrect decision. So, the bit erasure 

probability for 𝑊2
(−)

 equals to 𝑝𝑏 = 1 − (1 −  𝜖)
2 = 2𝜖 − 𝜖2  ≥  𝜖. While in 𝑊2

(+)
, 

we have 3 outputs and 𝑢0 always received correctly, so this leads to one incorrect case 

lead to an erasure. The bit erasure probability for 𝑊2
(+)

 equals to 𝑝𝑏 = 𝜖
2  ≤  𝜖. [4]  

𝐴𝑣𝑔. 𝐵𝑖𝑡 𝐸𝑟𝑎𝑠𝑢𝑟𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

2
(2𝜖 −  𝜖 + 𝜖2) =  𝜖 

The Average bit erasure probability and capacity are preserved. The bit erasure channel 

of the first channel is greater than erasure probability, while the second channel has less 

erasure probability that’s why its takes symbol 𝑊2
(+)

 as it better and more reliable 

channel than 𝑊2
(−)

, less reliable channel [4].  

3.4.2 Decoder Core Description 

As mentioned before, The SC is a sequential decoder. It decodes bit by bit, for 

example we decode the channel 𝑊2
(−)

 Immediately as its output are ready 𝑦0, 𝑦1. But 

for the channel 𝑊2
(+)

, we cannot decode it immediately as we are waiting for the 

estimated bit of the previous channel 𝑢̂0. So, we cannot decode the bit index 𝑖 until all 

the previous bits from0 𝑡𝑜 𝑖 − 1 are estimated and decoded. 

The decoder receives from the channel N LLRs (log likelihood ratio) which can be 

calculated by the following equation 𝐿𝐿𝑅𝑖 = log (
p(yi|𝑥𝑖 = 0)
p(yi|𝑥𝑖 = 1)

) where 𝑖 is the bit index 

from 0 to N-1 [4].  

The SC Decoder takes these channel LLRs and perform some processing on these inputs 

till it reaches the estimation of the bits; as the SC Decoder is soft decision. The Decoder 

operation can be represented using a tree diagram representation, as shown in Fig.3.14, 

showing how the processing on the LLRs take place until reach the leaf nodes where 

final decision of the bits takes place. 

Figure 3.12 - 𝑊2

(−)
 channel outputs Figure 3.13 - 𝑊2

(+)
 channel outputs 
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3.4.2.1 Basic Building Blocks N = 2 

Considering N = 2, after receiving 2 LLRs from the channel. First, we go to the 

left child node do a 𝑓 operation as shown in Fig.3.15 The 𝑓 operation is expressed as 

in equation 3.1 [4]. 

𝑓(𝐿𝐿𝑅1, 𝐿𝐿𝑅2) =  𝑡𝑎𝑛ℎ
−1(2 ∗ 𝑡𝑎𝑛ℎ

𝐿𝐿𝑅1
2

∗ 𝑡𝑎𝑛ℎ
𝐿𝐿𝑅2
2
) (3.1) 

 

Figure 3.15: f operation on left child node N = 2 

The previous 𝑓 function which involves exponentiations and logarithms. For a 

hardware implementation of the SC decoder this function is hard to be implemented so, 

the 𝑓 function replaced by another approximation hardware easy implementation such 

an approximation is called the “min-sum approximation” of the decoder as in equation 

3.2 [9]. 

𝑓(𝐿𝐿𝑅1, 𝐿𝐿𝑅2) = 𝑠𝑖𝑔𝑛(𝐿𝐿𝑅1) ∗ 𝑠𝑖𝑔𝑛( 𝐿𝐿𝑅2) ∗ 𝑚𝑖𝑛(|𝐿𝐿𝑅1|, |𝐿𝐿𝑅2|)                     ( 3. 2) 

 

Figure 3.14 - SC tree diagram 
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The 𝑓 function produce a LLR value depend on its sign we decide the value of the bit 

𝑢1 [4]. 

𝑢1 = {

1  𝑖𝑓 𝐿𝐿𝑅𝑖 < 0 𝑎𝑛𝑑 𝑢1 ∈ 𝐴  
0  𝑖𝑓 𝐿𝐿𝑅𝑖 > 0 𝑎𝑛𝑑 𝑢1 ∈ 𝐴   

0  𝑖𝑓 𝑢1 ∉ 𝐴
(3.3) 

 Where 𝐴 is set contain information bit. 

Second, after estimating value of 𝑢1, we return to the upper node with the estimated bit 

𝑢̂1 and go to the right child node and do a 𝑔 operation as shown in Fig. 3.16. The 𝑔 

operation is expressed as in equation 3.4. The 𝑔 function produce a LLR value depend 

on its sign we decide the value of the bit 𝑢2 [9]. 

𝑔(𝐿𝐿𝑅1, 𝐿𝐿𝑅2, 𝑢̂1) = (−1)
𝑢̂1 ∗ 𝐿𝐿𝑅1 + 𝐿𝐿𝑅2 (3.4) 

After estimating the second bit, we are done estimating all the bits but there is a final 

step which isn’t meaningful in case N = 2. As the root node have the hard decisions 

from its child nodes, now the root node can decide the return back operation which is 

expressed in equation 3.5 and shown in Fig.3.17 [9]. 

𝑢̂ = [𝑢̂1 + 𝑢̂2   𝑢̂2] (3.5) 

 

Figure 3.16 - g operation on right node N = 2 

Figure 3.17 - Return back operation N = 2 
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3.4.2.2 Operation at any interior node 

The above section is for decoding block length N = 2, so let’s discuss the 

operation at any interior node and any block length N. The interior node here is any 

node in the tree except for the leaf nodes [9]. 

First, any interior nodes can receive several LLRs, for example if the number of LLR 

received at a node is M. The parent will send this M LLRs to the left child node to do 

the 𝑓 operation. The result of the 𝑓 operation is M/2 LLRs as 𝑓 operation inputs are 

𝑓(𝐿𝐿𝑅
1:
𝑀

2

, 𝐿𝐿𝑅𝑀
2
+1:𝑀

), so it takes the 2 corresponding LLRs in each vector and do the 

minsum approximation as shown in Fig. 3.18 [9]. 

Second, the parent node takes the decision bits from the left node whose number are 

M/2 bits and pass them with M LLRs to the right node to perform 𝑔 operation. The 

result of g operation is M/2 LLRs as shown in Fig. 3.19 [9]. 

Third, after evaluating 𝑔 operation and estimating right decision bit whose number are 

M/2 bits. The parent node evaluates the return back bits by XOR the left and right nodes 

and pass the right node bits as it is as shown in Fig. 3.20 [9]. 

Figure 3.18 - Left node f operation 

Figure 3.19 - Right child g operation 

Figure 3.20 - Return back operation 



49 

 

3.4.2.3 Operation on a leaf node 

The decision of the bit occurs at the leaf node, and it depends on the sign of the 

LLR entering the leaf node [4]. 

𝑢𝑖 = {

1  𝑖𝑓 𝐿𝐿𝑅𝑖 < 0 𝑎𝑛𝑑 𝑢𝑖 ∈ 𝐴  
0  𝑖𝑓 𝐿𝐿𝑅𝑖 > 0 𝑎𝑛𝑑 𝑢𝑖 ∈ 𝐴

0 𝑖𝑓 𝑢𝑖 ∉ 𝐴
(3.6) 

Where 𝐴 is set contain information bit. If  𝑢𝑖 is a frozen bit always decide this bit equal 

zero. 

3.4.2.4 Sequence of operation 

1. Start at the root node. 

2. Traverse tree and at each non-leaf node perform the following: 

I. Go to the left child node and perform 𝑓 operation. 

II. Go to the right child node when the left decisions received and perform 

𝑔 operation. 

III. Perform the return back operation when the right decisions received and 

go to parent node. 

3. If it is a leaf node, take the decision and return to the parent node. 

As shown in Fig. 3.21 illustrating the sequence of operation [9]. 

3.4.3 Proposed Algorithm 

In tree diagram representation, we have total 𝑁-LLRs at each stage(depth) 

starting from root node to leaf nodes. We have number of stages(depth) equals to 

𝑛 ,where 𝑛 = log2𝑁. We will store all the LLRs in LLR matrix of dimensions (𝑛 +

1, 𝑁) as we have 𝑛 + 1 stages and each stage store 𝑁 LLRs as shown in Fig. 3.22. 

At each stage (depth) at any node we have 2𝑛−𝑑+1 input LLRs to this node at 

stage(depth) 𝑑 𝑤ℎ𝑒𝑟𝑒 𝑑 𝑖𝑠 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑛.To get the LLRs of node 𝑖 at depth 𝑑 equals to 

the following equation 𝐿𝐿𝑅(𝑑, 2𝑛−𝑑 𝑖 + 1: 2𝑛−𝑑 (𝑖 + 1)) [9]. 
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Any interior node in the tree has one of the 4 states of operation: 0 means idle (inactive) 

node, 1 means done 𝑓 operation, 2 means done 𝑔 operation, 3 means done return back 

operation. The state of each node is saved inside a vector called state node vector whose 

dimension equals to (1,2(𝑛+1) − 1). The value state of node 𝑖 at depth 𝑑 in this vector 

is calculated by the formula (2𝑑 −  1)  +  𝑖 + 1 [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21 - Sequence of operation 

Figure 3.22 - Tree Representation 
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A node 𝑖 at depth 𝑑 to know its left child node is calculated by 2 ∗ 𝑖 at depth 𝑑 + 1. It 

has a right child is calculated by (2 ∗ 𝑖) + 1 at depth 𝑑 + 1. The parent node is 

calculated by 𝑓𝑙𝑜𝑜𝑟(
𝑖

2
) at depth 𝑑 − 1. These equations are applied only for non-leaf 

node or non-root node [9]. 

The algorithm sequence is as follow check first if the decoder reaches level 𝑛. If it 

reaches leaf node level, it checks if it reaches final bit whose index is N. If it reaches 

the final bit, it terminates the loop of operation of the decoder, if not return to parent 

node. If this node isn’t a leaf check first the state of this node and determine the input 

LLRs for this node and do 𝑓 or 𝑔 operation if its state is 1 or 2 and go to its child. If its 

state is 3 do return back operation and return to parent node. More details are illustrated 

in the Algorithm 4. 

Algorithm 4: SC Decoder [9] 

1 Data K // number of Data bits + CRC bits 

2 Data 𝑁 // number of bits in codeword 

3 Data r // received channel 𝑁 𝐿𝐿𝑅𝑠 
4 Data 𝐿𝐿𝑅 // 2D buffer (𝑛 + 1, 𝑁) to store the 𝐿𝐿𝑅𝑠 
5 Data state nodes // 1D buffer (1,2𝑛+1 − 1) to store the state of each node 

6 Data estimated_U // 2D buffer (𝑛 + 1,𝑁) to store the return back bits 

7 Function SC_decoder(N,K,r) 

8  𝐿𝐿𝑅 (1,:) = r // store the channel 𝐿𝐿𝑅 in the first row in 𝐿𝐿𝑅 matrix 

9  Level = 0, node = 0  //start from root node 

10  finish_flag = 0 // initialize finish flag = 0 

11  while finish_flag = 0 then 

12   node_position = (2𝑙𝑒𝑣𝑒𝑙 −  1)  +  𝑛𝑜𝑑𝑒 + 1 

13   if level = 𝑛 then 

14    Estimated_U(𝑛 + 1,node+1) = h(𝑁, 𝐾,node,𝐿𝐿𝑅(𝑛 + 1,node+1)) 

//decisions of leaf nodes 

15    if node = 𝑁 − 1 then 

16     finish_flag = 1 

17    else 

18     // move to parent node 

19    end 

20   else 

21    Check_state_node() // check state of each node 

22   end 

23  end 

24  received_code_word = estimated_U(𝑛 + 1,:) 
25 end 
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Algorithm 5: Decisions of leaf nodes 

1 Function h(𝑁,𝐾,node,𝐿𝐿𝑅(𝑛 + 1,node+1)) 

2  for i to size(frozen_bits) then 

3   if node + 1 =  frozen_bits(1,i) then 

4    flag = 1 

5       end 

6  end 

7  if flag = 1 then 

8   result = 0 

9  else 

10   if 𝐿𝐿𝑅 > 0 then 

11    result = 0 

12   else 

13    result = 1 

14   end 

15  end 

16 end 

  

Algorithm 6: Check state node 

1 Function Check_state_node() 

2  if state_node(node_position) = 0 then 

3   𝐿 =  𝐿𝐿𝑅(𝑙𝑒𝑣𝑒𝑙, 2𝑛−𝑙𝑒𝑣𝑒𝑙  𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 + 1)) 
4   

𝑎 = 𝐿 (1:
2𝑛−𝑙𝑒𝑣𝑒𝑙

2
) , 𝑏 = 𝐿 (

2𝑛−𝑙𝑒𝑣𝑒𝑙

2
+ 1: 𝑒𝑛𝑑)  

5   𝐿𝐿𝑅(𝑙𝑒𝑣𝑒𝑙, 2𝑛−𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 + 1)) = 𝑓(𝑎, 𝑏) // go to left 

child then perform 𝑓 operation  

6   state_node(node_position) = 1 // move node to next state 

7  else if state_node(node_position) = 1 then 

8   𝐿 =  𝐿𝐿𝑅(𝑙𝑒𝑣𝑒𝑙, 2𝑛−𝑙𝑒𝑣𝑒𝑙  𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 + 1)) 

9   
𝑎 = 𝐿 (1:

2𝑛−𝑙𝑒𝑣𝑒𝑙

2
) , 𝑏 = 𝐿 (

2𝑛−𝑙𝑒𝑣𝑒𝑙

2
+ 1: 𝑒𝑛𝑑)  

10   U = estimated_U(𝑙𝑒𝑣𝑒𝑙 + 1, 2𝑛−𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 + 1)) // 

%go to left child then get the decision bits 

11   𝐿𝐿𝑅(𝑙𝑒𝑣𝑒𝑙, 2𝑛−𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 + 1)) // go to right child and 

perform 𝑔 operation 

12   state_node(node_position) = 2 // move node to next state 

13  else if state_node(node_position) = 2 then 

14   U_left = estimated_U (𝑙𝑒𝑣𝑒𝑙 + 1, 2𝑛−𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙  (𝑛𝑜𝑑𝑒 + 1)) 
// incoming decisions from left child 

15   U_right = estimated_U (𝑙𝑒𝑣𝑒𝑙 + 1, 2𝑛−𝑙𝑒𝑣𝑒𝑙 𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 +

1)) // incoming decisions from right child 

16   estimated_U(𝑙𝑒𝑣𝑒𝑙 + 1, 2𝑛−𝑙𝑒𝑣𝑒𝑙  𝑛𝑜𝑑𝑒 + 1: 2𝑛−𝑙𝑒𝑣𝑒𝑙 (𝑛𝑜𝑑𝑒 + 1))= 

[bitxor(U_left,U_right),U_right] // return back 

17   // go to parent node 

18  end 

19 end 
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3.4.1 SC Decoder Limitations 

The SC Decoder have major limitations as its complexity is 𝑂(𝑁𝑙𝑜𝑔𝑁) and it is 

challenging to achieve a high throughput and low latency due to limited parallelism as 

we only one active node at a time. The error correcting performance of SC isn’t 

competitive at moderate block length and can be bad as the decision node can’t be 

revisited [4]. 

3.5 Successive Cancellation List (SCL) Decoder  

SCL decoder is like SC decoder but with more error correcting capability. Its idea 

is to proceed in L parallel paths instead of one as in SC and calculate a path matric (PM) 

for each path as we are proceeding in them. The PM is used to select one of the paths 

at the end [4]. 

This means that we have L decoded codewords at the end of the decoding operation. 

The selected codeword is the one that has the minimum path metric value. Hence, the 

path metric is like a penalty that we pay while proceeding in the paths, so we need to 

select the path with minimum penalty.  

But as Thomas Sowell said “There are no solutions. There are only tradeoffs”. The 

increased error correcting capability of the SCL comes with an increase in latency and 

the number used hardware resources, and a decrease in throughput. The operation of 

the SCL decoder will be explained in the following paragraphs. 

3.5.1 SCL decoder Operation  

The decoder inputs are N log-likelihood ratio (LLR) values and the number of 

paths that we can proceed through L. To explain the SCL algorithm in a clearer way, 

we will use an example with a tree diagram visualization. Let’s assume that we have 8 

LLR values, L equals 2 and the PM is initialized with zero [4]. 

𝐿𝐿𝑅 =  [𝑢0 𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7] = [𝐹0 𝐹1 𝐹2 𝐷0 𝐹3 𝐷1 𝐷2 𝐷3] 

Where according to the reliability sequence 𝐹𝑖 is the frozen bit index and  𝐷𝑖 is the data 

bit index.  

The first step is to check whether the index of the LLR value is that of a frozen bit or 

not. If it is frozen, estimate the bit as zero as illustrated in Fig. 3.23 and check the 

following condition to update the PM value: 

   −  𝐢𝐟 LLR > 0 t𝐡𝐞𝐧 // LLR is a positive number 

             DM = 0 // DM represents the penalty that we pay if the estimated bit is wrong 

                          // when DM = 0 then this means that the estimation is right 

   −  𝐞𝐥𝐬𝐞  

             DM = |LLR| // when DM ≠ 0 then this means that the estimation is wrong 

   −  𝐏𝐌𝐧𝐞𝐰  = 𝐏𝐌𝐨𝐥𝐝 + 𝐃𝐌  
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If the index of the LLR value indicates data index then the main path is split into 2 

paths, one estimates the data bit as 0 and the other estimates it as 1, Fig. 3.23. The PM 

is calculated for the 2 paths, and we proceed in both paths in parallel since L equals 2 

in this example, even if the PM of one of them is lower than the other.  

 

 

The PM is updated using the following steps: 

Estimate the data bit as 0 Estimate the data bit as 1 

   −  𝐢𝐟 LLR > 0 t𝐡𝐞𝐧     −  𝐢𝐟 LLR > 0 t𝐡𝐞𝐧  

             DM = 0               DM = |LLR|  

   −  𝐞𝐥𝐬𝐞    −  𝐞𝐥𝐬𝐞 

             DM = |LLR|              DM = 0 

   −  𝐏𝐌𝐧𝐞𝐰(𝐩𝐚𝐭𝐡𝟏)  = 𝐏𝐌𝐨𝐥𝐝 + 𝐃𝐌    −  𝐏𝐌𝐧𝐞𝐰(𝐩𝐚𝐭𝐡𝟐)  = 𝐏𝐌𝐨𝐥𝐝 + 𝐃𝐌 

If there is an LLR value that comes at a frozen index after a data index then no splitting 

occurs as illustrated in Fig. 3.24 and the penalty DM of the estimation of the bit for this 

LLR value is added on the existing paths, so in our example, the DM is added to the 2 

paths. 

Figure 3.23 - Decoding Tree Steps 
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Figure 3.24 - Decoding Tree Steps 

 

 

Figure 3.25 - Decoding Tree Steps 

When a new LLR value at a data index comes, a new splitting occurs for the 2 paths, 

this means that each path is split into 2 new paths to estimate the new data. Now, the 

problem is that we have a total of 4 paths, and we can only proceed in 2 paths due to 

the limitation imposed by the hardware resources. In this case, we sort the 4 paths 

ascendingly according to PM then select the best 2 paths having the least PM to proceed 

through as illustrated in Fig. 3.25. 
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Figure 3.26 - Decoding Tree Steps 

We repeat the last step every time we get an LLR value at a data index. Note that if the 

2 chosen paths from the 4 new paths are from the same main path, we discard the old 

path side, and continue in the 2 new paths as illustrated in Fig. 3.26, where we can see 

that the right main path is discarded, and the left main path is split into 2 paths that 

becomes the new main paths. We proceed in the same way as illustrated in the previous 

steps, Fig. 3.27. 

 

 

Figure 3.27 - Decoding Tree Steps 
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Figure 3.28 - Decoding Tree Steps 

The decoder path updating algorithm is summarized in Algorithm 7. 

Algorithm 7: update paths function algorithm 

1    Function update_paths() 

2       if bit_index is frozen_bit_index then // frozen bit 

3             no_splitting and estimated_bit = 0 

4           calculate DM and PMnew 

5        else  // data bit 

6           if number_of_paths != L then 

7               split each path into 2 paths, one for estimated_bit = 0 and the other 

for estimated_bit = 1 

8               calculate DM and PMnew for each path 

9           else 

10             split each path into 2 paths, one for estimated_bit = 0 and the other 

for estimated_bit = 1 

11             sort the 2L paths ascendingly according to PM 

12             choose L paths from them // as max number of paths is L 

13             calculate DM and PMnew for each path 

                end 

           end 

      end 

The full SCL decoder algorithm is shown in algorithms 8 to 11. 

Algorithm 8: SCL decoding algorithm [10] 

𝐃𝐚𝐭𝐚: L // number of paths 
𝐃𝐚𝐭𝐚: LLR // 2D buffer (L, 2N-1) to store the LLRs. 
𝐃𝐚𝐭𝐚: BITS // 2D buffer (L, N) to store the bits. 

1    𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 SCL_decoder(N, oLLR, oBITS) 
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2 N1
2
 =  N/2 

3 𝐢𝐟 N > 1 𝐭𝐡𝐞𝐧 // not a leaf node 

4  for j = 1 to L do // loop over the paths 

5   for i = 1 to N1
2

 do // apply the 𝑓 (Left) function 

6    LLR (j, oLLR+N+i) = Left(LLR(j, oLLR+i),LLR(j, oLLR+N1
2

+i)) 

   end 

  end 

7  SCL_decoder(N1
2

, oLLR+N, oBITS) 

8  for j = 1 to L do  

9   for i = 1 to N1
2

 do // apply the 𝑔 (Right) function 

10    LLR (j, oLLR+N+i) = Right (LLR(j, oLLR+i),LLR(j, 
oLLR+N1

2

+i),BITS(j, oBITS+i)) 

   end 

  end 

11  SCL_decoder(N1
2

, oLLR+N, oBITS+N1
2

) 

12  for j = 1 to L do 

13   for i = 1 to N1
2

 do // update the partial sums or return to the parent node 

14    BITS(j, oBITS+i: N1
2

:oBITS+N1
2

+i) = Return_Back(BITS(j, 

oBITS+i),BITS(j, oBITS+N1
2

+i)) 

   end 

  end 

15 else // a leaf node 

16  update_paths() // update, create and delete paths 

 end 

     end 

17  SCL_decoder(N,0,0) //launch the decoder 

18  select_best_path() 

 

Algorithm 9: Left function algorithm  Algorithm 10: Right function 

algorithm 

1    Function α = Left(a,b)  1    Function β = Right(a,b,u) 

2 if a*b > 0 then  2 β = (1 - (2*u)) * a + b 

3  sign = 1        end 

4 else   

5  sign = -1  Algorithm11: Return_Back function 

algorithm 

 end  1 Function return_bits 

=Return_Back(ua,ub) 

6 α = sign * min (|a|, |b|)  2 return_bits = [ua ⨁ ub , ub] 

      end      end 
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3.6 Results  

In this section, we will display the simulation results of SC and SCL decoders 

implementations using MATLAB. We will present and discuss the following: Polar 

decoder models verification, 3GPP specifications and selecting the appropriate list size 

(L). 

3.6.1 Polar Decoder Model Verification 

After implementing the SC and SCL algorithms of the Polar decoder, we verified 

their operation by comparing the obtained Frame Error Rate (FER) curves with the 

curves found in the paper [11]. 

The Polar decoder specifications for the curves in the paper are N=1024, R=1/2, K=512, 

with no rate matching and CRC was not used, where R is the rate, and it is the ratio 

between the input and the output of the decoder.  

After applying these specifications into our decoder implementations, we obtained the 

curve in Fig. 3.29, where the solid lines are the paper (reference) curves, and the dashed 

lines are our simulation results, and as shown, our results are very close to the paper 

curves which means that our implementation is working correctly. 

3.6.2 3GPP Encoding/Decoding Specs 

Before turning this model into hardware, we need to determine the encoding and 

decoding specs set by the 3GPP so that the hardware designer designs the decoder 

according to these specifications since any difference in the specifications gives a 

different performance and results.  

Figure 3.29 - SC and SCL decoders comparison with paper 
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We followed the 3GPP standard specifications [8] for using the polar decoder in the 

Physical Broadcast Channel (PBCH) and these specifications are listed in table (3.1). 

Table 3.1 - 3GPP Specs for PBCH 

N 512 

A 32 

E 864 

Rate Matching 

Type 
Repetition 

CRC-24 
𝑥24 + 𝑥23 + 𝑥21 + 𝑥20 + 𝑥17 + 𝑥15 + 𝑥13 + 𝑥12 + 𝑥8 + 𝑥4

+ 𝑥2 + 𝑥 + 1 

Where N is the code word length, A is the number of data bits, E is the final codeword 

length after using rate matching. There are several types of rate matching and in PBCH, 

the 3GPP standard has specified its type as repetition which means that we take the first 

(E-N) bits in the N code word and concatenate them at the end.  

CRC (Cyclic Redundancy Check) adds 24 bits at the end of the data to help in detecting 

the errors. The input of the Polar encoder is (A + CRC) and its output is N, and the 

input of the rate matching is N, and its output is E, and all of that is illustrated in Fig. 

3.30. 

3.6.3 Selecting the appropriate list length (L) 

L represents the number of hardware resources used to implement the SCL 

decoder. Increasing the L means increasing the number of used resources, while 

increasing the error correcting capability. From hardware point of view using a very 

large L is not optimum, but using a very low L decreases the error correcting capability 

while optimizing hardware.  

We simulated our implementation with different L values as shown in Fig. 3.32, and as 

L increases, the FER (frame error rate) curve decreases which means less errors 

happened. To choose which L to continue the design with, we compared these curves 

Figure 3.30 - TX-RX chain starting from channel encoder and ending at channel decoder. 
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with the reference point of 1 RX provided by the 3GPP. Below this point means that 

we met the specification and above it means that we didn’t meet the specification.  

This point tells us about the maximum accepted error at specific SNR. In the 3GPP 

standard, we found the reference point of 2 RX but not the 1 RX. Usually, 1 RX 

reference point has the same maximum accepted error as in 2 RX but at higher SNR 

(SNR 2 RX + 2 dB).  

After adding the reference point of 1 RX to the graph, Fig. 3.31, we found that all the 

curves meet the specification as they are below the reference point at the specific SNR. 

We found that L = 2 or higher is accepted. Even though the difference between L = 4 

and L = 2 is too small, we selected L = 4 to add more safety margin since the simulations 

are using AWGN channel which has lower noise effect compared to fading channel. 

 

We conclude that our implementation for the SC and SCL decoder is verified, and it 

works correctly. Then the decoder specs are determined from the 3GPP standard specs 

for PBCH, and we completed with SCL decoder as its better than SC in error correcting 

capability. Finally, the appropriate L for SCL decoder is chosen by taking into 

consideration the simulation channel type which is AWGN [12]. 

3.7 Fixed-Point Analysis  

In this section, we will discuss the last step in the specification selection process. 

Before converting an algorithm into hardware, we need to determine the width of the 

signals, and answer the question of how many bits we need to represent the signals of 

our algorithm in binary with acceptable quantization error. 

Figure 3.31 - Selecting the appropriate L. 
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We simulate our signals on MATLAB which represents them in double. To represent 

the signals in fixed point, Fig. 3.32, we need to lose some precision which leads to 

losing some accuracy, causing quantization error. First, we need to determine the 

following: 

- The signal is signed or unsigned (always positive). If signed, we assign 1 bit for the 

sign value, otherwise we discard the sign bit. 

- The number of bits the integer and fraction parts take. If the signal’s dynamic range 

is small and its values lie between -1 and 1 then no integer part is needed, and most 

of the bits are assigned to the fraction part and vice versa, if the dynamic range is 

high, the integer part is assigned most of the bits. 

Since the channel noise is random, this makes the received signal dynamic range 

random. To solve this problem, we simulated the behavior of the AGC (automatic gain 

controller) block at the starting of the receiver chain to normalize the received signal 

(multiply the received signal by gain to make its values lie between -1 and 1).  

The signal normalization removes the need for the integer part, so the received signal 

has sign bit and fraction part only. But the internal signals have an integer part due to 

the addition operation done on them which makes their values become bigger. We can 

conclude that the decoder’s input has sign bit and fraction part but no integer part, the 

internal signals have sign bit and fraction and integer parts, and there is no need to 

quantize the output. 

Now, we need to understand how to determine the number of bits for the integer (I) and 

fraction (Q) parts. For the integer part, we monitored the internal signals to obtain the 

maximum of integer part that they reach. After determining this number, we represent 

it in number of bits equals to ⌈log2 integermax⌉.  

For the fraction part, we sweep Q through the range 4 to 8 and compare the resulting 

FER curves with the curve that resulted from the signals when its double (the floating 

curve), and the result is shown in Fig. 3.33. 

Figure 3.32 - Fixed-Point Representation 
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In Fig. 3.33, we can notice that as Q increases, the resulting curve becomes closer to 

the floating curve due to the increase of accuracy (less quantization noise). But this 

leads to more bits which means using more hardware resources (not optimized for 

hardware).  

We can determine the suitable value for Q from the maximum accepted error. The 

maximum accepted error is 0.1 dB SNR which means that at the same FER value, the 

difference between the corresponding SNR in the floating curve and the quantized 

curve is 0.1 dB. After applying this spec on Fig. 3.33, we found that the minimum value 

of Q that meets the requirement is 6 and this is clearer in Fig. 3.34. 

Figure 3.33: Comparing the resulting curves from quantization with the floating one. The X-axis range is -

12: -6 with step 0.1 dB. 

Figure 3.34 - The quantized curve at Q = 6 with the floating curve to show that the difference between 

the 2 curves is 0.1 dB approximately. The X-axis range is -12:-7 with step 0.1 dB. 
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Figure 3.35 - Summary of the results of fixed-point analysis first trial 

We can summarize the results of fixed-point analysis as shown in Fig. 3.35, where 

IN_LLR is the input signal and INT_LLR and PM are the internal signals. As we can 

see, the internal signals width is very high which leads to a large internal memory size. 

All of that happened due to the high dynamic range of these signals, so to achieve lower 

width, we need to decrease it. 

From the decoder specs N equals 512, this means that we have 9 levels in the tree 

diagram. By doing statistical analysis on the variation of the dynamic range of the 

INT_LLR signal at each level, we found that at level 4 the dynamic range is high 

compared to the remaining levels. To control the variation in the dynamic range, we 

need to decrease the integer part of this signal while maintaining an acceptable 

quantization error. So, we decided that 1 bit for integer part is enough for the INT_LLR.  

To fit the INT_LLR signal into 1 bit integer, we divided the integer part of the whole 

internal signal at the 4th level by 2 when the maximum and minimum values exceed the 

range that can be tolerated by 1 integer bit. At the other levels, when the signal exceeds 

the upper and lower limits of 1 bit, we just saturate or truncate the signal.  

Saturation is done on all the levels, but why we don’t saturate the other levels like the 

4th level after dividing by 2? Because quantization error caused from saturation of the 

other levels is small compared to that in 4th level, so first we need to decrease the signal 

values and then saturate them to decrease this error. 

As shown in Fig. 3.36, the division of the 4th level mainly happens at the right node. 

This is due to the addition operation that happens at the right node that causes the signal 

value to increase while in the left one, only the sign changes. 

Figure 3.36: The first 4 levels of the total 9 levels of the tree diagram. The division by 2 

happens at the 4th level, mainly at the right node. 
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But to decrease the dynamic range of PM, we subtract the signal by 1. This subtraction 

happens at any level as soon as the signal maximum integer value exceeds the 

maximum threshold. After the subtraction, we also saturate to be sure that all the signal 

values fit in the range of the 1 bit which is specified for the integer part. 

We treat the PM signal differently because its nature is different from INT_LLR signal. 

As soon as any path reaches the maximum limit of the 1-bit integer, any truncation after 

that doesn’t create problems as this means that this path is from the worst ones then the 

probability of choosing it is very low. The subtraction leads to the appearance of 

negative values in PM; hence the PM becomes a signed signal and not unsigned as 

before since it consists of adding the magnitudes of the LLR signals. 

To summarize what we have reached till now, the integer part of the INT_LLR and PM 

signals becomes 1 bit, and the PM becomes signed. But the fraction part value increases 

from the previously obtained value. After sweeping the value of Q, we got the results 

shown in Fig. 3.37, which tells us the same results as in Fig. 3.37. The difference here 

is that the curve that contains the minimum Q which meets the requirement of 

maximum accepted error is at Q = 7 not 6 as before and this becomes clearer in Fig. 

3.38. 

 

Figure 3.37 - Comparing the resulting curves from quantization with the floating one after 

decreasing the dynamic range of the internal signals. 
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Figure 3.38 - The quantized curve at Q = 7 with the floating curve to show that the difference between 

the 2 curves is 0.1 dB approximately 

We can conclude that decreasing the dynamic range of the signals decreases the integer 

part and increases the fraction part but not with the same ratio. The 7-bit integer part is 

substituted with 1 bit integer part and only one additional bit is added to the fraction 

part, Fig. 3.39. This shows the power of decreasing the dynamic range of a signal and 

its effect on reducing the signals width representation which in turn reduces the used 

hardware especially of the internal memories size. 

 

Figure 3.39 - Summary of the results of the fixed-point analysis after decreasing the dynamic range of 

the internal signals. 

The algorithms of reducing the dynamic range of the internal signals INT_LLR and PM 

are mentioned in Algorithm 12 and 13 respectively. Algorithm 12 is inserted after the 

loop of right function in SCL decoding algorithm (Algorithm 7 in SCL decoder 

algorithm section), and Algorithm 13 is inserted at the end of the update path’s function 

algorithm (Algorithm 6 in SCL decoder algorithm, section). 

Algorithm 12: Decreasing dynamic range of INT_LLR algorithm 

1    if we are in 4th level then 

2       MAX_condition = integer (max (LLR (j, :)) > MAX_value   // MAX_value is 

the upper bound of 1 bit as 

                                                                                                 // integer part. 

3          MIN_condition = integer (min (LLR (j, :)) < MIN_value   // MIN_value is the 

lower bound of 1 bit as 

                                                                                              // integer part. 
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4          if MAX_condition or MIN_condition then 

5              LLR (j, :) = LLR (j, :) / 2 

6  LLR (j, :) = Quantize (LLR (j, :), signed, 1 bit integer, 7 bits fraction) 

7 else 

8              LLR (j, :) = Quantize (LLR (j, :), signed, 1 bit integer, 7 bits fraction) 

           end 

9   else 

10 LLR (j, :) = Quantize (LLR (j, :), signed, 1 bit integer, 7 bits fraction) 

     end 

 

Algorithm 13: Decreasing dynamic range of PM algorithm 

1    Condition = integer (max (PM) > MAX_value  // MAX_value is the upper bound 

of 1 bit as integer part.  

2    if Condition then   

3             PM = PM - 1 

4 PM = Quantize (PM, signed, 1 bit integer, 7 bits fraction) 

     end 

 

3.8 Conclusion  

Now, we have completed the fixed-point analysis and our algorithm is ready with 

its determined specifications for hardware implementation. 
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Chapter 4: Hardware Literature Survey. 

4.1 Introduction. 

In the past few years, many researches proposed many papers on their work in 

the field of polar codes. Our scope in this thesis is to implement the hardware 

architecture of the successive cancellation list decoder for polar codes. 

We are going to focus on different architectures for the successive cancellation 

decoder and analyze their merits and demerits to decide which one is suitable for 

implementing the list decoder. 

4.2 Pipelined Tree Architecture. 

4.2.1 Methodology. 

The architecture divides the decoding operation into number of stages which 

can be calculated from the code length (N) using the formula 

𝑙 = log2𝑁 (4.1) 

There are 2𝑙 operations in each stage divided into 2 types, the first one is the F 

function which takes 2 inputs (LLRs) and calculates output LLR. Whereas the g 

function takes 3 inputs (2 LLRs and a partial sum) and calculates output LLR. 

4.2.2 Processing Element Architecture. 

The pipelined architecture PE has 2 function blocks Figure 4.1, each calculates 

one type of operation only either F or G function which corresponds left and right nodes 

in the decoding algorithm [13], Where the F function is calculated through the 

following equation  

𝐹(𝐿1, 𝐿2) = 𝑠𝑖𝑔𝑛 (𝐿1) ∗ 𝑠𝑖𝑔𝑛(𝐿2) ∗ min(| 𝐿1|, |𝐿2|) (4.2) 

While the G function is calculated through the following equation 

𝐺(𝐿1, 𝐿2) = 𝐿1 ∗ (−1)
𝑢 + 𝐿2 (4.3) 

The number of processing elements (P) used in each stage is dedicated for that stage 

only and cannot be used in any other stage. 

𝑃 = 2𝑙 (4.4) 
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4.2.3 Advantages. 

Compared to other SC architectures [14], Pipelined architecture has higher 

throughput and higher frequency due to its pipelined nature that results in breaking the 

critical path of the data path.  

Easier HW implementation as there are dedicated PEs for each stage therefor 

there is no need for a complicated multiplexing network so as to avoid high routing 

congestion. 

4.2.4 Disadvantages. 

From the disadvantages of the pipelined architecture is its large area compared 

to other architecture as there are number of PEs dedicated for each stage so there is no 

resource sharing, also there are 64 PEs (for N=512) which are used only twice 

throughout the whole decoding operation in the highest decoding tree node 𝑙 =

log2(𝑁) − 1 . 

Another area inefficiency source is having 2 function blocks in each PE 

however, we only need either of them in each clock cycle and the other one will be idle 

until the next operation as shown in Table 4.1 in addition to the used registers due to 

the pipelined nature of each decoder as shown in Figure 4.2. 

Figure 4.1- PE Pipelined architecture 
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Table 4.1-Pipelined architecture scheduling 

CC 1 2 3  4 5 6 7 8 9 10 11 12 13 14 

S1 F       G       

S2  F   G    F   G   

S3   F G  F G   F G  F G 

Ui   U0 U1  U2 U3   U4 U5  U6 U7 

 

4.3 Line Architecture. 

4.3.1 Methodology. 

In order to reduce the number of PEs used in the pipelined architecture, the line 

architecture was introduced while maintaining the same throughput using N/2 PEs only 

by merging some of the PEs used in the pipelined architecture which makes this 

architecture simpler than the other [13] despite the extra multiplexing logic required to 

route the data throughout the line as shown in Figure 4.3. 

 The name “Line” comes from the fact that the PEs are arranged in a line while 

the used registers retain a tree structure emulated by a multiplexing network connecting 

them. 

Figure 4.2-Pipelined architecture data path for N=8 
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4.3.2 Processing Element Architecture. 

Unlike the pipelined architecture PE Figure 4.1, the line architecture PE has 

only one function block to perform both the F and G functions using the same equations 

described in the pipelined architecture (4.2),(4.3) allowing resource sharing which 

introduce area optimization. 

 

 

Figure 4.3- Line Architecture for N=8 

Figure 4.4 - Line architecture PE 
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4.3.3 Advantages. 

Compared to the pipelined architecture, the line architecture has more area 

efficiency in terms of the used PEs due to reducing the number of processing elements 

while maintaining the same throughput in addition to using only one function block 

inside each PE. 

The PE architecture modifications over the pipelined architecture PE in terms 

of their number and internal structure (function blocks) makes the line architecture 

simpler. 

4.3.4 Disadvantages. 

The storage of the internal LLRs that are needed throughout the decoding 

process are implemented using registers and multiplexing and de-multiplexing 

networks which add more area. It was reported that for large code length (N) required 

polar codes synthesis results cannot be implemented on most FPGAs [14]. 

Compared to the semi-parallel architecture, the line architecture uses a huge 

number of PEs which can be reduced to N/4 instead of using N/2 while maintaining 

nearly the same latency (2 cycles more) [14]. 

4.4 Semi-parallel Architecture. 

4.4.1 Methodology. 

The semi-parallel architecture introduces the usage of dual port read RAM to 

store the internal LLRs required through the decoding process. Moreover, the used 

number of PEs are  
𝑁

4
 which is considered a good modification over the line architecture 

which uses 
𝑁

2
  processing elements. 

One of the aims of this architecture is to complete the whole operation of the 

PE in a single cycle, but that would require simultaneous read and write from the 

memory in some cases hence, they came up with a solution for this problem which is 

bypassing the previous output to be used in the current LLR calculation [14] as it can 

be seen in Figure 4.5. 
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4.4.2 Processing Element Architecture. 

Extra multiplexers are added as a modification over the line architecture PE to 

choose between the 2 functions it can perform using a function select signal. The sign 

and magnitude implementation of the LLRs saves 20% of the total area during the 

synthesis compared to the 2’s complement implementation [14]. 

 

Figure 4.5 - Semi-parallel architecture 

Figure 4.6 - Semi-parallel architecture PE 
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4.4.3 Advantages. 

50% reduction in the used number of PEs over the line architecture. In addition 

to introducing the dual port read RAM which supports large code length (N) required 

by the polar codes during synthesis with only 2 clock cycles extra latency compared to 

the line architecture which can be ignored [14]. 

4.4.4 Disadvantages. 

  
𝑁

4
  Processing elements is still a huge number to be used with the fact that we 

will use all of them in the higher decoding tree stage only and then most of them will 

be idle 50% of the decoding operation. 

 The used dual port read RAM introduces area inefficiency and cannot be found 

in most FPGAs. In addition, it introduces routing problems in the ASIC flow.  

4.5 Summary. 

There is no perfect design, some designs focus on optimizing the number of PEs 

without any considerations for the memory organization used, some design used dual 

port read memory which introduce area overhead in addition to bypass buffer while 

some others use register banks which is not feasible for large code length (N). 

Synthesis results discussed in the literature, that the memory organization is the 

main contributor for the area. Therefore, in the next chapters we are going introduce 

some memory organizations which are more area efficient than the used organizations 

in the literature architectures without severely affecting the throughput. 

Table 4.2 - Comparison between the 3 architectures for N=512 

POC Pipelined Line Semi-parallel 

Number of PEs N-1 = 511 N/2 = 256 N/4 = 128 

Memory 

organization 

Register banks Register banks Dual port read RAM 

Latency 2N-4 = 1020 2N-4 = 1020 2N-2 = 1022 
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Chapter 5: Hardware Design Specifications. 

5.1 Memory Specifications. 

According to the Target FPGA (ZYNQ ULTRASCALE+), the maximum word 

length is 72 bits in order to infer BRAMs without using the logic fabric of the FPGA as 

a storage element. 

As mentioned before, Dual port RAM is not preferable when targeting FPGAs 

hence, we are going to use single port RAM as a constraint in order to optimize the area 

as no other design in the literature targeted area optimization. 

5.2 Clock Frequency Specifications. 

Maximum clock frequency is 61.44 MHZ since our sampling frequency 

𝑓𝑠𝑎𝑚𝑝𝑙𝑒 = 256 ∗ 15𝐾 = 3.84 𝑀𝐻𝑍, then the clock frequency must be a multiple of 

fsample. Hence, it was decided to be 16 multiples of the sampling frequency so that the 

FFT block has an extra cycle between every 2 samples to process then our working 

clock frequency becomes 𝐹 = 16 ∗ 3.84 𝑀𝐻𝑍 = 61.44𝑀𝐻𝑍 .  

According to NR 5G, there 14 symbols in one slot, since in our case the sub 

carrier spacing is 15 KHZ therefore slot time is 1ms, then with clock frequency 61.44 

MHZ we have 61440 clock cycles in 1ms. The decoding process is allowed to consume 

50% of the total latency of the chain. 

Chapter 6: Hardware Design Iterations. 

6.1 First design iteration. 

During the first design iteration, we saw that the outputs from the LLR memory 

have to be delivered to all the PEs at the same time, So the memory word size should 

be PQ so that all the PEs take their inputs at the same time, where P is the number of 

processing elements needed while Q is the total size of LLR as a number of bits. Using 

a single port RAM introduced a delay of 4N clock cycles. 

As for the number of locations, it will be (log2𝑁) − 1 each of size PQ. 

 

 

 

 

 

 

 

 

(log2𝑁)

− 1 

PQ 
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For N = 512, P = N/4 = 128, Q = 6 memory size will be 8 code words each of size 

128Q. 

Stages’ LLR output were arranged as follows, Where the input to each stage is the 

output of its previous stage. 

0 Channel LLR 

1 Channel LLR 

2 Channel LLR 

3 Channel LLR 

4 L8 

5 L8 

6 L7 

7 L6:L0 

 

As the input is serial of size Q, A buffer was needed to accumulate the channel 

LLR to form a word and then write it into the memory. 

Indexing of the memory depend on the stage number during reading and writing. 

 

Table 6.1 - Iteration 1 memory indexing 

Stage (Layer) Number  Size  Number of Words Word no. 

Channel LLR 512 Q 4 0,1,2,3 

L8 256 Q 2 4,5 

L7 128 Q 1 6 

L6 64 Q  Less than 1 7 [0:63] 

L5 32 Q Less than 1 7 [64:95] 

L4 16 Q Less than 1 7 [96:111] 

L3 8 Q Less than 1 7 [112:119] 

L2 4 Q Less than 1 7 [120:123]  

L1 2 Q  Less than 1 7 [124:125] 

L0 1 Q Less than 1 7 [126] 

 

6.2 Second design iteration. 

We used number of processing elements P = N/16 = 32 as there were many PEs 

in the idle state during the first iteration in the lower decoding stage (0) so reduced them 

to N/16 to optimize in the area. 

A new memory organization was introduced as we used one memory for each 

decoding stage as it can be seen in Figure 6.1, each word contains 5 LLRs each of size 

14 bits then the memory word length was 70 bits which meets the constraint of the 72 

bits word length. 



77 

 

That design iteration was a good one according to the area, but it had 2 major 

problems. The first one was the latency which increased from 4N = 2048 to 2200 which 

is considered a performance degradation. The second problem was memory 

misalignment, it happened when we needed to read LLRs which were not in the same 

memory word. 

 

Figure 6.1 - One memory for each stage 

6.3 Third design iteration. 

The number of processing elements used in this design iteration was P = N/64. 

The memories used were single port memory for each stage as shown in Figure 6.1 with 

P LLRs in each word then the number of bits equals to PQ which met the memory word 

length constraint for channel LLRs but it did not meet the constraint for internal LLRs. 

The latency increased to 2560 clock cycles which was another performance degrading 

yet it was acceptable compared to the maximum latency of the decoding process. 

6.4 Fourth design iteration. 

The number of used processing elements was 5 PEs to further optimize the area 

as most of the PEs were in the idle in the last decoding stage (stage 0) so it was advisable 

to remove the unused PEs. 

Only one memory was used for each stage as shown in Figure 6.1. Each memory 

word contains 5 LLRs, therefore the word length became equal to PQ = 70 bits which 

led to meeting the word length constraint for internal LLRs in this design iteration. 
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Due to area optimization in the number of PEs and memory organization, the 

latency increased to 3000 clock cycle which was a huge performance degradation 

compared to the other design iterations mentioned. 

6.5 Fifth design iteration. 

4 PEs were used in this design iteration to further optimize the area for the reasons 

mentioned before. As for the memory organization, two single port RAM were used for 

each stage starting from the channel LLR memory down to the last stage memory as 

shown in Figure 6.3 Each memory word contains 5 LLRs with a total word size of PQ 

= 70 bits. 

Latency of this iteration was a first step to a huge success as it was reduced to 

2400 clock cycles instead of 3000 clock cycles in the last iteration. 

This iteration suffered from complexity in controlling the signals of the data paths 

due to memory misalignment that happened when it was necessary to read LLRs from 

two different memory words due to the mismatch between the number of LLRs in one 

word and the number of the PEs used in that stage as shown in Figure 6.2, hence adding 

latency for staling everything until the input LLRs for each PE is ready.  

We were forced to use only 4 LLRs in each word instead of 5 to avoid the 

mismatch mentioned earlier which came in favor of the latency as it was reduced to 

1570 clock cycles for the whole decoding process which is considered an intermediate 

latency among the latency mentioned earlier in the previous design iterations and the 

idle latency of the semi-parallel decoder [14] which consumes huge area compared to 

the area consumed in this iteration. 

 

 

Figure 6.2 - Memory misalignment 
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6.6 Sixth design iteration. 

A new fixed-point analysis was introduced in this design iteration Figure 6.4, the 

channel LLRs are now expressed in 8 bits instead of 7 bits in the previous iterations 

while internal LLRs are now expressed in 9 bits instead of 14. This reduction in the 

number of bits gave this iteration a huge advantage over the previous iterations as it 

decreased the memory word length from 56 to 36 which led to area reduction while 

keeping the number of processing elements and the memory organization Figure 6.3 

the same as before. 

 

Figure 6.3 - Two memories for each stage. 

Figure 6.4 - First Vs second fixed point 
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Chapter 7: SC Proposed Architecture. 

7.1 Introduction. 

Our aim in this design is to reduce the area as much as possible without severely 

affecting the latency. This goal was achieved by many methods, the first of which is 

using four PEs only each of them contains only one function block to perform both F 

and G functions and choose between them by a function select signal. 

 The second method is using block RAM instead of register banks which are not 

feasible with large code length and significantly affects the area and using two 

memories for each stage to decrease the latency. 

The third and final method is to avoid using dual port read memory since its 

size is nearly double the single port memory in addition to the fact that dual port 

memories are not available as a BRAM in most FPGAs. 

7.2 SC Interface. 

SC wrapper as shown in Figure 7.1 contains many input and output ports for 

interfacing with the outside world. The ports are as follows Table 7.1 - SC port 

mapping. 

 

Start pulse port function is to trigger the SC decoder to start the decoding 

operation by reading the channel LLRs from the external memory that is split into two 

memories which connects the decoder with the preceding block (post FFT). 

Busy signal function is to indicate that the decoder has not finished the decoding 

operation yet so that the decoder cannot be interrupted also the external channel LLR 

memories cannot be modified until the decoder finishes its operation. 

Figure 7.1 - SC interface 
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Estimated bit port to store the current decoded bit in the external estimated bits 

memory to be available for the CRC check block to determine if the received bits are 

correct or they had been corrupted during the receiving operation. 

 Valid port to determine whether the estimated bit is a frozen bit or a data bit to 

be stored in the external memory, where the frozen bits are redundant bits added to the 

payload to improve the bit error rate.  

Channel LLR a and b are two input ports coming from the two channel LLR 

memories where they are the outputs of the post FFT block. 

Table 7.1 - SC port mapping. 

Port Name Direction Width Parameter Active edge 

channel_llr_a input  28 bits WORD_LENGTH_CH N/A 

channel_llr_b input 28 bits WORD_LENGTH_CH N/A 

start_pulse input 1 bit N/A high pulse 

clk input  1 bit  N/A N/A 

rst input 1 bit  N/A low 

busy output 1 bit  N/A high 

valid output 1 bit  N/A high pulse 

estimated_bit output 1 bit N/A N/A 

Read_addr_channel output  6 bits log2(log2(𝑁) −1) + 2 N/A 

en_rd_ch_out output 1 bit N/A high 

 

 

7.3 SC Top-level. 

As shown in Figure 7.2 the SC module contains many sub-modules each 

perform a different task in the decoding operation staring from reading the channel LLR 

memories until the decoding process is done by writing the estimated bits in the external 

estimated bits memory. 

The main sub-modules are: 

• Control Unit. 

• PE. 

• PSN. 

• Decision Unit. 

• Memory Bank. 
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7.4 SC Operation Overview. 

The operation starts when a start pulse triggers the decoder. Staring with reading 

the channel LLRs which are sign extended from channel LLR word length to internal 

LLR word length then use them as an input to the PE to perform either F or G function 

and output a new LLR to be saved in stage 8 memories, this operation is repeated until 

we finish the channel LLRs. Each LLR we read from the internal LLR memories or 

channel LLR memories is fed to the PE through a multiplexing network to multiplex 

between the memory banks of our decoding stages. 

As mentioned before, each word read from the memory contains P LLRs then 

we need to split them so that each PE takes one of these P as one of its inputs. This is 

done by a sub-module called split word which takes one word of  𝑃 ∗ 𝐿𝐿𝑅 𝑤𝑜𝑟𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 

bits as an input and outputs P LLRs each of word length bits, where P is the number of 

PEs. 

Then the operation continues by concatenating the PEs outputs to form a new 

internal LLR word of size 𝑃 ∗ 𝐿𝐿𝑅 𝑤𝑜𝑟𝑑 𝑙𝑒𝑛𝑔𝑡ℎ to be stored in internal LLR memories 

of the current stage. 

Down to stage 0 where we have to decide whether the bit is ‘1’ or ‘0’, the final 

LLR of stage 0 is fed to a decision unit which decides on the final LLR sign bit as 

follows: 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑏𝑖𝑡 =  {
1, 𝑖𝑓 𝑆𝑔𝑛 (𝐿𝐿𝑅) = 1

0, 𝑖𝑓 𝑆𝑔𝑛 (𝐿𝐿𝑅) = 0
   (7.1) 

Figure 7.2 - SC top level 
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This estimated bit is stored in the estimated bits memory and is fed to the PSN 

to perform its function and gives out the partial sum which is needed in the next G 

function as shown in equation (4.3). 

All the mentioned modules should be enabled in their proper time, this is done 

by the control unit which is also responsible for memory address generation and 

determining current stage number and current decoded bit index. It also decides the 

function select signal for the PE to perform the intended function for that part of stage, 

in addition to the selection lines of the multiplexing network mentioned earlier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.5 Control Unit Sub-Module. 

7.5.1 Module Description. 

As it can be seen in Figure 7.4 ,the controlling operation of the SC decoder can 

be expressed in controlling three counters each of which for a specific task to be done 

in the decoding operation. It starts its operation when the decoder is triggered by an 

external start pulse, then it continues until all decoded bits done. 

Figure 7.3 - SC Operation. 
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The first counter is an incremental counter for the part of stage index, used to 

count the number of cycles inside each stage depending on the number of processing 

elements. It starts from zero until it reaches the number of needed cycles in that stage, 

where each clock cycle includes memory read, PE operation and memory write. 

𝑃𝑆 =
2𝑙

𝑃
 𝑤ℎ𝑒𝑟𝑒 𝑙 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝐸𝑠 (7.2) 

The second counter is a decremental counter for the current decoding stage 

index. It starts from stage 8 which is the highest node in the decoding tree down to stage 

zero which is an estimate node for the current decoded bit. After that it goes back to a 

higher node depending on a function called FFS as shown in equation (7.3) which 

decides the index of the first leading one in the next decoded bit index. Hence the stage 

index is loaded with the return value of the FFS function. 

𝐹𝐹𝑆(𝑖𝑚−1𝑖𝑚−2… . . 𝑖0) =  {
min(𝑚) : 𝑖𝑚 = 1  , 𝑖𝑓 𝑖 > 0
𝑚 − 1                     , 𝑖𝑓 𝑖 = 0

     (7.3)

𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑐𝑜𝑑𝑒𝑑 𝑏𝑖𝑡 𝑖𝑛𝑑𝑒𝑥 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑖𝑡𝑠 𝑤𝑖𝑑𝑡ℎ

           

The third counter is an incremental counter for the decoded bit index, its value 

changes when the stage index reaches zero, to indicate reaching a leaf node. Upon 

Figure 7.4 - Control Unit Operation 
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reaching stage zero, the decision unit is activated to take a decision on the final LLR to 

estimate whether the bit is ‘0’ or ‘1’. 

The control unit is also responsible for address generation for both read and 

write operations depending on the stage number as it can be seen in …, in addition to 

the enable signals of those memories. Moreover, it is also responsible for choosing 

which memory is feeding the PE with LLRs by controlling the selection lines of the 

multiplexing network. 

7.5.2 Port Mapping. 

Table 7.2 - CU port mapping 

Port Name Direction Width Parameter 

clk Input  1 N/A 

rst Input 1 N/A 

start Input 1 N/A 

busy output 1 N/A 

en_Wr_8_a output 1 N/A 

en_Wr_7_a output 1 N/A 

en_Wr_6_a output 1 N/A 

en_Wr_5_a output 1 N/A 

en_Wr_4_a output 1 N/A 

en_Wr_3_a output 1 N/A 

en_Wr_2_a output 1 N/A 

en_Wr_1_a output 1 N/A 

en_Wr_0_a output 1 N/A 

Figure 7.5 - CU Multiplexing for N=8. 
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en_Wr_8_b output 1 N/A 

en_Wr_7_b output 1 N/A 

en_Wr_6_b output 1 N/A 

en_Wr_5_b output 1 N/A 

en_Wr_4_b output 1 N/A 

en_Wr_3_b output 1 N/A 

en_Wr_2_b output 1 N/A 

en_Wr_1_b output 1 N/A 

en_Wr_0_b output 1 N/A 

en_rd_ch output 1 N/A 

en_rd_7 output 1 N/A 

en_rd_6 output 1 N/A 

en_rd_5 output 1 N/A 

en_rd_4 output 1 N/A 

en_rd_3 output 1 N/A 

en_rd_2 output 1 N/A 

en_rd_1 output 1 N/A 

enable_psn output 1 N/A 

address_psn output 7 bits N/A 

stage_index output 4 bits log2(log2(𝑁) −1) 

part_stage_index output 6 bits N/A 

dec_bit_index output 8 bits log2(𝑁) − 1 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 - CU port mapping 
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7.6 Decision Unit Sub-Module. 

7.6.1 Module Description. 

Error! Reference source not found.  illustrates that this module is the 

estimated bit decision making module based on the final LLR of stage zero which is 

the input to this module. The output of this module is the estimated bit which is either 

‘0’ or ‘1’ as demonstrated in equation (7.1). Hence, the estimated bit is stored in the 

estimated bit memory and used to calculate the next partial sum in the PSN sub-module. 

 This module includes a ROM which stores frozen bits indices, during the 

estimation operation, we compare the decoded bit index with its corresponding index 

in that ROM, if that index contains a value equals to 1 then this is a data bit and is 

decoded according to equation (7.1), on the other hand, if it contains a value equals to 

0, then this bit is decoded to zero automatically since that was an indication that it is a 

frozen bit. 

 The decision unit outputs a valid flag indicating that the currently decoded bit 

is a data bit not a frozen bit. This signal is an output from the SC decoder as mention in 

Table 7.1 to the external decodes bit memory. 

Figure 7.7 - DU operation 
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7.6.2 Port Mapping 

 

 

 

 

 

 

 

 

Table 7.3 - DU port mapping 

Port Name Direction Width Parameter 

clk Input 1 N/A 

rst Input 1 N/A 

dec_bit_index Input 8 bits log2(𝑁) − 1 

en_dec_unit Input 1 N/A 

valid Output 1 N/A 

est_bit Output 1 N/A 

 

7.7 Processing Element Sub-Module. 

7.7.1 Module Description. 

The PE sub-module (Figure 4.6) is considered an internal core inside the SC 

decoder, it is in charge of the LLR calculations. PE deals with the LLRs in sign and 

magnitude format, since that format produces synthesis results 20% better than that of 

two’s complement format as it was reported in [14]. 

It performs both F and G operations according to equations (4.2) and (4.3) 

where the sign and magnitude are driven by a multiplexer with function select as its 

selection line. 

𝜓(ƛ𝐿𝑙,𝑖) =  {
𝜓(ƛ𝑓) 𝑤ℎ𝑒𝑛 𝐵(𝐿, 𝑖) = 0

𝜓(ƛ𝑔) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.4) 

|ƛ𝐿𝑙,𝑖| = {
|ƛ𝑓| 𝑤ℎ𝑒𝑛 𝐵(𝐿, 𝑖) = 0 

|ƛ𝑔|𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.5) 

Figure 7.8 - DU port mapping 
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 Where the F function takes the 2 input LLRs only as it can be seen in Figure 

7.10 while the G function takes the 2 input LLRs and a partial sum input as it can be 

seen in Figure 7.9. 

 

 

 

 

These operations are performed using 

a single XOR gate and a comparator in addition to a SM adder/subtractor needed to 

perform G operation. The relationship between the magnitude of the input LLRs is 

represented by equation (5.6), this parameter  𝛾𝑎𝑏 is used as a multiplexer select to 

choose between the maximum and the minimum of the magnitude of the 2 input LLRs. 

𝛾𝑎𝑏 = {
1 𝑖𝑓 |ƛ𝑎| > |ƛ𝑏|
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (5.6) 

 

In case of performing F function, we choose the minimum magnitude of the 2 

LLRs, where the output sign is computed by performing an XOR operation on the signs 

of the 2 LLRs, however in case of G function we choose the maximum magnitude of 

the 2 LLRs where the output sign is computed by performing an XOR operation on the 

signs of the 2 LLRs in addition to the partial sum coming from the PSN. 

We can summarize the PE calculations for both F and G functions using the 

following Boolean equations  

𝜓(ƛ𝑔) = 𝛾𝑎𝑏̅̅ ̅̅̅. 𝜓(ƛ𝑏)+ 𝛾𝑎𝑏. (𝑠̂  ⊕  𝜓(ƛ𝑎)) (5.7) 

|ƛ𝑔| =  𝑚𝑎𝑥(|ƛ𝑎|, |ƛ𝑏|)+ (−1)
𝑋𝑚𝑖𝑛(|ƛ𝑎|, |ƛ𝑏|) (5.8) 

𝑋 = 𝑠̂ ⊕𝜓(ƛ𝑎)  ⊕ 𝜓(ƛ𝑏) (5.9) 

𝜓(ƛ𝑓) = 𝜓(ƛ𝑏)⊕𝜓(ƛ𝑎) (5.10) 

|ƛ𝑓| = min(|ƛ𝑎|, |ƛ𝑏|) (5.11) 

Figure 7.10 - F function node Figure 7.9 - G function node 



90 

 

7.7.2 Port Mapping. 

 

As shown in Figure 7.11 Where previous estimate is the output of the PSN calculated 

from the previous estimated bit. 

Table 7.4 - PE port mapping 

Port Name Direction Width Parameter 

Func_sel Input 1 bit N/A 

Previous_estimate Input 1 bit N/A 

llr_a Input 14 bits WORD_LENGTH 

llr_b Input 14 bits WORD_LENGTH 

llr_output Output 14 bits WORD_LENGTH 

 

7.7.3 Fixed Point Modifications. 

For further area optimization, the word length size is reduced for the internal 

LLRs from 14 bits to 9 bits so the size of the internal memories is reduced in addition 

to the data bus width. 

Figure 7.11 - PE port mapping 
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It was required to detect overflow of the LLRs so as to prevent them from 

exceeding the maximum number that can be expressed in 9 bits. That was performed 

by a sub-module named overflow check which asserts a flag when it detects an overflow 

in LLRs of stages 5,6,7 or 8 as the quantization error in these mentioned stages cannot 

be bearable. That flag is input to another sub-module named divider which is used to 

divide the input LLRs to the PE by 2 then we perform quantization operation on the 

divider output to ensure that the input LLRs to the PE is saturated if they still exceeding 

the maximum number to be expressed in 9 bits. Any other stage would require 

quantization only. 

7.8 Partial Sum Network. 

7.8.1 Module Description. 

As previously mentioned, The SC decoder consists of 3 main components which 

are the control unit, PSN, PE, memory banks. The PSN unit is responsible for 

calculating the partial sums required by the PEs to calculate the G function as it takes 

3 inputs 2 LLRs and 1 partial sum as shown in Figure 7.9. 

It was reported in [14] that in the synthesis result of the semi-parallel decoder, 

the memory banks take about 75% of the total decoder area and the rest is occupied by 

the PSN, in addition to the critical path of the SC decoder is in the PSN which will 

impact the maximum frequency as it decreases as N increases. 

Figure 7.12 - PE after fixed point modifications 
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There are 
𝑁

2
∗ log2(𝑁) partial sums to be calculated throughout the decoding 

process. When a new bit is decoded, the PSN should update all the partial sums that 

includes this bit as shown in Figure 7.13. For example, when 𝑢4̂ is decoded, the partial 

sums 𝑆4,0 𝑎𝑛𝑑 𝑆4,1 should be updated while the partial sums that do not contain the last 

decoded bit should keep their values unchanged. 

It was clarified in [14] that the PSN required storage was reduced from 
𝑁

2
∗

log2(𝑁) to 𝑁 − 1, in addition to introducing the indicator function which was defined 

to specify which DFF should be updated with the current decoded bit. The indicator 

function was implemented as a combinational logic and its hardware complexity 

increases linearly with N so it would add area overhead for large code length. Also, it 

would make the critical path worse. 

A new technique was used for implementing the PSN based on the idea of LFSR 

to replace the indicator function PSN of the semi-parallel decoder. For the best of our 

knowledge, this technique was only tested with the line decoder [15] and was not 

integrated with the semi-parallel decoder. This technique (SR-PSN) has a decreased 

critical path and provide a better performance than the indicator function. 

Figure 7.13 - Partial sums calculations 
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It was stated in [15] that a SR-PSN of size 
𝑁

2
 was implemented by 

𝑁

2
 DFFs, 

𝑁

2
 

AND gates, 
𝑁

2
 XOR gates and a matrix generation unit as shown in Figure 7.14. 

Whenever a new bit is decoded, the SR-PSN is activated in addition to the matrix 

generation unit and the partial sums are updated according to the equation (5.12). 

{
𝑅0  ← 𝑢𝑖  ̂ 𝐴𝑁𝐷 𝐶𝑖,0                                           

𝑅𝑘 ← 𝑅𝑘−1 𝑋𝑂𝑅 (𝑢𝑖  ̂ 𝐴𝑁𝐷 𝐶𝑖,0), 𝑖𝑓 𝑘 > 0
(5.12) 

The main contributor in this SR-PSN architecture is the matrix generation unit 

which is responsible for the generation of the Kronecker matrix which was used in the 

encoding process so the same matrix has to be used in the decoding operation. 

Figure 7.14 - SR-PSN internal structure 
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The matrix generation unit could have been implemented using a 
𝑁

2
∗ 𝑁 ROM, 

which will produce a 16 KB memory for 𝑁 = 512 that would affect the area severely. 

Therefore, in [15] LFSR of size 
𝑁

2
  as it can be seen in Figure 7.15 was used to overcome 

this area overhead. The LFSR is updated whenever a new estimate is produced 

according to the following equations.  

{

𝐶𝑖,0 = 1 , 0 ≤ 𝑖 ≤ 𝑁 − 1

𝐶𝑖+1,𝑘 = 𝐶𝑖,𝑘−1 𝑋𝑂𝑅 𝐶𝑖,𝑘  , 0 ≤ 𝑖 < 𝑁 − 1 𝑎𝑛𝑑 1 ≤ 𝑘 ≤
𝑁

2
− 1

(5.13) 

{
𝑀0 ← 1 

𝑀𝑘 ← 𝑀𝑘 𝑋𝑂𝑅 𝑀𝑘−1 𝑖𝑓 𝑘 > 0
(5.14) 

 

The SR-PSN produces 
𝑁

2
 partial sums and in our decoder, we only use 4 PEs, so 

we needed to use a memory to store them as it can be seen in Figure 7.17 and route 

them to the PE properly according to their indices. 

To use the SR-PSN with the semi-parallel decoder, a multiplexing network is 

needed since the output partial sums must be ordered before they can be used as inputs 

to the PEs as shown in Figure 7.16. 

 

 

 

Figure 7.15 - Matrix generation unit 
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To summarize, The PSN sub-module contains 3 essential modules in addition 

to AND and XOR gates. These essential modules are the matrix generation unit, SR 

and a memory to store the output partial sums to be passed to the PEs whenever needed. 

 

 

 

 

Figure 7.16 - PSN operation 

Figure 7.17 - PSN internal structure 
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7.8.2 Port Mapping. 

 

Figure 7.18 - PSN port mapping 

 

Table 7.5 - PSN port mapping 

Port Direction Width  Parameter 

clk Input 1 bit N/A 

rst Input 1 bit N/A 

enable_psn Input 1 bit N/A 

estimated_bit_psn Input 1 bit N/A 

part_stage_index Input 7 bits 
log2(

2𝑙

𝑝
) 

stage_index_psn Input 4 bits log2(log2(𝑁) −1) 

top_address_psn Input 7 bits N/A 

 

 

 

 

 

 

 

 

 



97 

 

7.9 SC Pipelined 

As shown in Figure 7.19 the data path of SC decoder consists of a multiplexing 

network and processing element. As a conservative approach we decided to break this 

combinational path so we can prevent any timing violation when we reach synthesis 

stage. Thus, we modified the data path and accordingly we needed to schedule the read 

and write enables of the memories in addition to the addresses so we can synchronize 

the decoding operation.  

As shown in Figure 7.19 , the first modification to the data path is adding a flip 

flop to the output of the processing element to break the pipeline of the data path, since 

there is a new added clock cycle latency we will need to delay the write and read enables 

of the memories to prevent storing or reading invalid data as a result of this change each 

LLR is computed and stored in 3 cycles due to the pipelining. 

  Another modification to the SC decoder, we will add a flip flop to delay the 

partial sums produced by the PSN so that they become synchronized with the 

processing element at the same stage and operation.  

 

Figure 7.19 SC Pipelined Top level 

The last modification to the SC decoder in the pipelined register is registering 

the output of any RAM in the design which was necessary to synchronize the read 

operation to be compatible with the pipelining modification. This change will make the 

memories compatible with most FPGAs as most of them doesn’t have asynchronous 

read BRAMs. However, if the BRAM is asynchronous the FPGA can simply modify it 

by adding a register to the output and we will still utilize the BRAM, the synchronous 

BRAM cannot be modified to become asynchronous BRAM. Therefore, the synthesis 

engine will use the logic fabric to create a memory which is a waste of resources. 
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As shown in Figure 7.20 in the start of the operation of the pipelined decoder 

the first 3 cycles contain 3 separate operations memory read, LLR calculations, memory 

write. Then as shown in Figure 7.21 after passing the first 3 clock cycles the actual 

pipeline will start and the 3 operations will move simultaneously till the end of the 

decoding process therefore the throughput will increase as expected due to the 

pipelining modifications.  

 

Figure 7.20 First 3 cycles in pipeline operation 

 

Figure 7.21 Normal pipeline operation 

7.10 SC Block level verification: 

To properly verify the design, that the hardware matches the MATLAB model 

using test cases generated from the model sweeping over the SNR range from -

12 to 5 dB and we need to check the internal LLR values and the output bits from 

the decoding process. 

We tested the design with 1500 test cases over the SNR range with no failed test 

cases as shown in Fig 7.22 and Fig 7.23. The verification also tested the decoder 

capability of decoding multiple frames. 

Figure 7.22 - Test bench outputs 
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Figure 7.23 Output decoded bits 

 

Chapter 8: SCL Proposed Architecture 

8.1 Introduction. 

This architecture is based on the SC decoder as a building block where four SC 

decoders were used. Hence during the decoding operation there were eight paths I some 

cases and we have to choose only four of them according to a metric called path metric. 

During the design phase of this architecture, there was two approaches, the first 

is to modify the SC decoder to operate as a SCL decoder with pointer memory and a 

multiplexing network to decide which PE reads from which memory. This design 

approach has some major problems as it does not utilize the SC decoder as a black box, 

its pointer introduces extra hardware complexity and it is not easily scalable if it is 

required to increase the number of decoders [11]. 

The second approach is to use the SC decoder as a black box with a master control 

unit which is implemented using a FSM, in addition to some modules such as a metric 

sorter and another module for the copying logic to handle the operation between the 

decoders and a multiplexing network between these L decoders. This design approach 

does not introduce much hardware complexity compared to the previous one. It utilizes 

the SC decoder as a black box which makes this approach scalable if it is required to 

increase the number of paths. 

The internal blocks or modules of the SC decoder were modified to match the 

new architecture and be suitable for copying to match the SCL algorithm. The modified 

blocks were the SC control unit, PSN, and the decision unit which had the greatest 

modification as it is responsible for the PM calculations. 
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The SCL is integrated with the CRC block which is in charge of detecting the 

payload errors after receiving the data which passes through AWGN channel which 

may deteriorate the data. That deterioration leads to decoding errors. 

8.2 Operation Overview. 

The operation starts by triggering the SCL with a start pulse. When the operation 

starts, all the decoders perform the same operation for the frozen bits until reaching the 

first data bit where the decoders split into two groups. upon reaching the second data 

bits, the two groups split into four groups which are split into eight groups after 

decoding the third data bit. Each decoder contains two paths and calculates a path metric 

for each one of them. These path metrics are arranged ascendingly by a module called 

metric sorter where only the least four path metrics are allowed to continue the decoding 

operation. If any decoder contains more than one of the survival paths, then copying is 

required from that decoder to any other decoder which does not contain any of the 

survival paths. 

After the decoding operation is done, we have to choose which path contains the 

correct payload, this is done based on the PM sorting. After choosing, we have to 

sperate the data bits from the frozen bits and store the data bits in an external memory. 

Hence, the CRC is activated to indicate whether the decoded payload is received 

without any errors or there were errors during the data transmission in the AWGN 

channel. 

The list decoding operation is controlled by a FSM which passes through many 

states including the normal operation state, copying state and CRC state.  

Figure 8.1 - SCL architecture 
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Figure 8.2 - SCL operation 
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8.3 Controller FSM Sub-Module. 

8.3.1 Module Description. 

The operation starts in the Idle state waiting for a start pulse to trigger the SCL 

decoder. When the SCL is triggered, we move to the normal operation state where 

actual decoding takes place by enabling all the SC decoders. The FSM keeps the normal 

operation state until the available paths become 8 paths after decoding the third data 

bit.  

After reaching the third data bit the FSM moves to the metric sorting state. The 

metric sorting decides which 4 path out of the 8 available paths by sorting the PMs 

ascendingly and produces an end of sorting pulse to indicate the finishing of its 

operation to trigger the FSM again. 

We then move to the estimate selection state to choose the estimated bit of each 

decoder since each decoder contains two paths each with a different decoded bit. One 

of those estimated bits inside each decoder is decided according to the decision unit 

while the other is its opposite. The FSM informs each decoder to go along with one of 

its estimated bits according to which one of its 2 paths is surviving. 

Figure 8.3 FSM of SCL Top Controller 
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The FSM keeps the estimate selection state for only one cycle and then moves to 

the copying logic state where a module with the same name is enabled to decide if there 

would be any copying from any decoder to another or not. This is done based on the 

valid flags vectors which is the output of the metric sorter. This valid flags vector is 

composed of 8 bits each one of them corresponds to one of the paths. The metric sorter 

puts 1 in the bits corresponding to the survival paths, then the copying logic module 

takes that vector and checks on the 2 bits of each decoder to decide if that decoder 

requires copying from/to any other decoder. If there is any copying, all the decoders are 

disabled and the decoding operation is paused until the 2 decoders finish copying their 

internal memories. During copying, the FSM has to control the selection lines of the 

multiplexing network between the decoders depending on the valid flags vector so that 

each decoder performs copying with the proper selected decoder. When copying is 

finished, a flag named copying finished is asserted by the decoders involved in the 

copying operation to indicate that they have finished so that the FSM can move to the 

next state. 

The next state is the PM load state. Before we dive into the operation of this state 

there are 2 PM registers in each decoder PM_data and PM_data_bar these 2 registers 

should be equal during the operation until we reach stage 0 then PM_data_bar is 

penalized as it selects the path opposite to the decoded path based on the LLR of stage 

0. During the copying stage, we load PM_data and PM_data_bar with PM_in signal 

copied from another decoder. However, we need to load both PM_data and 

PM_data_bar with the same PM value if no copying occurred so that we can continue 

decoding for the same path with both PMs equal. After finishing PM_load state we 

return to the normal operation state until we finish decoding the N bits. 

After completing the decoding process, we have 4 paths with 4 different PMs we 

need to choose the path with the least PM so that we can extract the payload from this 

path to perform the CRC on this payload. 

The last state in the operation of SCL is to perform CRC on the extracted payload 

from the path with the least PM to detect if there is any error in the decoded payload. 
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8.4 Port mapping. 

 

 

Figure 8.4 Controller FSM port mapping 

 

Table 8.1 Controller FSM port mapping 

port direction width parameter 

clk input 1 N/A 

rst input 1 N/A 

start input 1 N/A 

estimate_flag input 1 N/A 

frozen_flag_FSM input 1 N/A 

copy_flag_FSM input 1 N/A 

copy_finished_dec1_FSM input 1 N/A 

copy_finished_dec2_FSM input 1 N/A 

copy_finished_dec3_FSM input 1 N/A 

copy_finished_dec4_FSM input 1 N/A 

EOS_FSM input 1 N/A 
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copying_dec1_FSM input 1 N/A 

copying_dec2_FSM input 1 N/A 

copying_dec3_FSM input 1 N/A 

copying_dec4_FSM input 1 N/A 

copy_from_or_to_dec1_fsm input 1 N/A 

copy_from_or_to_dec2_fsm input 1 N/A 

copy_from_or_to_dec3_fsm input 1 N/A 

copy_from_or_to_dec4_fsm input 1 N/A 

CRC_Done_FSM input 1 N/A 

ps_done_FSM input 1 N/A 

dec_bit_index_FSM input 8 log2(𝑁) − 1 

valid_flags_FSM input 8 N/A 

path_num_FSM input 2 N/A 

PM_load_FSM_dec1 output 1 N/A 

PM_load_FSM_dec2 output 1 N/A 

PM_load_FSM_dec3 output 1 N/A 

PM_load_FSM_dec4 output 1 N/A 

PM_bar_load_FSM_dec1 output 1 N/A 

PM_bar_load_FSM_dec2 output 1 N/A 

PM_bar_load_FSM_dec3 output 1 N/A 

PM_bar_load_FSM_dec4 output 1 N/A 

enable_DU_FSM output 1 N/A 

enable_PSN_FSM output 1 N/A 

enable_dec1_FSM output 1 N/A 

enable_dec2_FSM output 1 N/A 

enable_dec3_FSM output 1 N/A 

enable_dec4_FSM output 1 N/A 

enable_CL_FSM output 1 N/A 

enable_MS_FSM output 1 N/A 

enable_CRC_FSM output 1 N/A 

enable_PSEL_FSM output 1 N/A 

path_sel_FSM_dec1 output 1 N/A 

path_sel_FSM_dec2 output 1 N/A 

path_sel_FSM_dec3 output 1 N/A 

path_sel_FSM_dec4 output 1 N/A 

mem_mux_sel_dec1_FSM output 2 N/A 

mem_mux_sel_dec2_FSM output 2 N/A 

mem_mux_sel_dec3_FSM output 2 N/A 

mem_mux_sel_dec4_FSM output 2 N/A 

est_mux_sel_dec1_FSM output 1 N/A 

est_mux_sel_dec2_FSM output 1 N/A 

est_mux_sel_dec3_FSM output 1 N/A 
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est_mux_sel_dec4_FSM output 1 N/A 

survival_counter_dec_bits output 9 N/A 

enable_write_survival_memory output 1 N/A 

soft_rst output 1 N/A 

busy output 1 N/A 

 

8.5 Metric Sorter Sub-Module. 

8.5.1 Module description 

Metric sorter is one of the major blocks in the list decoder which is responsible 

for arranging the path metrics ascendingly to choose the least 4 path metrics as the 

survival paths, there are a lot of sorting algorithms used in literature. We used the 

bubble sorting algorithm due to its low area which matched our target to reduce the 

area. Moreover, the latency of the bubble sorting algorithm is lower than both pruned 

bitonic and the proposed sorter in [16]. However, it has higher latency than radix-2L 

sorter for L=4. 

The bubble sorting algorithm is one of the simplest and hardware efficient 

algorithms, it consists of comparators to compare between the adjacent PMs which are 

stored in memory then if the PM stored in the next index in the memory is greater than 

the current index swapping will occur till we scan the memory for  2𝐿 − 1  times then 

the bubble sorting algorithm is completed. 

The metric sorter is activated in the metric sorting state during the list decoding 

process, the sorting starts when the enable signal is received from the FSM and when 

the sorting is completed it produces an EOS pulse.  

To determine which 4 paths will continue the decoding process and signal them 

to the SC decoder a comparison is made inside the metric sorter between the 2𝐿 input 

path metrics and the 𝐿 output path metrics then produce an 2𝐿 bit valid flags vector to 

index which paths will continue the decoding process. The valid flags register has only 

𝐿 ones at a time. 

 

 

Figure 8.5 - Comparison between sorting algorithms [16] 
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8.5.2 Port mapping. 

 

Figure 8.6 - metric sorter port mapping 

 

Table 8.2 metric sorter port mapping 

Port  Width direction Parameter 

clk 1 input N/A 

rst 1 input N/A 

enable_met_sort 1 input N/A 

PM1 10 input WIDTH_OF_PM 

PM2 10 input WIDTH_OF_PM 

PM3 10 input WIDTH_OF_PM 

PM4 10 input WIDTH_OF_PM 

PM5 10 input WIDTH_OF_PM 

PM6 10 input WIDTH_OF_PM 

PM7 10 input WIDTH_OF_PM 

PM8 10 input WIDTH_OF_PM 

PM_ORDERD1 10 output  WIDTH_OF_PM 

PM_ORDERD2 10 output WIDTH_OF_PM 

PM_ORDERD3 10 output WIDTH_OF_PM 

PM_ORDERD4 10 output WIDTH_OF_PM 

EOS 1 output N/A 

valid_flags 8 output L_MUL_2 
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8.6 Copying Logic Sub-Module. 

8.6.1 Module description. 

This module is responsible for determining when it is required to copy a path 

from one decoder to another decoder this is done based on the valid flags that are 

produced from the metric sorter. This vector contains 2 bits for each decoder when a 

bit is equal to one this imply that this is a survival path, if there are 2 ones for a decoder 

then copying is required from this decoder to another idle decoder. On the other hand, 

if the decoder has 2 zeros, copying is required to this decoder. If no decoder has 2 

survival paths there will be no need for copying. 

Another function for the copying logic module is to configure the decoder whether it 

will copy its survival path including all the internal memories, the previously decoded 

bits and the partial sums to another decoder or from another decoder. 

The copying between the 2 decoders will continue until a flag is asserted from the 

decoders that are involved in the copying process. This flag is named copying_finished 

based on a counter implemented in a newly modified control unit. 

 

 

Figure 8.7 - Copying logic operation 
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8.6.2 Port mapping 

 

Figure 8.8 - Copying logic port mapping. 

 

Table 8.3 Copying logic port mapping. 

Port  Width direction Parameter 

enable_CL 1 input N/A 

index_vect 8 input L_MUL_2 

copying_finished_dec1_CL 1 input N/A 

copying_finished_dec2_CL 1 input N/A 

copying_finished_dec3_CL 1 input N/A 

copying_finished_dec4_CL 1 input N/A 

copying_dec1 1 output N/A 

copying_dec2 1 output N/A 

copying_dec3 1 output N/A 

copying_dec4 1 output N/A 

copy_flag 1 output N/A 
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8.7 Path Selection Sub Module. 

8.7.1 Module Description. 

As previously explained in the FSM operation we need to select the path with the least 

path metric so we can extract the pay load and perform CRC check, this path_sel 

module is responsible for selecting the survival path from the decoding process. 

8.7.2 Port Mapping. 

 

Figure 8.9 - Path_sel port mapping 

 

Table 8.4 - Path_sel port mapping 

port width direction parameter 

PM_Data_dec1 10 input PM_WIDTH 

PM_Data_dec2 10 input PM_WIDTH 

PM_Data_dec3 10 input PM_WIDTH 

PM_Data_dec4 10 input PM_WIDTH 

PM_ORDERD 10 input PM_WIDTH 

clk 1 input N/A 

rst 1 input N/A 

enable_PSEL 1 input  N/A 

sel_done_ps 1 output N/A 

path_num 2 output N/A 
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8.8 Remove Frozen Sub-Module. 

8.8.1 Module Description. 

After decoding the N bits, it will be required to remove the frozen bits from the 

N decoded bits so that we get the 56 data bits for CRC checking and to be stored in the 

external memory. Hence, this module was developed for that purpose, to remove the 

frozen bits and output the 56 data bits. 

8.8.2 Port Mapping. 

 

Figure 8.10 - Remove frozen port mapping 

 

Table 8.5 - Remove frozen port mapping 

Port  Width Direction Parameter 

clk 1 input N/A 

rst 1 input N/A 

enable_remove_frozen 1 input N/A 

decoded_bit 1 input N/A 

survival_counter_dec_bits_top 9 input N/A 

MEM_CRC 56 output N/A 

 

8.9 CRC Check Sub-Module. 

8.9.1 Module Description. 

The payload can be affected by the channel which may lead to decoding errors. 

Hence, we need a checker to take a decision on the received payload whether it is 

received correctly or not. This checker is the CRC check which divides the received 

payload by a certain number, if the reminder is equal to zero, then the received payload 

has a high probability to be correctly decoded. If the reminder is not equal to zero, then 

the received payload is corrupted. 



112 

 

The CRC check is a part of the SCL decoding operation which runs after the 

operation is done, then it can be considered the last decoding step. This module output 

two signals to the top controller of the PBCH chain. The first is the CRC done signal 

which indicates finishing of its operation, the second is the CRC pass to indicate 

whether the received payload is corrupted or not. 

8.9.2 Port Mapping. 

 

Figure 8.11 - CRC check port mapping 

 

Table 8.6 - CRC check port mapping 

Port  Width direction Parameter 

data_bits 56 Input  N/A 

enable_CRC 1 Input N/A 

CRC_pass 1 Output  N/A 

Done_CRC 1 Output  N/A 

 

8.10 PM Sorter Sub-Module. 

8.10.1 Module Description. 

This module is in charge of watching over the calculated PMs of the L SC 

decoders in all decoding stages. Knowing that an extra bit is added to each PM to detect 

the overflow that may happen, if any one of the least 4 PMs exceeds the maximum 

number that can be represented in 8 bits, the PM sorter asserts a flag indicating overflow 

and quantization and normalization are required.  

Unlike the metric sorter, the PM sorter does not require an enable signal to 

perform its function, it has to be functioning all the time to detect any overflow. It was 

developed to allow area optimization by asserting the overflow flag which is considered 

an enable signal to the PM quantizer. 
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8.10.2 Port Mapping. 

 

Figure 8.12 - PM sorter port mapping 

 

Table 8.7 - PM sorter port mapping 

Port  Width Direction Parameter 

PM1 10 input WIDTH_OF_PM 

PM2 10 input WIDTH_OF_PM 

PM3 10 input WIDTH_OF_PM 

PM4 10 input WIDTH_OF_PM 

PM5 10 input WIDTH_OF_PM 

PM6 10 input WIDTH_OF_PM 

PM7 10 input WIDTH_OF_PM 

PM8 10 input WIDTH_OF_PM 

ov_flag 1 output N/A 

 

8.11 PM Quantizer Sub-Module. 

8.11.1 Module Description. 

When the PM sorter detects an overflow in the least 4 PMs, it asserts a flag. 

This flag is an input to the PM quantizer acting as its enable. This module subtracts 128 

from the PM magnitude and then compares it with the maximum number that can be 

represented in 8 bits, if it exceeds that number, saturation is done so that the new PM 

will be equal to 255.  This saturation allows area optimization as the PM registers are 9 

bits, one sign bit and 8 bits for the magnitude instead of 12 bits in the previous fixed 

point. 
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8.11.2 Port Mapping. 

 

Figure 8.13 - PM quantizer port mapping 

 

Table 8.8 - PM quantizer port mapping 

Port  Width Direction Parameter 

word_in 9 bits Input N/A 

ov_pm_ext 1 Input  N/A 

word_out 9 bits Output  N/A 

 

8.12 Modified SC Control Unit Sub-Module. 

8.12.1 Module Description. 

Some modifications were added to the SC control unit to match the new SCL 

architecture. Some of those modifications were for the copying between the L decoders. 

When copying is required, each control unit of the 2 decoders involved in the copying 

has to generate addresses for the internal memories of its decoder in addition to the read 

or write enable of each memory depending on the copying state whether it is copying 

from or copying to that decoder.  

Some of those modifications were introduced due to the existence of a new 

control unit for the SCL which controls the decoding flow. The FSM informs the control 

units of each of the L decoders when to enable its decision unit, it also informs them 

when to enable their PSN. 
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8.12.2 Port Mapping. 

 

Table 8.9 - Modified CU New ports 

Port name Direction Width Parameter 

enable 1 Input  N/A 

done_cu 1 Input  N/A 

soft_rst 1 Input  N/A 

coping 1 Input  N/A 

copy_from_or_to 1 Input  N/A 

path_sel 1 Input  N/A 

enable_DU_FSM 1 Input  N/A 

enable_PSN_SCL 1  Input   N/A 

copying_finished 1  Output    N/A 

 

8.13 Modified Decision Unit Sub-Module. 

8.13.1 Module Description. 

During the SCL architecture design, some modifications had to be made to the 

SC decision unit. The first and the most important modification is that the decision unit 

Figure 8.14 - Modified control unit port mapping 
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became in charge of the PM calculations. Each decoder contains two registers for PMs 

which corresponds to the two paths of that decoder. The first register is the PM data 

register which corresponds to the path of the estimated bit while the other is the PM 

data bar which corresponds to the path of the estimated bit bar. The estimated bit is 

decided according to the input LLR sign while the estimated bit bar is its opposite. 

While decoding a frozen bit which is a zero bit, if the estimate is equal to one, 

magnitude of the LLR will be added to both PM data and PM data bar, if it is estimated 

correctly, their values will stay the same. During estimation of a non-frozen bit, the PM 

data register remains unchanged while the PM data bar register is penalized as it 

chooses a wrong path, it is updated by adding the LLR magnitude to its previous value. 

The second modification was done in the estimated bit path. Two multiplexers 

were added to that path, the first to choose between the estimated bit and estimated bit 

bar depending on the valid flags vector which comes out from the metric sorter to 

inform that decoder which of its two paths will survive so that the chosen bit is stored 

in the estimated bits memory. The second multiplexer is used during copying where we 

choose between the estimated bit bar of the 𝐿 − 1 decoders, the selection line of that 

multiplexer is derived from the FSM depending on the valid flags vector. 

8.13.2 Port Mapping. 

 

Figure 8.15 - DU New port mapping 
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Table 8.10 - DU New Ports 

Port name Direction Width Parameter 

PM_Data_in input 10 PM_WIDTH 

copy_from_or_to_DU input 1 N/A 

copying_DU input 1 N/A 

estimate_mux_sel input 1 N/A 

mem_mux_sel_DU input 2 N/A 

est_bit_in_dec2 input 1 N/A 

est_bit_in_dec3 input 1 N/A 

est_bit_in_dec4 input 1 N/A 

load_PM input 1 N/A 

load_PM_barov_pm_ext input 1 N/A 

soft_rst input 1 N/A 

estimated_bit_bar output 1 N/A 

frozen_flag output 1 N/A 

valid_data_flag output 1 N/A 

end_of_frozen output 1 N/A 

done_DU output 1 N/A 

PM_Data_bar output 10 PM_WIDTH 

PM_Data output 10 PM_WIDTH 

 

8.14 SCL Block Level Verification 

To completely verify the functionality of the SCL decoder we need to verify that the 

branched paths match the MATLAB model, and the PMs completely match those in 

the model. In addition to, checking the payload and the CRC check. Therefore, we 

tested the list decoder with 1000 test cases over all the SNR range.  All the test cases 

are successful as shown in Fig 8.16 and Fig. 8.17. 

Figure 8.16 - SCL Functional verification 
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Figure 8.17 SCL Modelsim waveform 

Chapter 9: PHY integration 

In this chapter, we will discuss the PHY integration, and the blocks used to 

facilitate its integration with the bus matrix from one side, and the integration of the 

subsystems from the other side. We will also introduce the algorithm used to find the 

correct iSSB and report the MIB payload to the processor. 

 

Figure 9.1 - PHY block diagram 

9.1 Integrate the DL chain 

9.1.1 Register Interface (RIF) 

It acts as an AHB interface for the PHY by translating the incoming AHB signals 

into signals understood by the PHY. It also fills the memories needed by the post-FFT 

subsystem to operate correctly and provides the top controller with the control signals 

needed to start or end operations, Fig. 9.1. 
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The RIF consists of 2 parts: 

- AHB interface: responsible of transferring the AHB bus protocol to simple register 

read write protocol and making sure that the data and address signals arrive at the 

same time to the PHY. 

- Register file: It contains the address map section assigned to PHY based on which 

the input AHB data is written in a certain register. It also reads some flags from 

the PHY and transfers them to the processor when requested. 

The PHY address map, presented in table (9-1), is translated such that whenever the 

RIF receives an address, it translates it into a chip select (enable) signal to a certain 

part/register of the RIF. All the registers in RIF have 32 bits width.  

 

 

Table 9.1: PHY Memory map 

Reg# Register Name Start Address End Address Description 

 

1 
 

RIF_SW_FLAGS_REG 0x4001_1000 - 

Contains the 3 

Flags reported 

to SW and the 

correct iSSB 

index 

Read by AHB, 

written by 

PHY 

2 RIF_PARAM_REG 0x4001_1004 - 

Contains the 

RIF 

Parameters 

Read by PHY, 

written by 

AHB 

3 RIF_CONTROL_REG 0x4001_1008 - 

Contains the 

control signals 

required by 

the top 

controller 

Read by PHY, 

written by 

AHB 

4 MIB_Payload 0x4001_100C - 

Written by 

PHY, Read by 

AHB 
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5 RIF_MMSE_MSB_REG1 0x4001_1010 0x4001_3710 

MMSE 

Coefficient 1 

The 32 MSB 

are sent to 

address 

having third 

LSB = 0 

Read by PHY, 

written by 

AHB 

6 RIF_MMSE_MSB_REG2 0x4001_3718 0x4001_5E18 

MMSE 

Coefficient 

reg 2 (MSB) 

The 32 MSB 

are sent to 

addr. having 

third LSB = 0 

Read by PHY, 

written by 

AHB 

7 INT_CLR_REG 0x4001_5E1C - 

Clear interrupt 

Reg 

The LSB 

contain the 

clear bit 

Written by 

PHY, Read by 

AHB 

Each of these registers contains information important to the PHY operation, where: 

1. The “RIF_SW_FLAGS_REG” register contains the SW flags reported by the 

controller so that the processor can know which subsystem has completed its 

operation, whether it must issue some control signals, and to read the decoded MIB 

when the decoding process is complete. This register consists of the following flags, 

table (9-2): 

- Trial done: a single blind decoding trial is done. This signal is needed in SW 

mode where the processor is responsible of the blind decoding process not 

the HW controller. 

- All done: all the subsystems have completed their operation. When this flag 

is issued and the CRC check fails, it means that the decoding chain has fails 

to decode the MIB correctly. 
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- CRC Result: indicates whether the CRC check passes or fails. 

- FFT done: the FFT subsystem has completed its operation and the processor 

can start the blind decoding process in SW mode. 

- iSSB success: the correct iSSB value reported to the processor after 

successfully decoding the MIB payload. 

Since all the registers are of 32 bits width, the remaining bits are zero padded. 

Table 9.2: RIF_SW_FLAGS_REG content 

RIF_SW_FLAGS_REG 

0's 

(26 

bits) 

iSSB_success 

(2bit) 

FFT_done 

(1 bit) CRC_result 

(1bit) 

ALL_done 

(1bit) 

Trial_done 

(1bit) 

2. The “RIF_PARAM_REG” register contains the needed parameters for the PHY 

subsystems to operate properly. These parameters can be updated after each full 

MIB decoding operation, and they are, table (9-3): 

- Scale: a value used to change the decoder subsystem’s input gain in certain 

cases. 

- N half-frame and cell ID: needed by the post-FFT subsystem to  

- Timestamp: used by the FFT subsystem 

-  iSSB: sent by the processor during SW mode only and is updated every blind 

decoding trial until the correct MIB is found or it equals 3 and the decoding 

fails. 

- Blind decoding mode: It sets the operating mode of the blind decoding 

process, when asserted the SW mode is activated. 

Table 9.3: RIF_PARAM_REG content 

3. The “RIF_CONTROL_REG” register contains the control signals needed by the 

controller to start operation, and these signals are, table (9-4): 

- Rx Start: Start operation signal sent to controller in both SW and HW modes. 

When asserted the FFT subsystem starts operating. 

- Rx Stop: Stop read new data signal sent to Rx Frame memory feeding the 

FFT subsystem in both SW and HW modes. It is enabled after the FFT 

subsystem finishes operation. 

- Trial Start: indicates the start of a new blind decode operation in SW mode 

only, when asserted the new iSSB value (from RIF) is used. 

Table 9.4 RIF_CONTROL_REG content 

RIF_CONTROL_REG 
0's (29 

bits) 

Trial_start_RIF 

(1bit) 

Rx_Stop_RIF 

(1bit) 

Rx_Start_RIF 

(1bit) 

These signals are transformed into pulses by the controller. 

RIF_PARAM_REG 
Scale (3 

bits) 

N_HF  

(1 

bit) 

TimeStamp  

(15 bits) 

NCellID 

 (10 

bits) 

iSSB  

(2 

bits) 

Blind_dec_mode  

(1 bit) 
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4. The “MIB PAYLOAD” register contains the decoded 32 bits of the MIB and is read 

by the processor upon successful decoding operation. 

5. The “RIF_MMSE_MSB_REG1” and “RIF_MMSE_MSB_REG2” hold the 32 

most significant bits of the MMSE coefficient memory used by the post-FFT 

subsystem. 

These memories consist of 1248 elements of 48 bits width; hence the processor 

sends the memory content using 2 transfers. The first data transfer contains the 32 

most significant bits of the data, and it must be followed by the 16 least significant 

bits using consecutive addresses. 

The 32 most significant bits are sent using addresses whose third least significant 

bit is equal to zero, then the remaining 16 bits are sent on the following address. 

For example, address 0x4001_1010 is used to write the most significant bits of the 

memory in an internal register in RIF. Then, the remaining 16 bits are sent on the 

following address 0x4001_1014 (address [2] = 1). 

If this sequence is not followed, the coefficient values won’t be written correctly. 

6. The least significant bit of the “INT_CLR_REG” is asserted by the processor to 

clear the interrupt signal sent by the PHY (interrupt is served).  

 

9.1.2 RX Frame Memory 

The RX Frame Memory is an interface block between the RX Half Frame 

Memory and the FFT subsystem. It’s functionality is to take a sample from the RX Half 

Frame Memory each 16 CLK cycle and store this sample and after 16 CLK cycle sends 

this sample to FFT with a valid pulse and take the next sample from RX Half Memory. 

The RX Frame Memory contains a FSM controller which controls the operation of the 

RX Frame Memory as shown in Fig. 9.2. 
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Figure 9.2 - RX Frame Memory FSM 

It starts its functionality after receiving a RX start pulse which move it from IDLE state 

to Read state where in it the RX Frame Memory starts read from the RX Half Frame 

Memory. When it receives a RX Stop pulse, it moves to IDLE state again and stop its 

functionality. The functionality of RX Frame Memory is shown in Fig. 9.3.  

 

 

9.1.2.1 Port Mapping 

Table 9.5: Half Frame Memory port mapping 

Port    Direction   Width    Description    

CLK   Input    1   Clock signal   

RST_n  Input   1   Reset signal   

RX_Start_pulse  Input   1   Start flag from controller to start operation 

RX_Start_pulse Input   1   Stop flag from controller to stop operation 

Data_IQ Input   24   Input sample from RX Half Frame Memory 

Data_real Output   12  Real part of the sample to FFT 

Data_real Output   12   Imaginary part of the sample to FFT 

address Output   16   Address to Half frame Memory 

Valid Output   1   Valid signal to FFT subsystem to start 

processing in the given input 

 

Figure 9.3 - RX Frame Memory Waveform 
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Figure 9.4 - RX Frame Memory block diagram 

9.2 The DL chain controller 

9.2.1 Module Overview 

The Top chain controller Module is responsible for controlling all the 

subsystems modules throughout its output control signals. The controller takes action 

according to its input status signals. 

The Top controller module is divided into two sub-modules controllers. A sub-

controller module to control the operation of the sub-modules and a hardware Blind 

Decoder controller which will be discussed later. The sub-controller module is 

responsible for generating an interrupt signal to cortex INT_PHY = 1 when it receives 

from FFT subsystem a TTI pulse equals to 1. The interrupt is cleared by the controller 

also when the cortex sends a INT_PHY_CLR signal equals to 1. The sub-controller 

module FSM is shown in Fig. 9.5. 

Initially, the sub-controller is at IDLE state where all its outputs equal to zero. The 

controller stays in the IDLE state until it reads that RX_Start signal in RIF equals to 

1. The controller goes to the next state which is FFT state, while transitioning the 

controller converts the RX_Start to a pulse signal and sends it into RX Frame 

Memory and FFT subsystem to start operation. 

At the FFT state, the controller waits the FFT subsystem to sends a symbol done pulse 

three times which means that the FFT finishes the processing on all the symbols of the 

SSB block. When it receives this signal three times, it moves to next state which is 

Wait_Trial_Trig. 

In Wait_Trial_Trig, the next state depends on decision signal from Hardware Blind 

Decoder Controller which will be discussed later. If the controller receives a Start_trial 

= 1 from BD controller means that CRC fails and iSSB index less than 3, so next state 

is Post-FFT and the controller here generates a start pulse to the post-FFT subsystem 

Start_trial_PFFT = 1 to start operation. If it receives Terminate = 1 means that CRC 

passes, so next state is IDLE or means that CRC fails and iSSB index more than 3, so 



125 

 

next state is IDLE, else it will remain in the same state until the controller receives a 

decision signal from HW-BD controller. 

 

In Post-FFT state, the controller next state is Polar Decoder state and the controller here 

generates a start pulse to the Decoder subsystem Start_trial_Dec = 1 to start operation 

when the controller receives Trial_done_PFFT = 1 from Post-FFT subsystem else it will 

remain in the same state.  

 

In Polar Decoder state, the controller next state Finish state when the controller receives 

Trial_done_dec = 1 from Post-FFT subsystem else it will remain in the same state.  

 

In Finish state, the controller wait a single CLK cycle until the CRC reaches the HW 

BD controller and return to Wait_Trial_Trig state and send Trial_done = 1 signal to 

alert the HW BD controller that the chain finishes a single trial. 

 

Figure 9.5 - Controller's FSM diagram 

9.2.2 Port Mapping 

Table 9.6: Top controller memory map 

Port Direction Width Description 

CLK Input 1 Clock signal 

RST_n Input 1 Reset signal 

RX_Start_RIF Input 1 Start flag from RIF to controller 

Trial_start_RIF Input 1 Flag from RIF to controller to start 

a new trial in case of SW BD 

where SW_Start_trial equals to 

posedge of this signal 

ISSB_RIF Input 2 iSSB index from RIF register 

Blind_Dec_mode Input 1 To choose type of Blind decoder 

0 : HW 

1: SW 
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CRC_result Input 1 CRC Flag from Polar Decoder 

block 

Symbol_done Input 2 Flag from FFT must be received 

three times to ensure that the FFT 

block finished processing on the 3 

symbols 

Trial_done_PFFT Input 1 Flag from the Post-FFT system 

Trial_done_Dec Input 1 Flag from the Post-FFT system 

ISSB_index Output 2 iSSB index value to Post FFT 

system whether it from BP(HW) or 

from RIF(SW) 

Start_trial_PFFT Output 1 Flag to Post FFT system to enable 

its operation 

Start_trial_Dec Output 1 Flag to Decoder system to enable 

its operation 

INT_PHY_CLR Input 1 Signal from cortex to clear 

interrupt signal 

FFT_done Output 1 To alert Cortex that FFT 

subsystem finishes through RIF 

Trial_done Output 1 To alert Cortex that a single trial 

finished through RIF 

INT_cleared Output 1 To clear the INT_PHY_CLR 

register value inside the RIF 

Start_Trial_Dec Output 1 Flag to Polar Decoder subsystem 

to enable its operation 

Start_Trial_PFFT Output 1 Flag to Post FFT subsystem to 

enable its operation 

INT_PHY Output 1 Interrupt signal to Cortex 

Terminate From BD 

to sub-

controller 

1 Flag to return controller to IDLE 

state due to failure or success 

Start_Trial From BD 

to sub-

controller 

1 Signal to indicate a start of new 

trial in the RX chain, it is output of 

2x1 MUX according to type of BD 

mode 
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Figure 9.6: Top controller block diagram 

9.3 The Blind Decoder procedure 

In 5G systems, decoding the Master Information Block (MIB) transmitted by the 

base station is a critical process that enables a reliable connection between the UE and 

the base station. However, due to various factors such as channel impairments, 

multipath fading, and interference, accurately decoding the MIB can be challenging, 

especially when the Initial Synchronization Signal Block (iSSB) index is unknown. 

The term "blind decoding" refers to the process of decoding the MIB without prior 

knowledge of the iSSB index, relying solely on the received signal. The blind decoding 

algorithm is typically implemented in the receiver of the mobile device. It operates by 

searching through a set of possible iSSB indices and evaluates the likelihood of each 

index based on the received signal characteristics.  

The algorithm explores different possibilities until the correct iSSB index is found. This 

process involves using known synchronization signals and exploiting statistical 

properties of the received signal, such as signal strength, timing, and correlation. 

In this section, we will explore the used blind decoding algorithm and its 

implementation as hardware or software.  

9.3.1 Blind Decoding Algorithm 

The blind decoding algorithm connects the PHY subsystems to find the correct 

iSSB and to decode the MIB payload, the decoding steps are shown in Algorithm 14 

[17]. The decoding algorithm acts like a controller and issues the enable signals 

required for each of the subsystems to operate, and this will be discussed in more detail 

in the following section. 
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The decoded payload is reported whenever the CRC is valid. 

Algorithm 14:  Blind decoding algorithm 

Inputs: Recovered SSB OFDM grid from SSB signal 

Inputs: PBCH and DMRS positions and samples  

1      Blind Decoding loop 

2       for iSSB ∈ [0, Lmax -1] then 

3             - Compute corresponding DMRS sequence  

4           - Perform channel estimation and equalization  

5          - Compute LLR values 

6           - Implement de-rate matching 

7  - Decode the input LLRs 

8  If CRC is valid then  

9             - Report the decoded MIB and the correct iSSB 

10           Break 

11               end 

           end 

 

9.3.2 HW implementation 

The Hardware Blind Decoder implementation is implemented as a FSM 

controller as shown in Figure (9-7) in the Top controller module. It is responsible for 

generating an iSSB index each time it receives from sub-controller Trial_done signal 

equals 1. It is also responsible for monitoring the CRC_result from Polar Decoder 

subsystem to decide this trial is a success one or a failure trial. 

The Hardware Blind Decoder is initially at an IDLE state, where all its outputs equal 

to zero. When the HW-BD controller receives a RX_start and Blind_Dec_mode = 0 

(HW), it moves to Wait_FFT state. 

At the Wait_FFT state, the HW-BD controller remains in this state until it receives 

from sub-controller that FFT-done = 1 and moves to Process_trial state 

At Process_Trial state, the HW-BD controller starts the ISSB index = 0 and moves to 

Check_Trial state if Trial_done = 1 from sub-controller. At this state the Start_Trial 

signal equals to 1. 

At Check_Trial state, the HW-BD controller checks the value of CRC_result and the 

ISSB index and the decides its next state. If CRC_result = 0 and iSSB index less than 

3, so next state is Process_trial. If CRC_result = 0 and ISSB_index more than 3, so 

next state is Fail. If CRC_result = 1, so next state is Success. 

At Fail state, the next state is IDLE and the HW-BD controller asserts the Terminate 

signals equals to 1. 

 

At Success state, the next state is IDLE and the HW-BD controller asserts the 

Terminate signals equals to 1. 
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Figure 9.7:Hardware Blind Decoder FSM 

 

9.3.3 SW implementation 

The Software implementation of Blind Decoder is discussed at chapter 2 at 

System Core section 2.2. 

Chapter 10: FPGA 

10.1 Synthesis. 

Before diving in the synthesis flow results, efficient RTL simulation was done to 

get the correct output which will be used as a reference through the FPGA flow results. 

Since, the post synthesis simulation (GLS) and post implementation are 

exhaustive, this comparison between the results was done on a few test cases. In this 

Chapter we will use only one test case for comparing between them.  
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Figure 10.1 - RTL simulation 

ZYNQ ULTRASCALE+ is our target FPGA, the clock frequency constraint is 

61.44 MHZ. 

As it can be seen in Figure 10.2, there was no setup time violation but there was hold 

time violations in some paths which will be fixed after implementation but the tool by 

adding buffers in the violating paths.  

As shown in Figure 10.3 and Figure 10.1, The post synthesis simulation matchs the 

RTL simulation which indicates a proper translation of the synthesizable RTL to a 

functioning gate level netlist. 

10.2 Implementation. 

Implementation is a step in which the gate level netlist is placed and routed on 

the FPGA fabric, any hold time violation can be fixed in this step as the timing between 

any 2 flipflops can be determined thus, the software knows how much delay is required 

to add buffers to fix the hold time violation.  

 

Figure 10.4 - Post implementation simulation. 

As shown in Figure 10.1 and Figure 10.5, the payload of the post implementation 

simulation match that of the RTL simulation which indicates the correctness of the 

implementation. 

Figure 10.2 - Synthesis timing analysis. 

Figure 10.3 - Post synthesis simulation 
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Figure 10.5 - Implementation timing analysis. 

As it can be seen in the previous figure, hold time violations are fixed with a slack of 

0.013 ns compared to the synthesis result in Figure 10.2. 

10.3 Design Wrapper. 

To prepare the design for bit stream generation we need to identify the ports of 

the design and synchronize them with the pins of the FPGA board, so we need a reset 

synchronizer and a bit synchronizer for the start pulse of the decoder. 

The clock source of the ULTRASCALE+ board produces a differential clock of 

frequency 125 MHZ so we used the clock wizard IP to produce a single ended clock 

with frequency 61.44 MHZ. 

We also used the memory generator block as the interface memories to the SCL 

decoder and they were loaded with the same test case used before to verify the 

functionality of the wrapper. 

The ILA block is used for hardware debugging after we program the FPGA with the 

generated bit stream to be able to analyze the outputs. 
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Figure 10.6 - Design block 

 

Figure 10.7 - FPGA utilization 

Chapter 11: Conclusion 

As a conclusion, our polar decoder hardware implementation was verified 

against the MATLAB model and meets all the hardware constraints (Clock frequency 

and target FPGA resources) with optimal area without severely affecting the latency. 

Our decoder was implemented on ZYNQ ULTRASCALE+ and succeeded in decoding 

a few test cases. 

The downlink chain was integrated as slave on the APB with many IPs such as 

the UART IP, Timer IP and the WDT IP. The APB was connected to the AHB through 

a bridge. It receives its commands from the Cortex-M0 through the RIF. The PBCH 

decoding processor succeeded in decoding the MIB payload at the proper iSSB index 

and it saves the results in internal registers inside the RIF.  
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Chapter 12: Future Work 

  The decoder was tested through block level verification using some test benches 

and generated test cases from the MATLAB model. Hence as a future work it can tested 

using UVM test benches which will be more effective. 

Another task to be done is to synthesize the integrated downlink chain and 

implement it on FPGA. In addition, it can be also tested using UVM test benches. 
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