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Abstract  
 

The 5th Generation Wireless Technology known as New Radio or NR is being developed by 3GPP 

(3rd Generation Partnership Project) which aims to address scenarios from 

Mobile Broadband to highly reliable communication with very low latency. 

The ability to operate in higher frequency bands, achieve uplink and downlink high data speeds in 

Gbps, and use advanced antenna systems such Massive MI-MO are some of the key advancements 

in 5G. The physical layer and other higher layers are also a part of the 5G NR radio air interface. 

The technical specifications for NR published by the 3GPP with a focus on the physical layer offer 

ways to state-of-the-art realization and implementation of physical channels for both uplink and 

downlink. Synchronization signal (SS) and physical broadcast channel (PBCH) make up SS/PBCH 

block (SSB) in NR. To establish a connection between the UE and the eNB, cell search and 

identification are carried out using SSB. 

The report aims at a detailed description on PBCH design, transmission, and reception subject to 

a time varying wireless channel. The project has two phases which are the MATLAB modeling for 

PBCH DL Transmitter and Receiver, Digital hardware design implementation for PBCH DL 

receiver. 

PBCH transmitter is designed based on the technical specifications by 3GPP for 5G NR. For 

receiver channel estimate, PBCH data is generated and loaded with the Demodulation reference 

signal (DMRS). Since 5G NR uses OFDM for both uplink and downlink transmissions, the 

combined data thus produced is mapped on sub-carriers and transformed to time domain frames 

using the Inverse Fourier transform (IFFT). The time frames generated are convoluted with a time 

varying channel. The environment's noise and attenuation are represented by AWGN noise. FFT 

is used to convert the distorted and attenuated signal at the receiver to frequency domain. Channel 

estimation is performed using DMRS. The channel equalization equalizes the time varying channel 

effect on the symbols. Finally, the PBCH receiver's performance at specific SNR values is 

analyzed. 
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Chapter 1: Introduction 

1.1  Motivation 

5G New Radio (NR) is the latest global wireless network protocol developed by the Third 

Generation Partnership Project (3GPP) that provides faster and better mobile services compared to 

previous generations. 5G is capable of connecting billions of devices that share information in real time 

while providing stable and reliable connectivity. It introduces a huge shift in applications that require 

secure and reliable real time connectivity, such as the internet of things (IoT), virtual reality (VR), and 

many more.  

To support the evolution from 4G to 5G and the different functionalities offered by the 5G network, 

the 3GPP defined a large set of protocols for transmitting user data and control information across all 

network layers.  

In the physical (PHY) layer (Layer 1), the 3GPP defines a new signaling block, the Master 

Information Block (MIB). It contains the critical system parameters needed for radio resource 

management, channel quality reports, and higher layers’ information. This block is broadcast on the 

physical broadcast channel (PBCH), where the PBCH resources are mapped with synchronization signals 

in a special segment of the resource grid called Synchronization Signal Block (SSB).  

The SSB consists of three signals: Primary synchronization signal (PSS), Secondary 

synchronization signal (SSS) and Physical broadcast channel (PBCH). PSS and SSS are responsible for 

time domain synchronization while the PBCH payload contains the MIB. Hence, one of the PHY layer's 

main procedures is the downlink cell’s synchronization which consists of time synchronization and MIB 

decoding.  

MIB enables the synchronization of the user equipment (UE) with the network, it’s used to convey 

the UE and network entities' parameters and capabilities, such as the carrier frequency, bandwidth, 

modulation, coding rate, and access control parameters of 5G NR. The UE must detect the MIB during 

the initial cell attach procedure. Hence, it plays a key role in the 5G network connection, is said to be the 

highest-priority data block in the 5G network, and is defined as the first information element in a message.  

Multiple SSBs are periodically transmitted through the channel in a single Synchronization Signal 

(SS) burst. Each SSB within the burst contains the same MIB payload and is transmitted with a unique 

index, the SSB index, which corresponds to a specific beam. The goal of our processor is to successfully 

identify the SSB index and decode the MIB.  

In this thesis, we are focusing on one building block within the NR modem and treating it for 

simplicity as an independent processor. This processor represents the full decoding chain of the MIB 

payload found in the PBCH and consists of three main subsystems: FFT subsystem, post-FFT subsystem 

and decoder Subsystem. 
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1.2   Organization of the Thesis  

In this thesis our main focus is the modeling and the hardware implementation of the FFT and the 

PBCH processing Chain.   

The rest of this thesis is organized as follows. Chapter 2 details the full system on chip specs and 

components starting from the used core, the Advanced High-performance Bus (AHB) address map and 

down to the used Advances Peripheral Bus (APB) slaves.  

Chapter 3 provides the modeling of both FFT and PBCH processing chain to achieve the required 

system performance. 

Chapter 4 introduces the FFT Subsystem. It illustrates the selection of the suitable architecture 

and optimization of it. Then shows hardware implementation of the FFT. 

Chapter 5 discusses the implemented hardware architecture of the PBCH processing chain and 

how the testing process was implemented using the MATLAB reference model. 

Chapter 6 introduces the integration of the PHY and the blind decoding process and how the 

processor operates to successfully decode the MIB payload.  

 

1.3  Introduction to NR system 

For any wireless access technology, the radio waveform plays a vital role in aspects of bandwidth 

and complexity for implementation. 5G NR has the requirements of wide bandwidth, very low complexity, 

and support for multiple antenna systems (MIMO). Therefore, 3GPP has adopted Orthogonal Frequency 

Division Multiplexing (OFDM) with a cyclic prefix for UL as well as DL. 

There are two frequency ranges supported by NR: 

• FR-1: called as sub-6 GHz band ranging from 450MHz to 6GHz 

• FR-2: called as millimeter wave ranging from 24GHz to 52GHz 
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Figure 1: Frame Structure for 5G NR 

OFDM numerology is scalable in NR to support a wide spectrum and diverse scenarios. The sub-

carrier spacing is flexible and can be scaled from 15 kHz as in LTE to 2µ * 15 kHz. The FR ranges 

determine the size of the cell. Lower frequencies result in larger cells for FR1, hence sub-carrier spacings 

of 15 kHz and 30 kHz are appropriate. For data and SSB channels at higher frequencies in FR2, the 

spacings employed are 60, 120, and 240 kHz. The cell size can be smaller, and delay spreads can be shorter 

too. As a result, the available spacing is adequate. 

 

A frame in NR has a duration of 10 ms, as shown in Fig. 1. It consists of 10 sub-frames, each of 1 ms 

duration. This structure is common to both LTE and NR. Each sub-frame has slots based on the 

numerology, as shown in the above table. 

Slots/subframe = 2µ  

Each slot has 14 OFDM symbols, forming a typical small unit of transmission for NR to schedule. So, 

every frame consists of:  
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Symbols/frame = 2µ ∗ 14 ∗ 10 

For example, if µ=2, then we have 

• 1 Frame = 10 sub-frames. 

• 1 sub-frame = 2µ slots = 2 slots.  

• 1 slot = 14 OFDM symbols. 

Therefore, 1 frame = 2*10*14 = 280 OFDM symbols. Very low latency and minimum interference with 

other signals are achieved with such a short slot transmission. These slots are in the time domain but the 

data on sub-carriers is mapped in the frequency domain called as Resource Blocks (RBs). 

Resource blocks comprises of 12 consecutive sub-carriers piled up in the frequency domain as shown in 

the resource grid section in Fig. 1. 

SS/PBCH block assists UE in performing initial cell search, by which UE acquires time and frequency 

synchronization with a cell and detects the physical layer cell ID of that cell. Each SSB includes Primary 

Synchronization Signal (PSS), Secondary Synchronization Signal (SSS) and PBCH data. PSS and SSS 

shall jointly convey the physical layer cell ID. The Master Information Block (MIB) is broadcast over the 

Physical Broadcast Channel (PBCH). DMRS support to decode MIB is provided, as shown in Fig. 2. 

The number of SSBs (L) broadcasted within a half frame by gNB depends on the carrier frequency (fc). 

There are multiple periodicities supported for SS bursts by NR viz. 5, 10, 20, 40, 80 and 160 ms.  

If        fc < 3 GHz: L=4 

If   3 GHz < fc < 6 GHz: L=8  

Else if         fc  > 6 GHz: L=64 

SSB burst enables transmission of each such block in different beams, which are received by UE 

and used to manage beams of other channels following. UE scans all the SSBs in a burst to get the SSB 

index. The measurement from all the blocks received helps to decide the best beam for UE to receive other 

channels, as shown in Fig. 3. In NR, unlike LTE, SSBs are flexibly placed, i.e., the position can be 

configured based on the numerology selected. A default burst period is 20 ms, but UE assumes the period 

to be 5 ms if the burst set is not available. After successful detection of SSB, UE is equipped with a cell 

ID and synchronized in time and frequency with gNB [7]. 
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Figure 2: SSB Scheduling and Mapping 

 

Figure 3: Beam Sweeping for various SSBs 

A frame in NR is divided into two half frames of 5 ms duration each, HF0 and HF1. UE undergoing 

the cell search assumes a periodicity of 20 ms. The SS/PBCH block is spread over 4 OFDM symbols in 

the HF0 of the NR frame. Each of the synchronization signals, PSS and SS occupy 127 sub-carriers of the 

1st and 3rd OFDM symbols of the SSB, respectively. PBCH occupies a total of 432 sub-carriers, and 

DMRS for PBCH is mapped in 144 sub-carriers over the 2nd, 3rd, and 4th OFDM symbols, as shown in 

Fig. 2.  
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240 sub-carriers are allocated to each OFDM symbol. Hence, the 2nd OFDM symbol in SSB is 

PBCH+DMRS, and the 3rd OFDM symbol in SSB is PBCH+SSS+DMRS. Here the SSS is the central 

part with 127 sub-carriers, and there are 48 sub-carriers of PBCH on either side of the SSS. There are 

some unused carriers in-between for guard, which are filled as nulls. For a half frame, the number of SSBs 

and index for the 1st OFDM symbol of the block are determined by the numerology assumed for the 

transmission.  

The first symbol index of each possible SSB in the half frame is determined as shown in the following 

table and Fig. 4. 

 

 

Figure 4: Half Frame Structure 
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Chapter 2: System on Chip (SoC) Integration  

2.1 Introduction 

In this chapter, we will discuss the full system components, starting from the core (Cortex-M0) to 

the APB slaves. The Core is connected to multiple AHB slaves through an AHB Bus matrix that uses a 

unique memory map. 

In our system, we had the following AHB slaves: Instruction and Data memories, General purpose input 

output (GPIO), the AHB to APB bridge and the PHY that contains the implementation of the MIB 

decoding chain that will be discussed in the upcoming chapters, figure (5).  

The AHB to APB bridge connects the Bus matrix to the following slaves: Timer, Watchdog and the UART. 

These slaves and their usage will be explained in the following sections.  

2.2  System Core (Cortex-M0) 

Could you imagine moving your limps without your brain? Of course not, so as a system, the system has 

many peripherals, but they want to talk with each other but how when each one has its own signals, 

standard and sequence? This is the processor mission. In this section, we talk about the kind of processor 

that we use to control our system which is cortex M0. 

This processor is one of the smallest arm processors available. It has an exceptionally small silicon area, 

low power, and low cost. It is a 32-bit RISC ARM processor core licensed by ARM limited. The ultra-low 

gate count of the processor enables its deployment in analog and mixed devices. The block diagram of 

Figure 5: Full System Block Diagram Figure 5: Full System Block Diagram 
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Cortex-M0 is shown in figure (6). We discuss each of the main blocks of this diagram in the following 

sub-sections. 

 

2.2.1 Wakeup Interrupt Controller 

The device might include a Wakeup Interrupt Controller (WIC), an optional peripheral that can detect an 

interrupt and wake the processor from deep sleep mode. The WIC is enabled only when the DEEPSLEEP 

bit in the SCR is set to 1. The WIC is not programmable and does not have any registers or user interface. 

It operates entirely from hardware signals. 

When the WIC is enabled and the processor enters deep sleep mode, the power management unit in the 

system can power down most of the Cortex-M0 processor. This has the side effect of stopping the SysTick 

timer. When the WIC receives an interrupt, it takes several clock cycles to wake up the processor and 

restore its state before it can process the interrupt. This means interrupt latency is increased in deep sleep 

mode. 

2.2.2 Nested Vector Interrupt Controller (NVIC) 

This section describes the NVIC and the registers it uses. The NVIC supports: 

- An implementation-defined number of interrupts, in the range 1-32. 

- A programmable priority level of 0-192 in steps of 64 for each interrupt. A higher level corresponds 

to a lower priority, so level 0 is the highest interrupt priority. 

- Level and pulse detection of interrupt signals. 

- Interrupt tail-chaining. 

- An external NMI. 

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, 

with no instruction overhead. This provides low latency exception handling. The hardware 

implementation of the NVIC registers is shown in table 1. 

 

Figure 6: Cortex-M0 Block Diagram 
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Table 1: NVIC Registers 

Address Name Type Reset value Description 

0xE000E100 ISER RW 0x00000000 Interrupt Set-enable Register 

0xE000E180 ICER RW 0x00000000 Interrupt Clear-enable Register 

0xE000E200 ISPR RW 0x00000000 Interrupt Set-pending Register 

0xE000E280 ICPR RW 0x00000000 Interrupt Clear-pending Register 

0xE000E400-

0xE000E41C 

IPR0-7 RW 0x00000000 Interrupt Priority Registers 

Interruput Set-enable Register 

The ISER enables interrupts and shows the interrupts that are enabled. The bit assignments are shown in 

table 2. 
Table 2: ISER Register 

Bits Name Function 

[31:0] SETENA Interrupt set-enabled bits. 

Write: 0 = no effect, 1 = enable interrupt. 

Read: 0 = interrupt disabled, 1 = interrupt enabled 

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is 

not enabled, asserting its interrupt signal changes the interrupt state to pending, but the NVIC never 

activates the interrupt, regardless of its priority. 

Interrupt Set-pending Register 

The ISPR forces interrupts into the pending state and shows the interrupts that are pending. The bit 

assignments are shown in table 3. 

Table 3: ISPR Register. 

Bits Name Function 

[31:0] SETPEND Interrupt set-pending bits. 

Write: 0 = no effect, 1 = changes interrupt state to pending. 

Read: 0 = interrupt is not pending, 1 = interrupt is pending 

Writing 1 to the ISPR bit corresponding to: 

- An interrupt that is pending has no effect. 

- A disabled interrupt sets the state of that interrupt to pending. 

Interrupt Clear-pending Register 

The ICPR removes the pending state from interrupts and shows the interrupts that are pending. The bit 

assignments are shown in table 4. 

Table 4: ICPR Register 

Bits Name Function 

[31:0] CLRPEND Interrupt clear-pending bits. 

Write: 0 = no effect, 1 = removes pending state interrupt. 

Read: 0 = interrupt is not pending, 1 = interrupt is pending 

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt. 

https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-set-enable-register?lang=en
https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-clear-enable-register?lang=en
https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-set-pending-register?lang=en
https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-clear-pending-register?lang=en
https://developer.arm.com/documentation/dui0497/a/cortex-m0-peripherals/nested-vectored-interrupt-controller/interrupt-priority-registers?lang=en
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Interrupt Priority Register  

The interrupt priority registers provide an 8-bit priority field for each interrupt, and each register holds 

four priority fields is shown in table 5. This means the number of registers is implementation-defined and 

corresponds to the number of implemented interrupts. These registers are only word accessible. 

Table 5: IPR Registers 

Bits Name Function 

[31:24] Priority, byte offset 

3 

Each priority field holds a priority value, 0-192. The 

lower the value, the greater the priority of the 

corresponding interrupt. The processor implements only 

bits [7:6] of each field, bits [5:0] read as zero and ignore 

writes. This means writing 255 to a priority register 

saves value 192 to the register. 

[23:16] Priority, byte offset 

2 

[15:8] Priority, byte offset 

1 

[7:0] Priority, byte offset 

0 

The following steps show how to find the IPR number and byte offset for an interrupt M: 

- The corresponding IPR number, N, is given by N = N DIV 4. 

- The byte offset of the required Priority field in this register is M MOD 4, where: 

o byte offset 0 refers to register bits [7:0]. 

o byte offset 1 refers to register bits [15:8]. 

o byte offset 2 refers to register bits [23:16]. 

o byte offset 3 refers to register bits [31:24]. 

2.2.3 Debug Access Port (DAP) 

The processor has a low gate count Debug Access Port (DAP). This provides a Serial Wire or JTAG debug-

port and connects to the processor slave port to provide full system-level debug access. The DAP enables 

communication between the core and the device pins during debug.  

The Debug Access Port enables the following: 

- Halting, resuming, and single stepping of program execution. 

- Access to processor core registers and special registers. 

- On-the-fly memory access. 

- Data watchpoints. 

- HW/SW breakpoints. 

- PC sampling for basic profiling. 

2.2.4 Vector Table 

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception 

vectors, for all exception handlers. Table 6 shows the order of the exception vectors in the vector table. 

The least-significant bit of each vector must be 1, indicating that the exception handler is written in Thumb 

mode. The vector table is fixed at address 0x00000000. 
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Table 6: vector Table 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exception number IRQ number Vector Offset 

16 + n n IRQn  
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18 2 IRQ2  

0x48 

17 1 IRQ1  

0x44 

16 0 IRQ0  

0x40 

15 -1 SysTick, if implemented  

0x3C 

14 -2 PendSV  

0x38 

13 

12 

  

Reserved 

 

 

 

11 -5 SVCall  

0x2C 

10 

9 

8 

7 

6 

5 

4 

  

 

 

Reserved 

 

 

 

 

 

 

 

 

 

 

0x10 

3 -13 HardFault  

0x0C 

2 -14 NMI  

0x08 

1  Reset  

0x04 

  Initial SP value  

0x00 
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2.2.5 PHY Application on Cortex-M0 

The algorithm the cortex working with is as follows: 

- First, the cortex is reset. Then the PC is loaded with address 0x00000000 

- The processor reads the value from 0x00000000 location to MSP. 

- Then the processor reads the address of the reset handler from location 0x00000004 

- Then it jumps to reset handler and start executing the instructions 

- The main application (as illustrated in table 7) is included in the reset handler. 

- The interrupt TTI_INT is enabled using the NVIC_EnableIRQ() function. So that when it arrives, it 

is served by the processor then it returns to the main application again. 

The flow chart in figure (7), implements the firmware of the PHY which decodes the MIB and checks its 

correctness then transmits the MIB and its succeeded ISSB through UART IP to a monitor to print them. 

Table 7: PHY Program Steps 

1  Fill MMSE coefficient memories. 

2  Transmit PHY subsystems parameters 

3  - Assert Rx_Start_RIF signal. (Start FFT subsystem operation) 

- De-assert Rx_Stop_RIF signal. 

4 

 If FFT_done is asserted: 

- De-assert Rx_Start_RIF signal. 

- Assert Rx_Stop_RIF signal.  

SW 
Assert the trial_start_rif signal so that the blind decoding starts 

(Start Post-FFT subsystem operation).  

HW De-assert trial_start_rif.  

5 
SW 

If trial_done is asserted: 

- De-assert trial_start_rif. 

- check CRC_result value. 

HW If All_done is asserted, check CRC_result value. 

6  

If CRC_result equals 1: 

The correct iSSB was found and the MIB was decoded 

successfully.  

Report the correct iSSB and MIB payload to the processor, then 

go to step 2. 

7 

 If CRC_result equals 0 

SW 
iSSB < 3 

Transmit new iSSB value.  

Assert trial_start_rif 

Go to step 5 

iSSB = 3 Failed to decode MIB. Go to step 2 

HW Go to step 2 



13 

 

 

 

Figure 7: Flow Chart of PHY Program 
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2.2.6 Results 

The PHY application is implemented in C language. We have loaded the code in the instruction memory, 

sent the required parameters to the PHY and started simulating the system on ModelSim, and we have 

tested output then compared it with the data from the reference model (which is implemented on 

MATLAB). In the chosen test case, the iSSB is 1. So, we have the following results: 

- When the iSSB is 0, the iteration fails as shown in figure (9). 

- When the iSSB is 1, the iteration is passed as shown in figure (8), since this is the value of iSSB the 

processor sent. 

Hint: All inputs of the cortex must take a value (you must not leave an input floating). For the outputs, 

connect what you need and leave the rest floating. 

 

2.3  AHB Bus Matrix and Slaves  

The AHB bus is a widely used bus protocol in the ARM cortex-M architecture. It connects the various 

components with the system-on-chip (SoC) design, enabling data transfer while maintaining ease of use. 

Each slave is set a certain address range in the cortex memory map. 

The memory map for the system was set according to the specified ranges outlined in the Cortex design 

manual. We generated the bus matrix using XML file where we specified the address range for each slave 

as indicated in table (8). 

Table 8: Memory Map set for cortex-M0. 

Slave number Slave Name Start address End address  Size  

0 Instruction Memory 0x0000_0000 0x000F_FFFF 1 M 

 Reserved 0x0010_0000 0x1FFF_FFFF 511 M 

1 Data Memory 0x2000_0000 0x200F_FFFF 1 M 

 Reserved 0x2010_0000 0x3FFF_FFFF 511 M 

2 Bridge  UART 0x4000_0000 0x4000_0FFF 4 K 

Figure 9: Failed iteration when ISSB is zero 

Figure 8: The passed iteration when ISSB is 1 
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Watchdog 0x4000_1000 0x4000_1FFF 4 K 

Timer 0x4000_2000 0x4000_2FFF 4 K 

 Reserved 0x4000_3000 0x4000_FFFF 52 K 

3 GPIO 0x4001_0000 0x4001_0FFF 4 K 

4 PHY 0x4001_1000 0x4001_5FFF 20 K 

Whenever the processor needs to access a certain AHB slave, it writes its specified address from the 

memory map. 

A section of the block diagram of the bus matrix is presented in figure (10), where the input and output 

signals are shown, and the description of the main signals is shown in table (9). 

Table 9: Signal Description of some of the important AHB signals 

Signal Description 

HCLK System clock, Logic is triggered on the rising edge of the clock. 

HRESETn Activate LOW asynchronous reset. 

HADDR Address from AHB 

HSEL When enabled means a specific slave is selected 

HSIZE Indicate the size of transfer either word or half word or Byte 

HWRITE When enabled indicates a write transfer otherwise a read transfer occurs 

HWDATA/ 

HRDATA 
Data transferred from/to bus matrix 

HTRANS Indicates transfer type (IDLE, BUSY, NONSEQ, SEQ) 

 

 

Figure 10: Part of the AHB Bus matrix block diagram 
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2.3.1 Instruction and Data Memories  

The memories are connected to the AHB Bus matrix through a special interface AHB to SRAM interface. 

This interface translates the incoming AHB signals into signals understood by the SRAM module, figure 

(11). 

• Instruction Memory: contains the instruction needed for the system to function. 

• Data Memory: contains the data needed for each subsystem in the PHY to operate correctly.   

2.3.2 GPIO 

GPIO is an essential component in any SoC integration. It is a general purpose I/O interface unit of 16 

bits with some properties such as programmable interrupts and alternate functions. 

 

  

 

 

 

 

 

Interrupt generation feature can be programmed through three registers which are interrupt enable, 

interrupt polarity and interrupt type, each register has separate set and clear addresses. Each bit of the I/O 

pins can be configured through these three registers. Interrupt polarity can be set to high or low while 

interrupt type can be set to level or edge triggered. When an interrupt is triggered, its corresponding bit in 

Figure 11: Memories Block diagram showing the interface with the bus matrix 

Figure 12: GPIO interface 



17 

 

INSTATUS register and GPIOINT are asserted. To de-assert these two bits and clear the interrupts, one 

has to be written inside INTCLEAR register. During interrupt generation, three cycle latency is introduced, 

two or input synchronization and another cycle for registering the interrupt status. 

Each pin in the GPIO can be used as an I/O pin or an alternate function such as timer or UART or any 

other supported feature, this is done throughout a multiplexing network for each bit as shown in Figure 

(13). This alternate function feature is enabled by default for all GPIO pins and can be disabled by writing 

one inside the alternative function clear register. 

 

 

 

 

 

 

 

Masked access is another feature which allows reading from or writing to individual bits or multiple bits, 

this avoids read-modify-write operations which are not thread safe. 

The GPIO slave was synthesized for FPGA and it was found that its frequency upper limit is 602 MHZ. 

2.3.3 PHY  

It contains the main part of our project, which is the physical (PHY) layer implementation. It consists of 

the following blocks, figure (14): 

- 3 main building Subsystems: FFT subsystem, post-FFT subsystem and the decoder subsystem. 

- Controller: it implements the blind decoding algorithm (discussed in chapter 5). 

- Register interface: an interface to the AHB bus matrix that connects the PHY to the rest of the system 

(discussed in chapter 5). 

- Memories. 

We will go into further details into the implementation of the PHY in the following chapters.  

Figure 13: GPIO Alt. function 
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Figure 14: PHY Block Diagram 

2.4 APB Subsystem  

The Advanced High-performance Bus (AHB) to Advanced Peripheral Bus (APB) bridge is used in system-

on-chip (SoC) designs to connect the AHB bus, which is typically a high-performance bus, to the APB 

bus, which is typically a lower-performance bus. Here are a few reasons why an AHB to APB bridge is 

used: 

- Bus Compatibility: In a complex SoC design, different modules or peripherals may have different bus 

interfaces. The AHB bus is commonly used as the main interconnect for high-performance 

components such as GPIO and SRAMs, while the APB bus is used for lower-performance peripherals 

such as Timers and watchdogs. By using an AHB to APB bridge, it allows these different bus interfaces 

to communicate with each other seamlessly. 

- Performance Optimization: The AHB bus is designed to provide high-performance data transfers 

between different modules or peripherals within the SoC. On the other hand, the APB bus operates at 

a lower clock frequency and is more suited for connecting slower peripherals that don't require high 

bandwidth. The AHB to APB bridge allows for the efficient transfer of data between the high-

performance AHB bus and the lower-performance APB bus, optimizing the overall system 

performance. 

- Performance Optimization: The AHB bus is designed to provide high-performance data transfers 

between different modules or peripherals within the SoC. On the other hand, the APB bus operates at 

a lower clock frequency and is more suited for connecting slower peripherals that don't require high 

bandwidth. The AHB to APB bridge allows for the efficient transfer of data between the high-

performance AHB bus and the lower-performance APB bus, optimizing the overall system 

performance. 
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- Power Management: The AHB bus consumes more power compared to the APB bus due to its higher 

clock frequency and increased bandwidth. By using an AHB to APB bridge, it is possible to selectively 

enable or disable specific peripherals or modules connected to the APB bus, thus providing power 

management capabilities. This allows the system to conserve power by only activating the necessary 

peripherals when needed. 

- System Integration: SoCs often consist of multiple IP (intellectual property) blocks or subsystems that 

may have different bus protocols. The AHB to APB bridge acts as a protocol converter, enabling 

seamless integration of these IP blocks into the overall SoC design. It provides a standardized interface 

for communication between different subsystems, regardless of their individual bus protocols. 

Overall, the AHB to APB bridge plays a crucial role in enabling communication, optimizing performance, 

facilitating power management, and integrating different subsystems within a system-on-chip design. The 

block diagram of the APB bridge is presented in figure (15) where table explains some of the important 

output signals.  

 
Figure 15: AHB to APB bridge block diagram 

Table 10: Some of the important signals coming from the APB Bridge 

Signal Description 

PCLK System clock, Logic is triggered on the rising edge of the clock. 

PRESETn Activate LOW asynchronous reset. 

PADDR LSB of AHB address [15:0] 

PSEL When enabled means a specific slave is selected 

PWRITE When enabled indicates a write transfer otherwise a read transfer occurs 

PWDATA/ PRDATA Data transferred from/to bridge 

 

2.5  APB Slaves 

2.5.1 Timer  

The APB timer is a 32 bit down-counter which generates an interrupt request signal, TIMERINT, when 

the counter reaches 0. The interrupt request is held until it is cleared by writing to the INTCLEAR Register.  

If the APB timer count reaches 0, and at the same time, the software clears a previous interrupt status, then 

the interrupt status is set to 1. 
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The timer peripheral contains a separate clock pin PCLKG for the APB register read or write logic that 

permits the clock to peripheral register logic to stop when there is no APB activity. You can turn-off the 

gated peripheral bus clock for register access PCLKG when there is no APB access which has same 

frequency and synchronous PCLK. 

The timer can use external input signal EXTIN as a timer enable through zero to one transition of this 

signal. 

Access Timer Peripheral 

1. To enable the timer peripheral interrupt, you should access the timer CTRL register through the 

following steps: 

- Set PADDR to address of CTRL register = 0x000. 

- Set PDATA = 32'd9 to set timer interrupt enable and global enable of module. 

- Set PSEL = 1 and PWRITE = 1. 

2. To reload the counter of the timer with a given value you should access the timer RELOAD register 

through the following steps: 

- Set PADDR to address of RELOAD register = 0x008. 

- Set PDATA to the number you want. 

- Set PSEL = 1 and PWRITE = 1. 

3. To clear the timer interrupt you should access the timer INTCLEAR register and set this register 

through the following steps: 

- Set PADDR to address of INTCLEAR register = 0x00c. 

- Set PDATA = 1 

- Set PSEL = 1 and PWRITE = 1. 

 

2.5.2 Watchdog timer  

The Watchdog module peripheral is a 32-bit down counter that is initialized from the Reload Register. The 

counter decrements by one on each positive clock edge of WDOGCLK when the clock enables 

WDOGCLKEN is HIGH. When the counter reaches zero an interrupt is generated. On the next enabled 

WDOGCLK clock edge the counter is reloaded from the reload Register and the countdown sequence 

continues. If the interrupt is not cleared by the time that the counter next reaches zero, then the Watchdog 

Figure 16: APB Timer 
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module asserts the reset signal WDOGRES, and the counter is stopped. This signal causes the system to 

be rested. 

WDOGCLK can be equal to or be a sub-multiple of the PCLK frequency. However, the positive edges 

of WDOGCLK and PCLK must be synchronous and balanced. 

The Watchdog module interrupt and reset generation can be enabled or disabled through the Control 

Register WdogControl. When the interrupt generation is disabled then the counter is stopped. When the 

interrupt is re-enabled then the counter starts from the value programmed in WdogLoad and not from the 

last count value. 

The Watchdog counter only decrements on a rising edge of WDOGCLK when WDOGCLKEN is HIGH. 

The relationship between WDOGCLK and PCLK must observe the following constraints: 

- The rising edges of WDOGCLK must be synchronous and balanced with a rising edge of PCLK. 

- The WDOGCLK frequency cannot be greater than the PCLK Frequency. 

Access Timer Peripheral 

1. Enable ABP to access WDT registers by unlocking its registers through accessing Lock WDT register. 

Writing a value of 0x1ACCE551 to the register enables write accesses to all the other registers. Writing 

any other value disables the write accesses to all registers except the Lock Register. To access this 

register  

- Set PADDR to address of WDOGLOCK register = 0xC00. 

- Set PDATA = 0x1ACCE551. 

- Set PSEL = 1 and PWRITE = 1. 

2. Enable INTEN and RESEN bits in WDOGCONTROL control register to enable WDOGINT and 

WDOGRES signals through the following procedures: 

- Set PADDR to address of WDOGCONTROL register = 0x008. 

- Set PDATA = 32’d2. 

- Set PSEL = 1 and PWRITE = 1. 

3. To Load Watchdog with a value you should access the timer WDOGLOAD register and set this 

register with the value you want to load through the following steps: 

- Set PADDR to address of WDOGLOAD register = 0x000. 

- Set PDATA to the number you want. 

- Set PSEL = 1 and PWRITE = 1. 

Figure 17: ABP Watchdog 
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4. To clear interrupt in Watchdog peripheral, you should access WDOGINTCLR register and write in it 

any number through the following steps: 

- Set PADDR to address of WDOGINTCLR register = 0x00C. 

- Set PDATA to the number you want. 

- Set PSEL = 1 and PWRITE = 1. 

 

2.5.3 APB UART. 

The design of the APB UART supports 8 bits communications without parity, and it supports a one bit 

start and one bit stop of the transmitting and receiving, which means that the total width of the character 

frame is 10 bits. 

The design has a baud divider buffer to make the baud rate configurable to make the design suitable for 

most simple embedded applications, we can calculate the baud rate using the baud divider value which 

stored in the baud divider register according to the following equation.  

𝐵𝑎𝑢𝑑𝑅𝑎𝑡𝑒 =
𝐶𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

𝐵𝑎𝑢𝑑 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 𝑣𝑎𝑙𝑢𝑒  
 (2.1) 

The baud divider value represents approximately the number of cycles at which one bit can be transmitted 

or received.  

The baud rate is used to calculate the number of clock cycles at which one character can be transmitted or 

received, we can calculate the number of the clock cycles at which a character can be transmitted or 

received according to the following equation. 

𝑛𝑢𝑚 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 =
𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 × 𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑟𝑎𝑚𝑒

𝐵𝑎𝑢𝑑𝑅𝑎𝑡𝑒
 (2.2) 

The UART at the transmitting mode stores the data comes from the APB interface in a buffer called write 

buffer, then the write buffer passes the data to the transmitter shift register to convert the parallel bus of 

data to a serial stream of data to be transmitted and asserts the TX interrupt flag. As shown in Figure 19. 

A New character can be stored to the write buffer while the shift register is sending out a character, and 

when the write buffer is full the TX overrun interrupt flag is asserted. 

The UART at the receiving mode the UART asserts the RX interrupt flag, then passes the serial stream of 

the received data through a bit synchronizer to synchronize the received data with the clock of the system, 

Figure 18: Watchdog timer flow diagram 
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then the synchronizer passes it to the receiver shift register to convert the serial stream of data to a parallel 

bus of data, then the receiver shift register stores the received parallel data in a buffer called read buffer, 

then the data is forwarded to the APB interface. As shown in Figure 19 

The shift register can receive the next character while the data in the read buffer is waiting for the APB 

interface to read it, and when the read buffer is full the RX overrun interrupt flag is asserted. 

We have two configuration registers the control register which called CTRL and the baud divider register 

which called the BAUDDIV these registers can be configured by the processor according to the running 

application. 

The APB UART supports a high-speed test mode, which is useful for simulation during SoC or ASIC 

development. When CTRL [6] is set to 1, the serial data is transmitted at one bit per clock cycle. This 

enables you to send text messages in a much shorter simulation time. If required, you can remove this 

feature for silicon products to reduce the gate count. You can do this by removing bit 6 of the control 

register CTRL. 

After doing synthesis to the design, we found that the maximum operating clock frequency of the system 

is 246 MHZ, and the signals PCLK and PCLKG must be equal as shown in the following figure.  

  

Figure 19: APB UART 

Figure 20: UART Block 
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Chapter 3: The Uncoded Model for PBCH Signal Processing 

3.1. Transmitter Model for PBCH Signal Processing 

The PBCH and DMRS signal Generation and Mapping at NR DL Transmitter is shown in Fig. 21. 

 

Figure 21: PBCH Processing and Mapping at NR DL Transmitter 

 

3.1.1 Rate Matching  

The encoded 512-bit code word (512-bit code word is the maximum word length supported by the 

NR polar encoder) is the input to the rate matching block. Rate matching is applied to the code word to 

obtain the number of bits that would fill the PBCH's available resource elements after the QPSK mapping. 

The rate matching consists of a subblock interleaver, bit selection, and a coded bits interleaver. The sub-

block interleaver is a conventional block interleaver with 32-bit depth. For PBCH processing, the bit 

selection implements circular bit repetition so that the 512-bit code word is extended to 864 bits. The 

coded-bits interleaver is also a block interleaver, but it is a kind of square interleaver whose depth is a 

function of the number of bits to be interleaved. 

For sub-block interleaving, the bit sequence from channel coder output d0, d1, d2,…,dN-1 

(N=512) is divided into 32 sub-blocks as follows: 

For n = 0 to N-1  

                         𝑖   = ⌊32𝑛/𝑁𝑐⌋                                                          (3.1.1)  

                  J(𝑛)  =  𝑃(𝑖)𝑥(𝑁/32) +  𝑚𝑜𝑑(𝑛, 𝑁/32)               (3.1.2) 

                            𝑦𝑛   =  𝑑𝐽(𝑛)                                                            (3.1.3) 

Where the sub-block inter-leaver pattern P(i) is given in the following table. 
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For bit-selection, the bit sequence y0, y1, ......yN-1 is loaded in a circular buffer of length N. If E is the 

rate to be matched (E=864), then the rate matching sequence e1, e2, e3, ......, eE-1 is obtained as follows: 

if E >= N —— repetition of bits by padding 

    for k = 0 to E - 1 

    ek = ymod(k,N) 

    end for 

else 

    if K/E <= 7/16 —— puncturing if the rate is lower than channel coding output 

        for k = 0 to E -1 

        ek = yk+N-E 

        end for 

    else —— shortening 

        for k = 0 to E - 1 

        ek = yk 

        end for 

    end if 

end if 

Finally the sequence e1, e2, e3, ......, eE-1  is interleaved into bit sequence f1, f2, f3, ......, fE-1  to get 

the final rate matched bits of PBCH. 

 

3.1.2 Scrambler 

Before modulating the final payload bit sequence f1, f2, f3, ......, fE-1, it is scrambled according to,  

                                           𝑓𝑖′  =  (𝑓𝑖 +  𝑐(𝑖 +  𝑣𝑀𝑝𝑛))𝑚𝑜𝑑2                                          (3.1.4)  

Where c(i) is computed as follows: 

𝑖 =  0, 1, 2, 3. . . . . 𝑀𝑝𝑛,       𝑀𝑝𝑛 =  864 

                                          𝑐(𝑖) =  (𝑥1(𝑖 +  𝑁𝑐) +  𝑥2(𝑖 +  𝑁𝑐))𝑚𝑜𝑑2                             (3.1.5) 

                                        𝑥1(𝑖 +  31)  =  (𝑥1(𝑖 +  3)  +  𝑥1(𝑖))𝑚𝑜𝑑2                               (3.1.6)  

   𝑥2(𝑖 +  31)  =  (𝑥2(𝑖 +  3)  +  𝑥2(𝑖 +  2)  +  𝑥2(𝑖 +  1)  +  𝑥2(𝑖))𝑚𝑜𝑑2                     (3.1.7 ) 

Where 𝑁𝑐 =  1600 ,  

𝑥1(0)  =  1, 𝑥1(𝑖)  =  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑖,  

𝑐𝑖𝑛𝑖𝑡 =  ∑ 𝑥2(𝑖). 2𝑖𝑖=31
𝑖=0  , 

And is initialized with 𝑐𝑖𝑛𝑖𝑡 =  𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 at the start of each SSB.  

Where: 

- For L=4, v is the last 2 LSBs of the SSB index.  

- For L=8 or 64, v is the 3 LSBs of the SSB index. 
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3.1.3 QPSK Mapping 

The scrambled bit sequence f’
1, f

’
2, f

’
3, ......, f

’
E-1 is modulated by QPSK scheme into a block of 

complex-valued QPSK symbols carrying PBCH data, dPBCH(0), dPBCH(1), dPBCH(2)….., dPBCH(𝑀𝑠𝑦𝑚𝑏𝑜𝑙 -

1).  Here 𝑀𝑠𝑦𝑚𝑏𝑜𝑙 = 864/2 = 432. 

 

3.1.4 DMRS Signal Generation 

The demodulation reference signal (DMRS) is used to decode the PBCH signal at the receiver by 

helping in estimating the channel and noise values. DMRS symbols are QPSK modulated and generated 

from a PN sequence generator, as discussed in section 3.1.2, with 𝐶-𝑖𝑛𝑖𝑡. initialized as follows: 

        𝐶𝑖𝑛𝑖𝑡  =  211(𝑖𝑆𝑆𝐵)( ⌊𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 /4 ⌋   +  1)  +  26 (𝑖𝑆𝑆𝐵 +  1)  + (𝑁𝐼𝐷

𝑐𝑒𝑙𝑙 𝑚𝑜𝑑4)                (3.1.8)  

                                              𝑓𝑖′  =  (𝑓𝑖 +  𝑐(𝑖 +  𝑣𝑀𝑝𝑛))𝑚𝑜𝑑2                                       (3.1.9)  

Where c(i) is computed as follows: 

𝑖 =  0, 1, 2, 3. . . . . 𝑀𝑝𝑛,       𝑀𝑝𝑛  =  144 

                                            𝑐(𝑖) =  (𝑥1(𝑖 +  𝑁𝑐) +  𝑥2(𝑖 +  𝑁𝑐))𝑚𝑜𝑑2                         (3.1.10) 

                                        𝑥1(𝑖 +  31)  =  (𝑥1(𝑖 +  3)  +  𝑥1(𝑖))𝑚𝑜𝑑2                            (3.1.11)  

                 𝑥2(𝑖 +  31)  =  (𝑥2(𝑖 +  3)  +  𝑥2(𝑖 +  2)  +  𝑥2(𝑖 +  1)  +  𝑥2(𝑖))𝑚𝑜𝑑2    (3.1.12) 

Where 𝑁𝑐  =  1600 ,  

𝑥1(0)  =  1, 𝑥1(𝑖)  =  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑖,  

𝐶𝑖𝑛𝑖𝑡  =  ∑ 𝑥2(𝑖). 2𝑖𝑖=31
𝑖=0   

Where:  

- For L=4,     𝑖𝑆𝑆𝐵  =  𝑖𝑆𝑆𝐵 +  4𝑁ℎ𝑓    

- For L=8 or 64 , 𝑖𝑆𝑆𝐵 = 𝑖𝑆𝑆𝐵  

and 𝑁ℎ𝑓  is the half-frame number in which the PBCH is present. 

 

3.1.5 SSB Resource Element Mapping 

These 432 QPSK-modulated symbols, along with 144 DMRS symbols, are mapped to the 576 sub-

carriers, which are the resource elements on the available bandwidth part for PBCH transmission.  

An SS/PBCH block is composed of 4 OFDM symbols in the time domain, numbered from 0 to 3, 

in which PSS, SSS, and PBCH, along with the DMRS symbols, are mapped on the resource elements, 

viz. sub-carriers. An SSB consists of 240 contiguous sub-carriers numbered from 0 to 239, as shown 

in Fig. 22. We have 432 symbols of PBCH and 144 symbols of DMRS to be mapped in the available 

bandwidth part for SSB. The resource mapping per OFDM symbol is given in the following table, 
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where k and i are frequency and time index, respectively.

 

Figure 22: Resources within SSB 

Location shift of DMRS by 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 value,  

The position of DMRS in SSB shifts vertically according to the value of 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 as shown below: 



28 

 

 

Figure 23: Shift in DMRS due to 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙  

 

The UE assumes the sequence of symbols dPSS(0), dPSS(1),..., dPSS(126) constituting the PSS and 

dSSS(0), dSSS(1),..., dSSS(126) constituting the SSS are mapped to resources (k, l) in increasing order of 

k, where k and l are frequency and time indices, respectively.  

The UE assumes the sequence of complex-valued symbols dPBCH(0), dPBCH(1),..., and 

dPBCH(431) carrying the PBCH data are mapped to resources (k, l), excluding the positions for DMRS 

mentioned in the table in Fig. 22. Similarly, the symbols for DMRS are mapped to the given resource 

locations. 

 

3.1.6 Frame generation and IFFT 

The L number of SS/PBCH blocks thus obtained are allocated in a grid of subcarriers for every OFDM 

symbol. Here the total sub-carrier per OFDM symbol is 240, so the L number of 240x4 grid blocks of 

SS/PBCH data is mapped in frames with 240 sub-carriers per OFDM symbol. Then zero padding is applied 

to make the total number of subcarriers per OFDM symbol = 256. Inverse Fast Fourier Transform (256 

IFFT) is applied to each symbol in the frame to convert them to the time domain. After that, the cyclic 

prefix is added to each symbol, and the CP can be 18 or 20 samples. The CP is 18, and for every 7 OFDM 

symbols, the CP is 20. For example, at SCS of 15 kHz, we have 10 subframes in the frame, and each 

subframe consists of 14 OFDM symbols. We then have 140 OFDM symbols in the frame, so 120 OFDM 

symbols have a CP of 18 and 20 OFDM symbols have a CP of 20. To determine the sampling rate in this 

case, 
(256+18)∗120+(256+20)∗20

𝑡𝑖𝑚𝑒 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒(10𝑚𝑠𝑒)
= 3.84 𝑀𝐻𝑧. 
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Figure 24: Frame Generation using OFDM 

3.1.7 Transmission of the Frame 

The PBCH baseband equivalent system model for the air interface includes transmitted signal x(t), 

wireless channel h(t-t0), AWGN and received PBCH signal y(t) depicted as follows:  

 

Figure 25: PBCH communication model in Baseband 
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The PBCH signal is the NR frame generated in the time domain, as shown above in Fig.25. Now 

the signal experiences attenuation, time delays, and phase delays in multiple paths, along with some 

random environmental noise added to it, before reaching the receiver antenna. The signal that simulates 

the complete attenuation and delay in multipath is the wireless time varying channel h(t-t0). The random 

environmental noise is characterized as Additive White Gaussian Noise. The wireless channel gets 

convoluted with the PBCH signal, and AWGN being additive is added to obtain the signal at receiver as 

y(t). y(t) is a delay and attenuated version of x(t) affected in both time and frequency. 

 

3.2. Receiver Model for PBCH Signal Processing 

The PBCH DL Receiver Process Flow is shown in Fig 26. 

 

Figure 26: PBCH Receiver Process Flow 

3.2.1 Time and Frequency Synchronization 

We assume perfect time and frequency synchronization. which means that the OFDM symbols 

indices of the SSB, fc, µ and 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 are known to the receiver. 

 

3.2.2 Extracting SSB  

As we assume that we know fc and µ, so we also know the index of each symbol in the SSB. We 

can extract the four OFDM symbols of the SSB from the frame. If suppose, µ =0 and fc = 2Ghz, case A is 

satisfied and the first index for SS/PBCH block is ”2”. This index marks the third OFDM symbol in the 

frame, as described in section 1.3. Fig 4.  
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3.2.3 CP Removal and FFT 

Now we have the four symbols of the SSB, and we will remove the CP to ensure that each OFDM 

symbol consists of 256 subcarriers. Then a 256-point FFT is applied to each symbol of the SSB. 

 

CP Removal 

In OFDM systems, ISI occurs at the receiver due to the delay spread of the multipath channel. ISI stands 

for inter-symbol interference. In order to avoid ISI, a guard interval is inserted between two OFDM 

symbols. This guard interval is referred to as the cyclic prefix (CP). This is kept greater than the delay 

spread of the channel to avoid ISI. 

OFDM systems require the orthogonality of carriers for correct demodulation at the receiver. When 

multipath channels are involved, the Orthogonality of carriers is lost, which can be restored by a cyclic 

prefix. 

Cyclic prefix refers to the prefixing of a symbol with a repetition of the end. It is used to eliminate ISI by 

maintaining an integer number of cycles in the symbol duration. The receiver is typically configured to 

discard the cyclic prefix samples. 

At the transmitter, cyclic prefix samples are copied from the end of the symbol to the beginning of the 

symbol. At the receiver, these samples are discarded from the symbol before going through the FFT 

subsystem. Cyclic prefix removal is implemented through a packet timer block that will be discussed in 

detail in the hardware design chapter. 

The following figures show the addition and removal of cyclic prefixes to maintain an integer number of 

cycles in the symbol duration. 

 

 

 

 

Figure 27: symbol after adding cyclic prefix 
Figure 28: symbol without cyclic prefix 
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FFT modelling  

 Floating point model: 

In 5G NR, the SSB (Synchronization signal 

block) is spread over 240 subcarriers, as shown 

in the figure. 

However, in FFT, the selected number of input 

samples, or the block length BL, is always an 

integer power to the base 2. 

Hence, a 256-point FFT (block length of 256) 

was chosen, and the extra subcarriers can be 

zero-padded [7]. 

 

 

 

 

 

Radix 4 Butterfly takes four inputs, one from each quarter input of samples per group, as shown in the 

figure. For example, for the first butterfly operation in stage 1, the four inputs of the butterfly are samples 

x [1], x [65], x [129], and x [193]. After each butterfly operation, the outputs of the butterfly are multiplied 

by the twiddle factor exponentials. These twiddle factor exponentials follow different sequences in each 

stage, for example, in stage 1, the first output of each butterfly is multiplied by a twiddle factor of a power 

of zero. Second outputs are multiplied by the twiddle factors of power n, where n ranges from 0 to 63. 

Third outputs are multiplied by twiddle factors of power 2n, where n ranges from 0 to 63. Fourth outputs 

are multiplied by twiddle factors of power 3n, where n ranges from 0 to 63. 

 

Figure 29: SSB block in NR 
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In the Matlab model, the radix-4 butterfly equations were modeled using the following matrix: 

[

𝑋(0)
𝑋(1)
𝑋(2)
𝑋(3)

]= [

1 1 1 1
1 −𝑗 −1 𝑗
1 −1 1 −1
1 𝑗 −1 −𝑗

] . [

𝑥(0)
𝑥(1)
𝑥(2)
𝑥(3)

] 

 

 Where the four required input samples are multiplied by this matrix and then multiplied by twiddle factors 

depending on leg number and butterfly group. Outputs are then reordered to be ready for the next stage of 

the FFT. 

Characteristics of the 256-point radix-4 FFT as butterfly groups per stage and twiddle factor exponentials 

sequence are shown in the next figure. 

 

 

Figure 30: radix 4 butterfly 

Figure 31: characteristics of radix-4 FFT 
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Input signal power adjustments 

As our input signal is an OFDM signal with a high PAPR, we modeled our complex input signal using the 

Randn() Matlab built-in function, which initially generates a random gaussian signal with power = 0 dB. 

We assumed PAPR = 15 dB, and we scaled down the input power to -15 dBs, assuming an input power of 

-15 dBs adjusted by AGC. allowing a PAPR of like 15 dBs (0 to -30), as shown in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The AGC block at analog RF is responsible for input gain adjustment. We multiplied the input signal by 

0.178 to scale the power to -15 dB to model the effect of AGC. 

We assumed our input bit width is 12 bits, and as the dynamic range of 1 bit is equal to 6 dB, our input 

dynamic range is equal to 12*6 = 72 dB, so we have approximately 2 bits to cover the high values of the 

spikes in the input signal. The following figure shows The PAPR of the input signal. 

To get the dynamic range of 1 bit:                                                                                                                          

Dynamic range = 20 log [
𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑎𝑚𝑝

𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑎𝑚𝑝
] = 20 log [

2𝑛−1

2−1 ] = 20 log 2𝑛 = 20*n* log(2)                                                         

Dynamic range = 6.02 * n 

Where n = the number of bits 

 

 

Figure 32: input signal PAPR 
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Fixed point model: 

After designing a floating point 256 point Radix-4 FFT model and checking it using Matlab’s FFT built-

in function, A fixed-point model is used to quantize the floating-point numbers. 

When designing a fixed-point model, there is a compromise between area and performance. The advantage 

of using a fixed-point number representation is that it reduces the growth of bits after each addition or 

multiplication operation to optimize hardware. However, excessive reduction deteriorates the performance 

as fewer bits are used to represent the value, leading to less accuracy, hence, our goal is to get a fixed point 

representation with the least possible number of bits and an acceptable performance. 

We measure performance using SQNR, which is the ratio between floating point signals and the error 

between floating point and quantized signal [10]. 

For acceptable performance, the error should not exceed the value of thermal noise that already exists in 

our system. Hence, SQNR should be more than 40 dB in the worst case. 

SQNR was calculated using the following formula: 

SQNR =    
𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡
𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟

     =  
∑ |𝑥𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔(𝑘)|

2
𝑘

∑ (|𝑥𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔(𝑘)−𝑥𝑓𝑖𝑥𝑒𝑑(𝑘)|)
2

𝑘

 

 

 

 

 

 

 

 A fixed point representation is shown in the figure, a sign bit to represent 2's complement format, bits for 

the integer part, and bits for the fractional part. A Matlab built-in function (Fi(input,word length,fractional 

part)) was used for the fixed point, which quantizes using round-up and saturation operations. 

Input bit width: 

We assumed a 12-bit 2's complement format IQ interface for the input signal, and as the input power is 

scaled down to -15 dB, all the input values are within the range of -1: 1. Hence, no integer part is needed 

to represent the input therefore, the input signal's fixed point representation is one bit for sign and 11 bits 

for the fractional part (S11). 

 

 

Sign Bit Integer Fraction 

Figure 33: fixed point representation 
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Twiddle factors bit width: 

For twiddle factor exponentials, according to trials, we found that 9 bits is sufficient to represent twiddle 

factors with acceptable performance. All the twiddle factors are within the range of -1 to 1. Therefore, no 

integer part is needed to represent the twiddle factors, then the twiddle factors fixed point representation 

is one bit for sign and eight bits for fractional part (S8). 

Output bit width selection: 

Now we want to determine the minimum output bit width that achieves acceptable performance. 

For our fixed point model to consider the worst case, we calculated the minimum SQNR of 100 trials and 

checked if it gave an acceptable performance as our input is a random signal that changes every trial, 

leading to a change in power. 

Input was also scaled down and checked through the range between -10 dB and -20 dB so that if any errors 

occurred in AGC and the value of gain changed, the system could still work with acceptable performance 

within this range. 

 

Table 11: Minimum SQNR of 100 trials for different input power and bit width 

Final Output number of bits  Input power SQNR 

13 -20 dB 44.0852 

 

13 -15 dB 44.5652 

12 -20 dB 42.7101 

12 -15 dB 43.8279 

11 -20 dB 39.6944 

11 -15 dB 42.2623 
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From the previous figure, we can see that we started with a larger number of bits having SQNR greater 

than 40 dB and kept decreasing the output number of bits until the minimum SQNR became less than 40 

dB, which happened when the output number of bits was 11 and the input power was -20 dB.Hence, our 

selected output number of bits was 12 bits, as it achieved acceptable performance even in the worst case 

of input power of -20 dB and a minimum of 100 trials. 

The following graph also shows that SQNR kept decreasing with decreasing bit width until SQNR became 

less than 40 dB at an output of 11 bits when input power was -20 dB. 

 

 

Figure 34: SQNR plotted with number of bits 

 

For outputs of every stage, as observed, 12 bits are sufficient to represent outputs with acceptable 

performance. All the outputs are within the range of -1 to 1. Hence, no integer part is needed to represent 

the outputs hence, the output fixed point representation is one bit for sign and 11 bits for fraction (S11). 
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Decreasing error: 

As mentioned before, a 256-point radix-4 FFT has four stages. 

In radix-4, the butterfly has 4 inputs that are independent random variables, every input has a variance of 

σ2 where variance represents the value of error. The variance of output after adding four inputs becomes 

4σ2 which means that the variance increased. By dividing the output by any value, the variance value 

decreases. For example, the mean value of the output is equal to  
σ2

4
. 

Therefore, we need to choose a value to divide the output by after each stage, this value should be an 

integer power to the base 2 so that we can implement it easily in hardware using shift operations with no 

extra hardware. Hence, we divide the output of each stage by 2. This is equivalent to shifting the decimal 

point to the left once, taking a bit from the integer part to the fraction part. 

By dividing the output of every stage by 2, it is equivalent to dividing the final output by √𝑁 = √256 = 

16. 

If we had chosen to divide by 4 (or more), it would have decreased the variance more than dividing by 2. 

On the other hand, it would have increased the sensitivity of the fractional part, making truncation of bits 

highly affect SQNR negatively. For example, if we have an integer part, truncation from it would have a 

higher effect than the fractional part. So when we divide, the integer part will be shifted, and truncation 

will have a higher effect on SQNR. 

 

 Results 

After the floating-point model of a 256-point Radix-4 FFT was done and checked using Matlab’s FFT 

built-in function, A fixed-point model was done to optimize in hardware with an acceptable performance 

of a minimum SQNR equal to 40 dB. This fixed point is S11 for input, S8 for twiddle factor exponentials, 

and S11 for output. Test vectors were also generated from Matlab for each internal point after each stage 

of the model to verify our hardware design using test benches. After our model is ready, the next step is 

to start building the hardware design for a 256-point radix-4 FFT. 
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3.2.4  Channel Estimation and interpolation 

Now we have 4 symbols, but we want only 3 symbols, as the first symbol is the PSS, and we are 

assuming perfect synchronization so we will continue the process with 3 OFDM symbols.  

Let us say that the received PBCH data is YPBCH and the received DMRS data is YDMRS. The 

demodulation reference signal (DMRS) is used to estimate the pilot values or the channel at the receiver. 

The YDMRS of length 144 symbols is obtained from the DMRS positions mentioned in Section 3.1.5, 

Fig. 23. Now, DMRS signal generation at the transmitter end requires the 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 𝑎𝑛𝑑 𝑖𝑆𝑆𝐵  which are known 

to the receiver at this stage from synchronization block, but we are assuming perfect synchronization as 

we aren’t modeling the synchronization block. Hence, using 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 𝑎𝑛𝑑 𝑖𝑆𝑆𝐵 , the DMRS is re-generated at 

the receiver. Let’s call this XDMRS. 

We have modelled two modes for channel estimation:  

- Least Square Estimator (LS) for the DMRS (pilots), then linear interpolation to get the PBCH (data). 

- LS for the DMRS (pilots), Minimum Mean Square Error Estimator (MMSE) to get the PBCH (data).  

LSE with linear interpolation: 

The received signal is obtained as: 

                                                              𝑌 = 𝑋𝐻 + 𝑁                                                             (3.2.1) 

YDMRS is the attenuated and delayed version of XDMRS affected due to the Wireless channel model. 

The channel estimate ĤDMRS is obtained as: 

                                                       Ĥ𝐷𝑀𝑅𝑆  =
 𝑌𝐷𝑀𝑅𝑆

𝑋𝐷𝑀𝑅𝑆
                                                             (3.2.2)  

Now the channel experienced by the pilots (DMRS) is known but that for the PBCH is unknown. The 

channel values for the remaining positions of the block are obtained by simple interpolation technique 

(Linear Interpolation). 

Linear Interpolation algorithm, two adjacent pilot subcarriers are used to determine the channel 

response for data subcarriers in between the pilot signals. 

The equation is as below:  

            Ĥ(𝑘) =  Ĥ𝐷𝑀𝑅𝑆(𝑘𝑁 +  𝑙) =
Ĥ𝐷𝑀𝑅𝑆(𝑘 +  1) − Ĥ𝐷𝑀𝑅𝑆(𝑘)

𝑁
 + Ĥ𝐷𝑀𝑅𝑆(𝑘)         (3.2.3)  

Here k  = 0, 1, 2, ..., N and N=4 

MMSE channel estimation: 

𝑌 =  𝑋𝐻 +  𝑍 

𝑋 =  𝑑𝑖𝑎𝑔{𝑋(0), 𝑋(1), . . . , 𝑋(𝑁 −  1)} 

𝐻 =  [𝐻(0) 𝐻(1). . . 𝐻(𝑁 −  1) ]𝑇 

𝑌 =  [𝑌(0) 𝑌(1). . . 𝑌(𝑁 −  1)]𝑇 
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𝑍 =  [𝑍(0) 𝑍(1). . . 𝑍(𝑁 −  1) ]𝑇 

Where 𝑋[𝑘] denotes a pilot tone at the kth subcarrier, with 𝐸{𝑋[𝑘]} = 0 and 𝑣𝑎𝑟{𝑋[𝑘]} = 𝜎𝑥
2, 

k=0,1,2,....N-1. H is the channel vector and Z is a noise vector with 𝐸{𝑍[𝑘]} = 0 and  𝑣𝑎𝑟{𝑍[𝑘]} = 𝜎𝑧
2 .   

Consider the LS estimation 𝐻𝐿𝑆 = 𝑋−1𝑌. Using the weight matrix W, define  

                                                     𝐻𝑀𝑀𝑆𝐸 = 𝑊𝐻𝐿𝑆                                                               (3.2.4) 

                                                       𝑊 = 𝑅𝐻𝑃𝑅𝑃𝑃
−1                                                             (3.2.5)  

RPP is the autocorrelation matrix of HLS given as: 

                                                 𝑅𝑃𝑃 = 𝐸{𝐻𝐻𝐻} +
𝜎𝑧

2

𝜎𝑥
2
𝐼                                                  (3.2.6)  

RHP is the cross correlation between the true channel vector and the temporary channel estimate vector in 

frequency domain. 

                                                      𝐻𝑀𝑀𝑆𝐸 = 𝑅𝐻𝑃𝑅𝑃𝑃
−1𝐻𝐿𝑆                                         

                                                𝐻𝑀𝑀𝑆𝐸 = 𝑅𝐻𝑃 (𝑅𝐻𝐻 +
𝜎𝑧

2

𝜎𝑥
2
𝐼 )

−1

𝐻𝐿𝑆                         (3.2.7)    

As shown in 3.2.7, although the MMSE calculates the channel estimates, it needs the channel estimates 

at the DMRS positions (𝐻𝐿𝑆) as input. This is somewhat confusing. You can think about it as it needs the 

𝐻𝐿𝑆 at the DMRS positions to build a trend of the channel at this time instant for different subchannels, 

then it produces the accurate estimates for all subchannels including the DMRS, which means the input 

estimates are different from the output, and this proves that the MMSE is not an interpolation method but 

a real estimator. 

To simplify this equation, we assumed a uniform distribution for channel correlation, then the 

frequency domain will be a sinc function.  

So,  𝑅𝐻𝑃 = 𝑠𝑖𝑛𝑐(𝐾 ∗
𝑛𝑇𝑎𝑝𝑠

𝑁𝑓𝑓𝑡
) , 𝑅𝐻𝐻 = 𝑠𝑖𝑛𝑐 (𝐾 ∗

𝑛𝑇𝑎𝑝𝑠
𝑁𝑓𝑓𝑡

4

) +
𝐼

𝑆𝑁𝑅
  

Which: K is a vector to sum all sinc functions applied at each LS, 

 nTaps is the number of channel taps in time domain, 

 Nfft is the FFT size. 

Note:  𝑛𝑇𝑎𝑝𝑠 = 1 for AWGN, otherwise 𝑛𝑇𝑎𝑝𝑠 =
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑇𝑖𝑚𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑒𝑙𝑎𝑦 𝑆𝑝𝑟𝑒𝑎𝑑
 

 

3.2.5 Channel Equalization 

Before equalization, we average the Ĥ240𝑥3 to Ĥ240𝑥1 to ensure the accuracy of the estimation. 

Channel Equalization is performed by using Maximum Ratio combining (MRC) we have, 

                                                                  𝑌 =  𝐻𝑋 +  𝑁                                                        (3.2.8)   
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Y: a 240×3 matrix of complex symbols of received SSB, 

Ĥ: a 240×1 matrix of channel estimates. 

The estimate of each OFDM symbol in the SSB data is given by:  

                                              �̂�  =  𝑐𝑜𝑛𝑗(Ĥ) ∗  𝑌                                                 (3.2.9) 

 

3.2.6 Resource De-mapping 

The �̂� obtained is in the form of a 240×3 grid with unwanted pilot estimates. The resources are de-

mapped as per the positions mentioned in Section 3.1.5, Fig. 22 to obtain a 432x1 vector of noisy complex 

values of the PBCH estimate. 

 

3.2.7 De-modulation 

The 432 complex values are demodulated to obtain 864 length noisy values of PBCH. The 

demodulation is QPSK as the PBCH is QPSK modulated at the transmitter. 

 

3.2.8 De-Scrambling 

The 864 values are LLR values, which are then descrambled using the same PN sequence 

generated at the transmitter end. However, as the values are no longer binary but LLR, the sequence is 

multiplied instead of XOR. 

 

3.2.9 De-Rate Matching 

The 864 LLRs are de-rate matched to 512 in three stages: de-interleaving, bit de-selection, and de-

subblock interleaving. The bit de-selection process involves puncturing the last 864-512 = 352 values 

from the sequence and averaging them with the first 352 values of the original sequence to get a new 

sequence of 512 values. This is done to avoid the loss of received data and reverse the algorithm performed 

at the transmitter end. Similarly, the de-sub block interleaver uses the same table of interleaving patterns 

to rearrange the blocks of 32 values in their original positions to finally obtain the 512 values for the 

decoder. 

3.2.10  Simulation Results 

Floating-Point BER curves 
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Figure 35: Linear Interpolation vs MMSE (Floating-Point) 

As shown in Fig. 35, The curve of MMSE is lower than the curve of LSE with linear interpolation, 

which means that MMSE has a lower BER than LSE with linear interpolation at the same SNR, so MMSE 

has better performance than LSE with linear interpolation as expected because the MMSE channel 

estimator knows the length of the channel in time (number of channel taps) and the statistics of the channel 

(RHP, RPP). At very high SNR (SNR = 9 dB), the LSE curve intersects MMSE curve because the noise 

becomes too small and can be negligible. So, the LSE becomes better than the MMSE as it assumes 

that 𝐻𝐿𝑆 =
𝑌

𝑋
 , which is the case at very high SNR. 

Fixed-Point vs Floating-Point BER curves 
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Figure 36: Linear Interpolation vs MMSE (Floating-Point and Fixed-Point) 

 

Figure 37: Quantization error due to Fixed Point in MMSE 

As shown in Fig. 36, the fixed-point curve is slightly higher than the floating-point curve, which 

means the fixed-point curve has a higher BER at the same SNR. In other words, the difference between 

the two curves is less than 0.1 dB at the same BER, which is an acceptable error due to the fixed-point 

analysis. The goal is to achieve a maximum quantization error of 0.1 dB at very high SNR as shown in 

Fig. 37. This has been achieved at a fixed-point length of 8 bits (S0.7). 
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Chapter 4: Hardware Design of FFT 

4.1 Introduction 

The fast Fourier transform (FFT) is one of the most important algorithms in the field of digital signal 

processing. It is used to calculate the discrete Fourier transform (DFT) efficiently. In order to meet the 

high performance and real time requirements of modern applications, hardware designers have always 

tried to implement efficient architectures for the computation of the FFT. 

FFT stands for Fast Fourier Transform. It is an algorithm used to efficiently compute the Discrete Fourier 

Transform (DFT) of a sequence or a signal. The DFT is a mathematical operation that transforms a time-

domain signal into its frequency-domain representation. 

Discrete Fourier Transform: 

The Discrete Fourier Transform (DTF) can be written as follows. 

𝑋[𝑘] =  ∑ 𝑥(𝑛) 𝑒
−2𝜋𝑗𝑘𝑛

𝑁

𝑁−1

𝑛=0

  

Where 𝑘 =  0,1, . . . , 𝑁 − 1 

 

For each k value, we need N complex multiplications and N-1 complex additions. 

 

Therefore, for N values            𝑁 ∗ 𝑁 =  𝑁2  multiplications  

                                                 𝑁 ∗ (𝑁 − 1)  =  𝑁2 − 𝑁 Additions 

The FFT algorithm was developed by Cooley and Tukey in the mid-1960s and revolutionized digital signal 

processing by significantly reducing the computational complexity of the DFT. It takes advantage of the 

symmetry and periodicity properties of sinusoidal functions to achieve a faster computation. 

 

The FFT algorithm decomposes a DFT of size N into a series of smaller DFTs, exploiting the divide-and-

conquer strategy. By recursively dividing the input sequence into smaller sub-sequences, the FFT 

algorithm reduces the computational complexity from O(N^2) (as in the naive DFT computation) to             

O (N log N), where N is the size of the input sequence. 

Begin with normal FFT: 

𝑋[𝑘] =  ∑ 𝑥(𝑛) 𝑒
−2𝜋𝑗𝑘𝑛

𝑁𝑁−1
𝑛=0   ,k = 0,1, … . , N − 1. 
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Now we can divide the N-point FFT into N/2 point FFTs one for the even and one for the odd indices 

(summation is linear, so there is no effect). 

𝑋[𝑘] =  ∑ 𝑥2𝑚 𝑒
−2𝜋𝑗𝑘(2𝑚)

𝑁 + ∑ 𝑥2𝑚+1 𝑒
−2𝜋𝑗𝑘(2𝑚+1)

𝑁          , 𝑘 = 0,1… . , 𝑁 − 1

𝑁
2
−1

𝑚=0

𝑁
2
−1

𝑚=0

 

We could define that:  𝑊𝑁
𝑛𝑘 = 𝑒

−2𝜋𝑗𝑘𝑛

𝑁  

Therefore, the equation becomes: 

𝑋[𝑘] =  ∑ 𝑥2𝑚 𝑊𝑁
2𝑚𝑘 + ∑ 𝑥2𝑚+1 𝑊𝑁

(2𝑚+1)𝑘
                       , 𝑘 = 0,1… . , 𝑁 − 1

𝑁
2
−1

𝑚=0

𝑁
2
−1

𝑚=0

 

𝑋[𝑘] =  ∑ 𝑥2𝑚 𝑊𝑁
2𝑚𝑘 + 𝑊𝑁

𝑘 ∑ 𝑥2𝑚+1 𝑊𝑁
2𝑚𝑘                       , 𝑘 = 0,1… . , 𝑁 − 1

𝑁
2
−1

𝑚=0

𝑁
2
−1

𝑚=0

 

𝑋[𝑘] =  𝐸[𝑘] + 𝑊𝑁
𝑘𝑂[𝑘]   , E[k]: even part       O[k]: odd part 

Each of E and O has N/2 samples, DFT is cyclic, thus we only calculate N/2 points each and calculate the 

remaining N/2 points from the first N/2 as: 

 

➢ 𝐸[𝑘]= 𝐸 [𝑘 +
𝑁

2
] 

➢ 𝑂[𝑘]= 𝑂 [𝑘 +
𝑁

2
] 

➢ 𝑊𝑁

𝑘+
𝑁

2 = 𝑒
−2𝜋𝑗(𝑘+

𝑁
2

)

𝑁 = 𝑒
−2𝜋𝑗𝑘

𝑁 . 𝑒
−𝜋𝑗𝑁

𝑁 = - 𝑊𝑁
𝑘 

➢ 𝑋[𝑘] = 𝐸[𝑘]+𝑊𝑁
𝑘𝑂[𝑘]    , 𝑘 = 0,1, … . , 𝑁/2 − 1 

➢           = 𝐸 [𝑘 −
𝑁

2
]−𝑊𝑁

𝑘𝑂 [𝑘 −
𝑁

2
  ] , 𝑘 =

𝑁

2
, …… , 𝑁 

What happened to complexity so far? 

• Complexity becomes  2 (
𝑁

2
)
2

+ 𝑁 =
𝑁2

2
+ 𝑁  

Since we will calculate two sets of N/2 point DFTs then add additional N complexity of additions. 

Projecting further, the two N/2 FFTs will be further broken into N/4 FFTs and so on leading to the 

logarithmic complexity. 
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4.2 Architecture Selection 

First, we found that there are two approaches to implement the FFT hardware architecture either to 

implement it parallel or serial.  

Where Parallel pipelined architectures such as multi-path delay feedback (MDF) architecture,   multi-path 

delay commutator (MDC) architecture and multi-path serial commutator (MSC) architecture where 

multiple data streams are processed concurrently in parallel through different stages of the pipeline. Each 

stage operates on a separate data stream simultaneously, and the pipeline stages are designed to execute 

their operations independently and concurrently. This architecture maximizes parallelism, allowing for 

multiple operations to be performed simultaneously and increasing the overall input of the system. 

While Serial pipelined architectures such as single-path delay feedback (SDF) architecture, single-path 

delay commutator (SDC) architecture and single-path serial commutator (SC) architecture, the data flows 

through a sequence of stages, and each stage processes a single data stream serially before passing it to 

the next stage. In this architecture, only one operation is active at a time in each pipeline stage, and the 

data progresses through the stages in a sequential manner. 

Then we headed to serial pipelined architectures over the parallel pipelined architectures which is more 

suitable in our application as the nature of the signal coming from ADC is coming as a sample at a time 

so the data samples are coming serially so we do not need to implement our architecture parallel as it will 

cost us to implement an external memory to store in it our serial data samples, while in serial architectures 

we already have memory elements inside our architecture. 

Then from serial pipelined architectures, we chose to implement the Single-path delay feedback 

architecture (SDF) [6]. 

 

  

 

Figure 38: 16-point radix-2 SDF FFT architecture 



47 

 

 

4.2.1 Why we chose SDF architecture 

- Reduce Hardware Complexity: The SDF FFT architecture simplifies the hardware design by utilizing 

a single feedback loop and delay elements. This leads to a reduction in the number of required hardware 

components compared to other FFT architectures. As a result, the implementation of the SDF FFT 

architecture is generally more straightforward and requires fewer resources. 

- Lower Memory Requirements: The SDF FFT architecture typically requires less memory compared to 

other FFT architectures. It achieves this by reusing and updating the same memory locations as the 

input data progresses through the stages. This reduces the need for additional memory buffers and 

simplifies the memory management aspect of the design. 

- Regular Computation Patterns: The SDF FFT architecture exhibits regular computation patterns as the 

data flows through the stages. This regularity allows for efficient pipelining. It facilitates the use of 

regular and predictable hardware resources, which simplifies the scheduling and optimization of the 

pipeline.  

- Resource Efficiency: Due to its reduced hardware complexity and memory requirements, the SDF FFT 

architecture offers resource efficiency. It makes efficient use of hardware resources such as multipliers, 

adders, and registers so it has high utilization. This makes it particularly useful for applications with 

limited resources or embedded systems where resource utilization is a crucial factor. 

- Simplified Control and Synchronization: The single feedback loop and regular computation patterns 

simplify the control and synchronization aspects of the architecture. The control logic can be designed 

to operate in a straightforward and predictable manner, leading to easier verification and debugging 

processes. 

Overall, the Single-Path Delay Feedback FFT architecture offers a balance between hardware simplicity 

and computational efficiency. It is well-suited for applications with resource constraints, real-time 

processing requirements, and situations where simplicity of hardware implementation is a priority. 

Figure 39: 16-point radix-4 SDF FFT architecture 
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4.3   Radix Selection 

First, we have to define or  know what radix is. 

In the context of the Fast Fourier Transform (FFT), the term "radix" refers to the base of the number 

system used in the butterfly computations. The butterfly operation is the fundamental computation unit in 

the FFT algorithm, where the results of previous stages are combined to compute the final Fourier 

transform. 

During the FFT computation, the input sequence is divided into smaller subsequences, and the butterfly 

operation combines the results from previous stages. The radix determines the number of samples or points 

involved in each butterfly computation. 

For example, in a radix-2 FFT, the input sequence is divided into two subsequences, and each butterfly 

computation involves two points. The radix-2 FFT algorithm recursively applies this process until the base 

case is reached, where each subsequence has only one point, Here is an example of 8-point radix-2 

butterfly in figure 40.  

 

Figure 40: 8-point radix-2 FFT 
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Similarly, in a radix-4 FFT, the input sequence is divided into four subsequences, and each butterfly 

computation involves four points. The radix-4 FFT algorithm continues the process recursively until the 

base case of one point is reached, here is an example of 16-point radix-4 butterfly in figure 41.  

 

The choice of radix in the FFT algorithm impacts the number of arithmetic operations required and the 

structure of the computation. Different radices can result in different trade-offs between computational 

complexity and memory requirements. 

In summary, the radix in the FFT algorithm represents the base of the number system used in the butterfly 

computations and determines how the input sequence is divided and combined during the computation of 

the Fourier transform. 

Now let us look at trade-offs between some different radices in the following table and compare them due 

to the number of stages and butterfly complexity. 

 

 

 

 

 

 

 

Figure 41: 16-point Radix-4 FFT 
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Table 12: Radix Selection trade-offs 

WHERE N = 256 IN OUR 

CASE 

NUMBER OF STAGES BUTTERFLY 

COMPLEXITY 

RADIX-2 log2N = log2256 = 8 stages Simple 

RADIX-4 log4256 = 4 stages More complex than radix-2 but 

still simple due to trivial 

multiplications 

RADIX-8 In that case we can mix between 

radix and it will take 3 stages. 

 

More complex 

RADIX-16 log16256 = 2 stages More and more complex 

 

We can conclude that as the number of the radix increase the complexity of the butterfly itself will increase. 

And as the number of the radix decrease the number of stages increase so the latency will increase. 

Then we chose Radix-4 in order to compromise between number of stages and the complexity of butterfly 

In addition to that we were lucky to find that the butterfly complex multiplications is with j,-j, 1,-1 that 

can be implemented by adders and subtractors without requiring to implement a complex multiplier inside 

the butterfly since that they are all trivial multiplications. So let us now go through Radix-4 algorithm to 

verify or to proof that we will get trivial multiplications. 

4.3.1 Radix-4 FFT Algorithm: 

The butterfly of a radix-4 algorithm consists of four inputs and four outputs. The FFT length is 4M, where 

M is the number of stages where in our case we have N = 256 point where the number of stages (M)=

log4 256 = 4 𝑠𝑡𝑎𝑔𝑒𝑠. A stage is half of radix-2. The radix-4 DIF FFT divides an N-point discrete Fourier 

transform (DFT) into four N/4 -point DFTs, then into 16  N/16 -point DFTs, and so on. In the radix-2 DIF 

FFT, the DFT equation is expressed as the sum of two calculations. One calculation sum for the first half 

and one calculation sum for the second half of the input sequence. Similarly, the radix-4 DIF fast Fourier 

transform (FFT) expresses the DFT equation as four summations. The following equations illustrate radix-

4 decimation in frequency (DIF)[8]. 

 

𝑋(𝑘) =  ∑ 𝑥(𝑛) 𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

  

= ∑ 𝑥(𝑛) 𝑊𝑁
𝑛𝑘

𝑁
4⁄ −1

𝑛=0

+ ∑ 𝑥(𝑛) 𝑊𝑁
𝑛𝑘

2𝑁
4⁄ −1

𝑛=𝑁
4⁄

+ ∑ 𝑥(𝑛) 𝑊𝑁
𝑛𝑘

3𝑁
4⁄ −1

𝑛=2𝑁
4⁄

+ ∑ 𝑥(𝑛) 𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=3𝑁
4⁄
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= ∑ 𝑥(𝑛) 𝑊𝑁
𝑛𝑘

𝑁
4⁄ −1

𝑛=0

+ ∑ 𝑥(𝑛 + 𝑁
4⁄ ) 𝑊𝑁

(𝑛+𝑁
4⁄ )𝑘

𝑁
4⁄ −1

𝑛=0

+ ∑ 𝑥(𝑛 + 𝑁
2⁄ ) 𝑊𝑁

(𝑛+𝑁
2⁄ )𝑘

𝑁
4⁄ −1

𝑛=0

+ ∑ 𝑥(𝑛 + 3𝑁
4⁄ ) 𝑊𝑁

(𝑛+3𝑁
4⁄ )𝑘

𝑁
4⁄ −1

𝑛=0

 

= ∑ [𝑥(𝑛) + 𝑥(𝑛 + 𝑁
4⁄ ) 𝑊𝑁

(𝑁 4⁄ )𝑘
+ 𝑥(𝑛 + 𝑁

2⁄ ) 𝑊𝑁

(𝑁 2⁄ )𝑘
+ 𝑥(𝑛 + 3𝑁

4⁄ ) 𝑊𝑁

(3𝑁
4⁄ )𝑘

] 

𝑁
4⁄ −1

𝑛=0

𝑊𝑁
𝑛𝑘 

 

Therefore, four twiddle factor coefficients can be expressed as follows: 

➢ 1 

➢ 𝑊𝑁

(𝑁 4⁄ )𝑘
= 𝑒

−𝜋𝑗𝑘

2 = [cos(𝜋 2⁄ ) − 𝑗 sin(𝜋 2⁄ )]
𝑘

= (−𝑗)𝑘 

➢ 𝑊𝑁

(𝑁 2⁄ )𝑘
= 𝑒−𝜋𝑗𝑘 = [cos(𝜋) − 𝑗 sin(𝜋)]𝑘 = (−1)𝑘 

➢ 𝑊𝑁

(3𝑁
4⁄ )𝑘

= 𝑒
−3𝜋𝑗𝑘

2 = [cos(3𝜋
2⁄ ) − 𝑗 sin (3𝜋

2⁄ )]
𝑘

= (𝑗)𝑘 

X(k) can thus be expressed as: 

𝑋(𝑘) = ∑ [𝑥(𝑛) + 𝑥(𝑛 + 𝑁
4⁄ ) (−𝑗)𝑘 + 𝑥(𝑛 + 𝑁

2⁄ ) (−1)𝑘 + 𝑥(𝑛 + 3𝑁
4⁄ ) (𝑗)𝑘] 

𝑁
4⁄ −1

𝑛=0

𝑊𝑁
𝑛𝑘 

Then to arrive at a four-point DFT decomposition, let 𝑊𝑁
4 = 𝑊𝑁

4⁄
1 therefore the equation can be written 

as four N/4 point DFTs, or 

 

X(4k) = ∑ [𝑥(𝑛) + 𝑥(𝑛 + 𝑁
4⁄ )  + 𝑥(𝑛 + 𝑁

2⁄ )  + 𝑥(𝑛 + 3𝑁
4⁄ ) ] 

𝑁
4⁄ −1

𝑛=0 𝑊𝑁
4⁄

𝑛𝑘                        (1) 

X(4k+1) = ∑ [𝑥(𝑛) − 𝑗𝑥(𝑛 + 𝑁
4⁄ ) − 𝑥(𝑛 + 𝑁

2⁄ ) + 𝑗𝑥(𝑛 + 3𝑁
4⁄ ) ]  𝑊𝑁

2𝑛
𝑁

4⁄ −1

𝑛=0 𝑊𝑁
4⁄

𝑛𝑘          (2) 

X(4k+2) = ∑ [𝑥(𝑛) − 𝑥(𝑛 + 𝑁
4⁄ ) + 𝑥(𝑛 + 𝑁

2⁄ ) − 𝑥(𝑛 + 3𝑁
4⁄ ) ] 𝑊𝑁

2𝑛
𝑁

4⁄ −1

𝑛=0 𝑊𝑁
4⁄

𝑛𝑘              (3) 

X(4k+3) = ∑ [𝑥(𝑛) + 𝑗𝑥(𝑛 + 𝑁
4⁄ ) − 𝑥(𝑛 + 𝑁

2⁄ ) − 𝑗𝑥(𝑛 + 3𝑁
4⁄ ) ] 𝑊𝑁

3𝑛
𝑁

4⁄ −1

𝑛=0 𝑊𝑁
4⁄

𝑛𝑘           (4) 

For 𝑘 = 0 𝑡𝑜 𝑁/4 − 1 
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Note: from equations 1,2,3,4 the twiddle factors coefficients forms our matrix that will be implemented 

in our butterfly.  

 

[

𝑋(0)
𝑋(1)
𝑋(2)
𝑋(3)

]= [

1 1 1 1
1 −𝑗 −1 𝑗
1 −1 1 −1
1 𝑗 −1 −𝑗

] . [

𝑥(0)
𝑥(1)
𝑥(2)
𝑥(3)

] 

 

 

 

Figure 42: Radix-4 Butterfly 
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4.4 Hardware Architecture Optimization 

 

SDF Architecture fully pipelined with four engines each engine is used to run one stage is shown in 

figure 43. 

 

After selecting the suitable architecture (Single-path delay feedback) and Radix for our application, we 

thought if we could optimize more in our architecture by implementing less number of engines and 

processing units instead of implementing 4 engines one for each stage so we asked ourselves if we could 

run more than one stage on the same engine in order to reduce the area of our design. So now we have 

two options: 

Option 1: That we run all stages on two engines each one processes two stages. SDF architecture with 

two engines is shown in figure 44. 

Figure 43: SDF Architecture fully pipelined 

Figure 44: two engines SDF Architecture 
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In that architecture we reduced the area by using only two engines instead of the four engines so we 

reduced the area and the number of used processing units so lower area and power consumption with a 

little bit increase in the number of storing elements which is represented as FIFOs in our architecture.  

Option 2: That we run all stages on one engine ONLY  

SDF architecture with Single engine is shown in figure 45. 

   

 

It is obvious that the SDF Architecture with single engine is the least one to cost area in our system so it 

will optimize the system area in addition to that we reduced the number of used processing units four 

times compared to four engines architecture and that gives us lowest power consumption if we 

implemented it compared to previous two architectures, but first we have to check that its latency does 

not exceed the maximum allowable latency of our system or application. 

Figure 45: Single engine SDF Architecture 
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Therefore, the decision to choose which architecture to implement is dependent on a threshold which is 

the maximum allowable latency in NR technology. 

In order to calculate the maximum allowable latency of our system we should first indicate our working 

system frequency. 

 

4.4.1 Working Frequency indication:  

▪ First we have 256 sample per symbol and numerology (µ) = 0 that means in NR technology that 

we have sub carrier spacing 15 kHz. 

▪ Therefore our sampling frequency (𝑓𝑠𝑎𝑚𝑝𝑙𝑒) = 256 ∗ 15𝐾 = 3.84 𝑀𝐻𝑍, we chose that our clock 

frequency will be a multiple of 𝑓𝑠𝑎𝑚𝑝𝑙𝑒 so we decided to go with 16 ∗ 𝑓𝑠𝑎𝑚𝑝𝑙𝑒  to be our working 

clock frequency = 16 ∗ 3.84 𝑀𝐻𝑧 = 61.44 𝑀𝐻𝑧. 

▪ We can say now that the system will receive sample each 16 clock cycle. 

Note: by working with frequency multiple of input frequency this makes design more flexible  

    

4.4.2 Calculations to get the maximum 

allowable Latency: 

▪ According to NR 5G we have 14 symbols per 

slot, since in our case the sub carrier spacing is 

15 kHz (µ=0) therefore slot time is 1ms [7]. 

Therefore, with clock frequency 61.44 MHz we 

have 61440 clock cycles per 1ms, so the 

maximum latency for our architecture could be 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑚𝑏𝑜𝑙𝑠
=

61440

14
= 4388 clock cycles 

of latency. 

▪ So, if we could achieve this latency or less with 

the single engine architecture therefore it will 

suitable for us to use it in our application as it also 

will optimize a lot in area. 

 

 

Before calculating the single engine architecture latency, we would like to define first what latency is. 

We define latency that it is the number of clock cycles from which the architecture starts processing till 

we are done and execute the last sample of the output. Where latency is defined for first message or first 

symbol only 

Figure 46: Frame in 5G NR technology 
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4.4.3 Single engine SDF Architecture Latency: 

In order to calculate or identify architecture latency we made a timing diagram to help us to calculate it. 

 

Timing Diagram: 

As shown in the timing diagram that the number of clock cycles taken by the single engine architecture 

from start processing point till done flag at which all samples of output are processed is 2265 clock cycles. 

Note: Between input symbols there are 289 clock cycles that represent Cyclic Prefix samples  

since cyclic prefix time is equal 4.69 μsec in NR 5G technology[9] therefore the number of clock cycles 

of CP = 4.69𝜇𝑠𝑒𝑐 ∗ 61.44𝑀𝐻𝑧 = 289 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠  

Conclusion: 

It is found that single engine architecture has latency less than maximum allowable latency therefore we 

could implement it without any problem and achieving high optimization in area and lower power 

consumption.  

 

 

 

 

 

 

 

Figure 47: Single engine SDF Architecture time diagram 
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4.5  SDF Architecture methodology 

In this section we will focus on how data flow in our architecture deeply:  

 

 

First the system is settled in an idle state till a flag comes to it that indicates that the data samples are 

going to enter the system then our architecture starts to store three quarters of data samples of symbol 

as shown in timing diagram figure 47 in the three FIFOs of size 64 since it is a radix-4 architecture in 

order to pass to butterfly 4 samples each one is from different quarter of data samples as x[0] , 

x[64],x[128], x[192].  

 

 

 

Figure 48: Single engine Architecture 
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4.5.1 Storing in FIFOs methodology  

How data samples are stored in FIFOs in Storing state?   

The data samples are stored one by one inside the 1st  FIFO 

until the FIFO is full where 64 samples are stored then we 

switch to store in the 2nd FIFO until it is full then switch to 

the 3rd FIFO till it becomes full as shown in figure 49.  

Where all of this is controlled or directed by our main 

controller that will be discussed later in the RTL section. 

 

Now we could say that we stored 192 data samples and the next coming sample is x[192] so by now 

we could start processing  our data samples where four samples will enter the first processing unit in 

our flow which is the butterfly where samples x[0],x[64],x[128] will be read from FIFOs of size 64 

and sample x[192] will be coming from outside as input.  

4.5.2 Stages sequence and iterations: 

First, we have to know that each stage of our four processing stages has 
256

4
= 64 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. 

So what is the sequence of these stages and their iterations? 

1. We run all 64 iterations of stage 1. 

2. A Loop of iterations is repeated 4 times. 

 2.1) 16 iterations of stage 2. 

 2.2) 4 iterations of stage 3. 

 2.3) 4 iterations of stage 4 (the stage at which the output data samples are extracted).  

2.4) Repeat step 2.2 and 2.3 another three times alternately. 

By applying this sequence, we will have finished processing on a whole symbol with 64 iterations per 

stage, as shown in figure 50.  

 

Figure 49: FIFOs of size 64 

Figure 50: Diagram that shows Stages iterations 
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4.5.3 Processing Unit Flow 

 

 

1. Data samples enter the butterfly and the matrix mentioned before is applied on them. 

2. Each sample is multiplied by its twiddle factor in multiplier. 

3. Each sample is quantized in quantizer. 

This part will be discussed in details later in RTL section. 

 

4.5.4 Data Samples Flow 

First, we would like to give each FIFO a number at each group of same size FIFOs in order to facilitate 

the clarification of data flow. 

➢ FIFOs of size 64  

 

➢ FIFOs of size 16 

Figure 51 Processing Unit Flow 
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➢ FIFOs of size 4 

➢ FIFOs of size 1 

 

Now we will go through with data samples flow in each stage iteration in 

details: 
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Now let us go to our main part which is Data flow at each stage: 

STAGE 1: 

After our 4 samples finish our processing flow: 

1. Output sample number 1 is transmitted to FIFOs of size 16 and by applying the 64 iterations of 

stage 1 the four FIFOs of size 16 will be filled with the same methodology as discussed before 

with output samples of stage 1 that are now ready to start processing at stage 2.  

2. The output samples number 2,3 and 4 are fed back to FIFOs of size 64 where: 

  2nd output is transmitted to FIFO of number 1 (64_1) 

3rd output is transmitted to FIFO of number 2 (64_2) 

4th output is transmitted to FIFO of number 3 (64_3) 

And this is repeated for the 64 iterations until the three FIFOs of size 64 are filled with output 

samples of stage 1, that going to be shifted later to FIFOs of size 16 during processing on the next 

stages and the shifting methodology will be discussed in details later. 

 

 

STAGE 2: 

Starting from this stage our architecture is able to receive data samples of a new symbol. 

After our 4 samples finish our processing flow:  

1. Output sample number 1 is transmitted to FIFOs of size 4 and by applying the 16 iterations of 

stage 2 (per loop) the four FIFOs of size 4 will be filled with the same methodology as discussed 

before with output samples of stage 2 that are now ready to start processing at stage 3.  

2. The output samples number 2, 3 and 4 are fed back to FIFOs of size 16 where: 

2nd output is transmitted to FIFO of number 2 (16_2) 

3rd output is transmitted to FIFO of number 3 (16_3) 

4th output is transmitted to FIFO of number 4 (16_4) 

And this is repeated for the 16 iterations until the three FIFOs of size 16 are filled with output 

samples of stage 2. 

We could observe that FIFO 16_1 is not mentioned that any samples will be fed back to it so does it will 

remain empty or there will be data samples shifted to it? 

- Yes there will be samples shifted to it and this will be discussed in details in shifting methodology part. 
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STAGE 3: 

After our 4 samples finish our processing flow:  

1. Output sample number one is transmitted to FIFOs of size 1 and by applying the 4 iterations of 

stage 3(as first iteration per loop) the four FIFOs of size 1 will be filled with the same methodology 

as discussed before with output samples of stage 3 that are now ready to start processing at stage 

4.  

2. The output samples number 2, 3 and 4 are going to do feedback to FIFOs of size 4 where: 

  2nd output is transmitted to FIFO of number 2 (4_2) 

3rd output is transmitted to FIFO of number 3 (4_3) 

 4th output is transmitted to FIFO of number 4 (4_4) 

And this is repeated for the 4 iterations until the three FIFOs of size 4 are filled with output 

samples of stage 3. 

We could observe that FIFO 4_1 is not mentioned that any samples will be fed back to it so does it 

will remain empty or there will be data samples shifted to it? 

- Yes there will be samples shifted to it and this will be discussed in details in shifting methodology 

part. 

 

STAGE 4: 

After our 4 samples finish our processing flow now these samples are our output of the FFT operation 

and each sample will be extracted with its address and stored in external memory to be ready for next 

post FFT operations.  

 

Note: During Stages 2, 3, 4 the architecture is able to receive the data samples of new symbol or next 

symbol. 

 

4.5.5 Architecture Shifting Methodology between FIFOs 

In this section we will explain shifting methodology between FIFOs in one loop only as an example since 

that will be repeated in other loops except the 4th loop (last loop) 

N.B: 

Shifting from which FIFO of size 64 depends on which loop we are in and that is clarified in the next table 

13.  

Table 13: Shifting source in each loop 

1st loop Shifting from number 1 of FIFOs of size 64 (64_1) 

2nd loop Shifting from number 2 of FIFOs of size 64 (64_2) 

3rd loop  Shifting from number 3 of FIFOs of size 64 (64_3) 
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➢ During Stage 1:   

▪ There is no shifting between FIFOs. 

 

➢ During Stage 2: 

▪ Shifting from one of FIFOs of size 64 >>> 16_1, so now 16_1 will be full ready for 

next iteration of stage 2 (16 shifts). 

 

➢ During Stage 3: 

Within 1st four iterations: 

▪ Shifting from FIFO 16_2 >>> 4_1 (4 shifts) therefore 4_1 will be ready for next 

iteration of stage 3. 

▪ Shifting from one of FIFOs of size 64 >>>16_2 (4 shifts), therefore 16_2 now has 

4 samples only  ready for next iteration of stage 2. 

 

 
➢ During Stage 4: 

Before 1st iteration: 

▪ Has no shifting between FIFOs since the four FIFOs of stage 4 will be filled by 

output of stage 3. 

 

 
Before 2nd iteration: 

▪ Shifting from FIFO 4_2 >>> to the 4 FIFOs of size 1. Therefore 4_2 will be empty. 

▪ Shifting from FIFO 16_2>>> to 4_2, (4 shifts) therefore 4_2 will be ready for next 

iteration of stage 3. 

▪ Shifting from one of FIFOs of size 64 >>>16_2, therefore 16_2 has 8 samples now 

ready for  next iteration of stage 2. 

 

 
Before 3rd iteration: 

▪ Shifting from FIFO 4_3>>> to the 4 FIFOs of size 1. Therefore 4_3 will be empty. 

▪ Shifting from FIFO 16_2>>> to 4_3, (4 shifts) therefore 4_3 will be ready for next 

iteration of stage 3. 

▪ Shifting from one of FIFOs of size 64 >>> 16_2, therefore 16_2 has 12 samples 

now ready for  next iteration of stage 2. 
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Before 4th iteration: 

▪ Shifting from FIFO 4_4>>>to the 4 FIFOs of size 1. therefore 4_4 will be empty 

▪ Shifting from FIFO 16_2>>> to 4_4, (4 shifts) (ready for next iteration of stage 3) 

▪ Shifting from one of FIFOs of size 64 >>> 16_2, therefore 16_2 has 16 samples 

now (ready             for next iteration of stage 2) 

 

➢ During Stage 3: 

Within 2nd four iterations: 

▪ Shifting from FIFO 16_3 >>> 4_1 (4 shifts) therefore 4_1 will be ready for next 

iteration of stage 3. 

▪ Shifting from one of FIFOs of size 64 >>>16_3 (4 shifts), therefore 16_3 now has 

4 samples only  ready for next iteration of stage 2. 

 

 
➢ During Stage 4: 

Before 1st iteration: 

▪ Has no shifting between FIFOs since the four FIFOs of stage 4 will be filled by 

output of stage 3. 

 

Before 2nd iteration: 

▪ Shifting from FIFO 4_2 >>> to the 4 FIFOs of size 1. Therefore 4_2 will be empty. 

▪ Shifting from FIFO 16_3>>> to 4_2, (4 shifts) therefore 4_2 will be ready for next 

iteration of stage 3. 

▪ Shifting from one of FIFOs of size 64 >>> 16_3, therefore 16_3 has 8 samples now 

ready for  next iteration of stage 2. 

 
Before 3rd iteration: 

▪ Shifting from FIFO 4_3>>> to the 4 FIFOs of size 1. Therefore 4_3 will be empty. 

▪ Shifting from FIFO 16_3>>> to 4_3, (4 shifts) therefore 4_3 will be ready for next 

iteration of stage 3. 

▪ Shifting from one of FIFOs of size 64 >>> 16_3, therefore 16_3 has 12 samples 

now ready for  next iteration of stage 2. 
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Before 4th iteration: 

▪ Shifting from FIFO 4_4>>> to the 4 FIFOs of size 1. therefore 4_4 will be empty 

▪ Shifting from FIFO 16_3>>> to 4_4, (4 shifts) therefore 4_4 will be ready for next 

iteration of stage 3. 

▪ Shifting from one of FIFOs of size 64 >>> 16_3 therefore 16_3 has 16 samples now 

(ready             for next iteration of stage 2). 
 

 

➢ During Stage 3: 

Within 3rd four iterations: 

▪ Shifting from FIFO 16_4 >>> 4_1 (4 shifts) therefore 4_1 will be ready for next 

iteration of stage 3. 

▪ Shifting from one of FIFOs of size 64 >>>16_4 (4 shifts), therefore 16_4 now has 

4 samples only  ready for next iteration of stage 2. 

 

 
➢ During Stage 4: 

Before 1st iteration: 

▪ Has no shifting between FIFOs since the four FIFOs of stage 4 will be filled by 

output of stage 3. 

 

Before 2nd iteration: 

▪ Shifting from FIFO 4_2 >>> to the 4 FIFOs of size 1. Therefore 4_2 will be empty. 

▪ Shifting from FIFO 16_4>>> to 4_2, (4 shifts) therefore 4_2 will be ready for next 

iteration of stage 3. 

▪ Shifting from one of FIFOs of size 64 >>> 16_4, therefore 16_4 has 8 samples now 

ready for  next iteration of stage 2. 

 

 
Before 3rd iteration: 

▪ Shifting from FIFO 4_3>>> to the 4 FIFOs of size 1. Therefore 4_3 will be empty. 

▪ Shifting from FIFO 16_4>>> to 4_3, (4 shifts) therefore 4_3 will be ready for next 

iteration of stage 3. 

▪ Shifting from one of FIFOs of size 64 >>> 16_4, therefore 16_4 has 12 samples 

now ready for  next iteration of stage 2. 
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Before 4th iteration: 

▪ Shifting from FIFO 4_4>>> to the 4 FIFOs of size 1. therefore 4_4 will be empty. 

▪ Shifting from FIFO 16_4>>> to 4_4, (4 shifts) therefore 4_4 will be ready for next 

iteration of stage 3. 

▪ Shifting from one of FIFOs of size 64 >>> 16_4 therefore 16_4 has 16 samples now 

(ready             for next iteration of stage 2). 

 

 
▪  

Notes: 

• Now second iteration for stage 2 is ready to start processing in the second loop stages where the 

four FIFOs of size 16 are now shuffled and arranged with next samples that are the output of stage 

1.  

• The remaining four 4th iterations for stage 3 followed by iterations of stage 4 that will not have any 

shifting. 

➔ N.B: in the 4th loop at the 16 4th iterations of stage 2 we won’t need to shift from FIFOs of size   64 to 

FIFOs of size 16 since we have already shifted all output samples of stage 1 and FIFOs of size 64 now 

contain or shifted to it the new samples of next symbol. 

 

4.6  Hardware Design & RTL 

 

Figure 52: Block Diagram of FFT Sybsystem 
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4.6.1 Memory elements  

A synchronous FIFO (first-in first-out) is where data values are written sequentially into a memory 

array using a clock signal, and the data values are sequentially read out from the memory array 

using the same clock signal. It's used in our architecture as the memory elements to store the input 

samples of the symbol and to shuffle the data between the stages.  

 

As our architecture is radix-4, so in each iteration takes 4 inputs and gives 4 outputs. For stage 1, 

we take an input from each quarter of the symbol's samples. At first, we store three-quarters of the 

samples of a symbol in 3 FIFOs of size 64 elements. Each quarter is stored in a separate FIFO of 

size 64 elements. So, we can start processing when the last quarter of data has arrived. 

For stage 2, the data is split into 4 quarters and then another 4 quarters so we need the data to be 

arranged in FIFOs of sizes 16 and so on for stage 3 and 4 as shown in figure 53. Therefore, the 

data is kept shifting between the stages. So, we need FIFOs of sizes 16, 4, and 1 elements. 

 

 

Figure 53: SDF architecture with memory elements 

As shown in figure 53, there are 3 FIFOs of size 64, 4 FIFOs of size 16, 4 FIFOs of size 4, and 4 FIFOs 

of size 1.  

There is a top module for each size of FIFOs contains multiple instantiation of the FIFO module as 

needed as stated above. 
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4.6.1.1 FIFO_64 

A FIFO module contains clock, reset, write enable, read enable, and data in as inputs, data out and full 

flag as outputs. 

The top module contains multiple instantiation of the FIFO module each is preceded by a 2x1 MUX as it 

receives data from 2 different sources as shown in figure 55.  

 

Figure 55: Block diagram of top module of FIFO_64 

All ports of the top module of FIFO_64 are described in the following table 14. 

Table 14: Ports description of top module of FIFO_64 

Port Direction Width Description 

data_in_64_1 Input 24 Input data real and imaginary for first FIFO 

data_in_64_2 Input 24 Input data real and imaginary for second FIFO 

data_in_64_3 Input 24 Input data real and imaginary for third FIFO 

Figure 54: Block diagram of module of FIFO_64 
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Butterfly_data_64_2 Input 24 Input data coming from second output of quantizer 

Butterfly_data_64_3 Input 24 Input data coming from third output of quantizer 

Butterfly_data_64_4 Input 24 Input data coming from fourth output of quantizer 

read_en_64_1 Input 1 Read enable signal to read from FIFO 64_1 

read_en_64_2 Input 1 Read enable signal to read from FIFO 64_2 

read_en_64_3 Input 1 Read enable signal to read from FIFO 64_3 

write_en_64_1 Input 1 Write enable signal to write in first FIFO 

write_en_64_2 Input 1 Write enable signal to write in second FIFO 

write_en_64_3 Input 1 Write enable signal to write in third FIFO 

sel_64_1 Input 1 Selection lines of mux of first FIFO  

sel_64_2 Input 1 Selection lines of mux of second FIFO 

sel_64_3 Input 1 Selection lines of mux of third FIFO 

clk Input 1 Clock pulses 

rst Input 1 Reset signal 

data_out_64_1 Output 24 Output data from first FIFO 

data_out_64_2 Output 24 Output data from second FIFO 

data_out_64_3 Output 24 Output data from third FIFO 

full_64_1 Output 1 Output signal when first FIFO is full 

full_64_2 Output 1 Output signal when second FIFO is full 

full_64_3 Output 1 Output signal when third FIFO is full 

 

For the top modules of FIFO_16, FIFO_4, and FIFO_1, there are differences in the input data to each 

FIFO and described in the following figures (56, 57 and 58) and their ports in tables (15, 16, and 17). 
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4.6.1.2 FIFO_16 

 

Figure 56: Block diagram of top module of FIFO_16 
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All ports of the top module of FIFO_16 are described in the following table 15 

Table 15: Ports description of top module of FIFO_16 

 

Port Direction Width Description 

data_in_64_1 Input 24 Input data real and imaginary for first FIFO 

data_in_64_2 Input 24  Input data real and imaginary for second FIFO 

data_in_64_3 Input 24  Input data real and imaginary for third FIFO 

Butterfly_data_16

_1 

Input 24  Input data coming from first output of quantizer 

Butterfly_data_16

_2 

Input 24  Input data coming from second output of quantizer 

Butterfly_data_16

_3 

Input 24  Input data coming from third output of quantizer 

Butterfly_data_16

_4 

Input 24  Input data coming from fourth output of quantizer 

read_en_16_1 Input 1  Read enable signal to read from FIFO 16_1 

read_en_16_2 Input 1  Read enable signal to read from FIFO 16_2 

read_en_16_3 Input 1  Read enable signal to read from FIFO 16_3 

read_en_16_4 Input 1  Read enable signal to read from FIFO 16_4 

write_en_16_1 Input 1  Write enable signal to write in first FIFO 

write_en_16_2 Input 1  Write enable signal to write in second FIFO 

write_en_16_3 Input 1  Write enable signal to write in third FIFO 

write_en_16_4 Input 1  Write enable signal to write in fourth FIFO 

sel_16_1 Input 2  Selection lines of mux of first FIFO 

sel_16_2 Input 3  Selection lines of mux of second FIFO 

sel_16_3 Input 3  Selection lines of mux of third FIFO 

sel_16_4 Input 3  Selection lines of mux of fourth FIFO 

clk Input 1  Clock pulses 

rst Input 1 Reset signal 

data_out_16_1 Output 24 Output data from first FIFO 

data_out_16_2 Output 24 Output data from second FIFO 

data_out_16_3 Output 24 Output data from third FIFO 

data_out_16_4 Output 24 Output data from fourth FIFO 

full_16_1 Output 1 Output signal when first FIFO is full 

full_16_2 Output 1 Output signal when second FIFO is full 

full_16_3 Output 1 Output signal when third FIFO is full 

full_16_4 Output 1 Output signal when fourth FIFO is full 
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4.6.1.3 FIFO_4 

 

Figure 57: Block diagram of top module of FIFO_4 
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All ports of the top module of FIFO_4 are described in the following table 16 

 

Table 16: Ports description of top module of FIFO_4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Port Direction Width Description 

data_in_16_2 Input 24 Input data real and imaginary for first FIFO from 
16_2 

data_in_16_3 Input 24 Input data real and imaginary for second FIFO from 
16_3 

data_in_16_4 Input 24 Input data real and imaginary for third FIFO from 
16_4 

Butterfly_data_4
_1 

Input 24 Input data coming from first output of quantizer 

Butterfly_data_4
_2 

Input 24 Input data coming from second output of quantizer 

Butterfly_data_4
_3 

Input 24 Input data coming from third output of quantizer 

Butterfly_data_4
_4 

Input 24 Input data coming from fourth output of quantizer 

read_en_4_1 Input 1 Read enable signal to read from FIFO 4_1 

read_en_4_2 Input 1 Read enable signal to read from FIFO 4_2 

read_en_4_3 Input 1 Read enable signal to read from FIFO 4_3  

read_en_4_4 Input 1 Read enable signal to read from FIFO 4_4 

write_en_4_1 Input 1 Write enable signal to write in first FIFO 

write_en_4_2 Input 1 Write enable signal to write in second FIFO 

write_en_4_3 Input 1 Write enable signal to write in third FIFO 

write_en_4_4 Input 1 Write enable signal to write in fourth FIFO 

sel_4_1 Input 2 Selection lines of mux of first FIFO 

sel_4_2 Input 3 Selection lines of mux of second FIFO 

sel_4_3 Input 3 Selection lines of mux of third FIFO 

sel_4_4 Input 3 Selection lines of mux of fourth FIFO 

clk Input 1 Clock pulses 

rst Input 1 Reset signal 

data_out_4_1 Output 24 Output data from first FIFO 

data_out_4_2 Output 24 Output data from second FIFO 

data_out_4_3 Output 24 Output data from third FIFO 

data_out_4_4 Output 24 Output data from fourth FIFO 

full_4_1 Output 1 Output signal when first FIFO is full 

full_4_2 Output 1 Output signal when second FIFO is full 

full_4_3 Output 1 Output signal when third FIFO is full 

full_4_4 Output 1 Output signal when fourth FIFO is full 



74 

 

4.6.1.4 FIFO_1 

 

Figure 58: Block diagram of top module of FIFO_1 
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All ports of the top module of FIFO_1 are described in the following table 17. 

Table 17: Ports description of top module of FIFO_1 

 

 

 

Port Direction Width Description 

data_in_4_2 Input 24 Input data real and imaginary for first FIFO coming from 4_2 

data_in_4_3 Input 24 Input data real and imaginary for second FIFO from 4_3 

data_in_4_4 Input 24 Input data real and imaginary for third FIFO from 4_4 

Butterfly_data_1

_1 

Input 24 Input data coming from first output of quantizer 

Butterfly_data_1

_2 

Input 24 Input data coming from second output of quantizer 

Butterfly_data_1

_3 

Input 24 Input data coming from third output of quantizer 

Butterfly_data_1

_4 

Input 24 Input data coming from fourth output of quantizer 

read_en_1_1 Input 1 Read enable signal to read from FIFO 1_1 

read_en_1_2 Input 1 Read enable signal to read from FIFO 1_2 

read_en_1_3 Input 1 Read enable signal to read from FIFO 1_3 

read_en_1_4 Input 1 Read enable signal to read from FIFO 1_4 

write_en_1_1 Input 1 Write enable signal to write in first FIFO 

write_en_1_2 Input 1 Write enable signal to write in second FIFO 

write_en_1_3 Input 1 Write enable signal to write in third FIFO 

write_en_1_4 Input 1 Write enable signal to write in fourth FIFO 

sel_1_1 Input 2 Selection lines of mux of first FIFO 

sel_1_2 Input 3 Selection lines of mux of second FIFO 

sel_1_3 Input 3 Selection lines of mux of third FIFO 

sel_1_4 Input 3 Selection lines of mux of fourth FIFO 

clk Input 1 Clock pulses 

rst Input 1 Reset signal 

data_out_1_1 Output 24 Output data from first FIFO 

data_out_1_2 Output 24 Output data from second FIFO 

data_out_1_3 Output 24 Output data from third FIFO 

data_out_1_4 Output 24 Output data from fourth FIFO 

full_1_1 Output 1 Output signal when first FIFO is full 

full_1_2 Output 1 Output signal when second FIFO is full 

full_1_3 Output 1 Output signal when third FIFO is full 

full_1_4 Output 1 Output signal when fourth FIFO is full 
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4.6.2 Processing units 

4.6.2.1 Butterfly 

The butterfly of a radix-4 algorithm consists of four inputs and four outputs as shown in figure 59. 

Figure 59: Radix-4 FFT butterfly 

And the operation here is basically multiplying the 4 input by a matrix extracted from the equations: 

 

[
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1 −1 1

1
𝑗
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] = [

𝑥(4𝑟)

𝑥(4𝑟 + 1)

𝑥(4𝑟 + 2)

𝑥(4𝑟 + 3)

]                                

And this equation is translated and optimized to equations in the RTL as it's supposed to be as in the left, 

then by optimization as in the right as following:  

 

 

assign a = in1_real + in3_real ; 
assign b = in1_real - in3_real ; 
 

assign c = in1_imag + in3_imag ; 
assign d = in1_imag - in3_imag ; 
 

assign e = in2_real + in4_real ; 
assign f = in2_real - in4_real ; 
 

assign g = in2_imag + in4_imag ; 
assign h = in2_imag - in4_imag ; 
 

assign temp1_real = a + e ; 
assign temp1_imag = c + g ; 
 

assign temp2_real = b + h ; 
assign temp2_imag = d - f ; 
 

assign temp3_real = a - e ; 
assign temp3_imag = c - g ; 
 

assign temp4_real = b - h ; 
assign temp4_imag = d + f ; 

 

 

assign temp1_real = in1_real + 
in2_real + in3_real + in4_real; 
assign temp1_imag = in1_imag + 
in2_imag + in3_imag + in4_imag; 
 

assign temp2_real = in1_real + 
in2_imag - in3_real - in4_imag; 
assign temp2_imag = in1_imag - 
in2_real - in3_imag + in4_real; 
 

assign temp3_real = in1_real - 
in2_real + in3_real - in4_real; 
assign temp3_imag = in1_imag - 
in2_imag + in3_imag - in4_imag; 
 

assign temp4_real = in1_real - 
in2_imag - in3_real + in4_imag; 
assign temp4_imag = in1_imag + 
in2_real - in3_imag - in4_real; 
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In the hardware, it's represented in figure 60 as follows: 

 
Figure 60: Design of the butterfly 

 

 
Figure 61: Block diagram of module butterfly 
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The ports are described in the following table 18: 

Table 18: Ports description of butterfly 

Port Direction Width Description 

clk Input 1 Clock pulse 

rst Input 1 Reset signal 

in1_real Input 12 First input real part 

in1_imag Input 12 First input imaginary part 

in2_real Input 12 Second input real part 

in2_imag Input 12 Second input imaginary part 

in3_real Input 12 Third input real part 

in3_imag Input 12 Third input imaginary part 

in4_real Input 12 Fourth input real part 

in4_imag Input 12 Fourth input imaginary part 

start_up_butterfly_flag Input 1 Flag from FSM to enable butterfly at first time 

stage_trans_flag_d2 Input 1 Flag to enable butterfly the first time at each stage 2,3,4 

stage_1_flag Input 1 Flag that we are processing in stage 1 

solver_d2 Input 1 Flag used to delay stage transition in last operation 

iteration_done_d2 Input 1 Delayed signal by 2 cycles from iteration_done (used to 

synchronize between last of any stage and start of new 

stage ) 

new_iteration_d Input 1 Delayed Valid signal from controller to let butterfly to 

take input to do an operation 

idle input 1 Used to stop butterfly in idle state 

Out1_real Output 14 First output real part 

Out1_imag Output 14 First output imaginary part 

Out2_real Output 14 Second output real part 

Out2_imag Output 14 Second output imaginary part 

Out3_real Output 14 Third output real part 

Out3_imag Output 14 Third output imaginary part 

Out4_real Output 14 Fourth output real part 

Out4_imag Output 14 Fourth output imaginary part 

counter Output 7 Counter that counts number of butterfly iterations and 

will be transmitted to FSM to be a condition in transition 

between states 

count_valid Output 1 It is a flag that indicates that we finished processing of a 

symbol and the next symbol is ready to process it 

no_shift_flag_64_16 Output 1 It is a flag used to stop shifting from 64 FIFOs to 16 FIFOs 
in 
last iteration of stage 2 in a symbol (last loop) 
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Note: the counter in this module is used to count the number of iterations executed on it. As each stage 

has 64 iterations, it counts stage 1 iterations from 1 → 64. Then it starts the loops of stage 2, 3, and 4. So, 

it counts: 

- From 65 → 80 for stage 2 iterations. 

- From 81 → 84 for stage 3 iterations. 

- From 85 → 88 for stage 4 iterations. 

- From 89 → 92 for stage 3 iterations. 

- From 93 → 96 for stage 4 iterations. 

- From 97 → 100 for stage 3 iterations. 

- From 101 → 104 for stage 4 iterations. 

- From 105 → 108 for stage 3 iterations. 

- From 109 → 112 for stage 4 iterations. 

- Then it is reset to the value 64 again to enter the following loop, and this loop is repeated 4 times. 

Since in each loop Stage 2, Stage 3 and Stage 4 run 16 iterations each and the loop is repeated 4 times, 

hence each Stage ran 64 iterations.  

The inputs of the butterfly module are the outputs of MUXs as they depend on which stage we are in. If 

we are in:  

1. Stage 1, the input is coming from FIFOs_64 and the external input.  

2. Stage 2, the input is coming from FIFOs_16. 

3. Stage 3, the input is coming from FIFOs_4.  

4. Stage 4, the input is coming from FIFOs_1.  

And the selection lines are in the following table 19: 

Table 19: Selection lines of MUXs of butterfly inputs 

 Stage 1 Stage 2 Stage 3 Stage 4 

 64_1 16_1 4_1 1_1 

Sel_butterfly_1 00 01 10 11 

 64_2 16_2 4_2 1_2 

Sel_butterfly_2 00 01 10 11 

 64_3 16_3 4_3 1_3 

Sel_butterfly_3 00 01 10 11 

 data_in 16_4 4_4 1_4 

Sel_butterfly_4 00 01 10 11 

 

4.6.2.2 Multiplier 

A complex multiplier is used as a processing unit in the architecture. It takes the output of the butterfly 

and the twiddle factor as inputs and multiply them to produce the output. The complex multiplier is 
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preceded by a MUXs to order the outputs of the butterfly. As the butterfly produces 4 outputs at a time 

and the multiplier should take each of them each clock cycle.  

 

Figure 62: Block diagram of module multiplier 

 

The complex multiplier is implemented using 3 multipliers and 5 adders as shown in figure 63 

 

 

Figure 63: Design of the multiplier 

 

The ports of this module are described in the following table 20. 

 

Table 20: Ports description of multiplier 

Port Direction Width Description 

clk Input 1 Clock signal 

rst Input 1 Reset signal 

in_real Input 14 Input real part 

in_imag Input 14 Input imaginary part 

twiddle_real Input 9 Twiddle real part 

twiddle_imag Input 9 Twiddle imaginary part 
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Stage_4_flag Input 1 Flag for stage 4 

out_real Output 23 Output real part 

out_imag Output 23 Output imaginary part 

 

4.6.2.3 Quantizer 

After the multiplier, the output is 23 bits, but it's needed to be fixed at 12 bits after each stage. So, the need 

of a block to quantize the output arises. The quantizer module is doing the same function as the function 

used in the MATLAB model. It rounds up the output and saturates it if it is out of the chosen range (greater 

or smaller than it). In our case, the output is S.11 and there are no integer bits. 

• Example on rounding: 

If the input is 0000.11011010010(1)0111000,  

The quantizer throws the 3 integer bits and the least 7 bits then decide on the bit between the brackets 

if the number will be rounded up or not.  

If it's 1, then the output will be 0.11011010010 + 1 = 0.11011010011 

If it's 0, then the least 8 bits are truncated and the output will be 0.11011010010  

• Example on saturation: 

If there's any input to the quantizer has integer bits (the value is greater than 1), it's saturated at the 

value 0.99999 → 0.11111111111. 

 

Note: in stage 4, the input is 14 bits since there is no twiddle multiplication. So in this case, all we do is 

just rounding the input as explained above. Therefore, we use stage_4_flag as input to differentiate 

between the two cases. 

 

 

Figure 64: Block diagram of module quantizer 

The ports of this module is described in the following table 21. 

 

Table 21: Ports description of quantizer 

Port Direction Width Description 

in_real Input 23 Input real part 

in_imag Input 23 Input imaginary part 

Stage_4_flag Input 1 Flag for stage 4 as input length in this stage is different 

from other stages 

out_real Output 12 Output real part 
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Out_imag Output 12 Output imaginary part 

4.6.3 Control Units 

 4.6.3.1 FSM 

It is a MEALY finite state machine which has 6 states (IDLE, STORING, STAGE1, STAGE2, STAGE3, 

STAGE4). It is the main control unit that sends the control signals to all blocks in the FFT subsystem. This 

FSM controls the write and read enables of all FIFOs, selection lines of inputs of all FIFOs, selection lines 

of inputs of butterfly and a flag for each stage.  

It is working as follows: 

- The system is in IDLE state until a symbol_valid signal is received, then a transition to STORING 

state is occurred. 

- In STORING state, 3 quarters of data samples is stored in the 3 FIFOs of size 64 where the first 64 

samples are stored in FIFO_64_1 until a full_64_1 flag is raised, then the second 64 samples are stored 

in FIFO_64_2 until a full_64_2 flag is raised, then the third 64 samples are stored in FIFO_64_3 until 

a full_64_3 flag is raised. So, a transition to STAGE1 state occurs. 

- With every sample_valid signal, reading the data from FIFOs is occurred and processing of stage 1 is 

starting. And wait for a signal sent by the controller (iteration_done) after each iteration is done to 

feedback the outputs to the FIFOs. And this is repeated for the 64 iterations of stage 1. So, when the 

counter of the butterfly reaches 64, A transition to STAGE2 state occurs. 

- As the controller sends a signal (new_iteration), read enables of FIFOs of size 16 is raised in order to 

start a new iteration. And wait for a signal (iteration_done) after each iteration is done to feedback the 

outputs to the FIFOs. As discussed in section 4.5.2, stage 2 has 16 iterations per loop. Then transition 

to STAGE3 is occurred when butterfly counter reaches 80. 

- For STAGE3 state, the same idea for reading from and writing to the FIFOs but the difference is that 

the FIFOs of size 4 and 1. As discussed in section 4.5.2, stage 3 has 16 iterations per loop split into 4 

groups where STAGE3 and STAGE4 alternate 4 times per loop. Then a transition to STAGE4 occurs 

when the butterfly counter reaches 84 or 92 or 100 or 108. 

- For STAGE4 state, the same idea for reading from the FIFOs but the difference is that the FIFOs of 

size 1 and produce the FFT output. As discussed in section 4.5.2, stage 4 has 16 iterations per loop 

split into 4 groups where STAGE3 and STAGE4 alternates 4 times per loop. Then a transition to 

STAGE3 occurs when butterfly counter reaches 88 or 96 or 104.  

- But when the counter reaches 112, it is reset to 65 as mentioned in the butterfly section 4.5.2 and 

transition to STAGE2 occurs and the loop is repeated. 

- And after the last iteration of the loop is finished and the symbol is done, transition to STORING state 

occurs to store the remaining samples of the next symbol. 

The communication between the FSM and the other blocks, where the inputs row is the inputs to the block 

from the FSM and the outputs row is the outputs from the block to the FSM. Is shown in the coming table 

 

 



83 

 

Table 22: Connection signals between FSM and other blocks 

FIFO_64 

TOP 

Inputs  write_enable_64_1 

write_enable_64_2 

write_enable_64_3 

read_enable_64_1 

read_enable_64_2 

read_enable_64_3 

sel_64_1 

sel_64_2 

sel_64_3 

 

− 
Outputs full_64_1 

full_64_2 

full_64_3 

 

− 

 

− 

 

− 
FIFO_16 

TOP 

Inputs  write_enable_16_1 

write_enable_16_2 

write_enable_16_3 

write_enable_16_4 

read_enable_16_1 

read_enable_16_2 

read_enable_16_3 

read_enable_16_4 

sel_16_1 

sel_16_2 

sel_16_3 

sel_16_4 

 

− 

Outputs full_16_1 

full_16_2 

full_16_3 

full_16_4 

 

− 

 

− 

 

− 

FIFO_4 

TOP 

Inputs  write_enable_4_1 

write_enable_4_2 

write_enable_4_3 

write_enable_4_4 

read_enable_4_1 

read_enable_4_2 

read_enable_4_3 

read_enable_4_4 

sel_4_1 

sel_4_2 

sel_4_3 

sel_4_4 

 

− 

Outputs full_4_1 

full_4_2 

full_4_3 

full_4_4 

 

− 

 

− 

 

− 

FIFO_1 

TOP 

Inputs  write_enable_1_1 

write_enable_1_2 

write_enable_1_3 

write_enable_1_4 

read_enable_1_1 

read_enable_1_2 

read_enable_1_3 

read_enable_1_4 

sel_1_1 

sel_1_2 

sel_1_3 

sel_1_4 

 

− 

Outputs full_1_1 

full_1_2 

full_1_3 

full_1_4 

 

− 

 

− 

 

− 

quant_co

ntroller 

Inputs  stage_4_flag − − − 
Outputs iteration_done 

iteration_done_d1 

new_iteration 

new_iteration_d 

solver 

solver_d1 

solver_2 

butterfly Inputs  start_up_butterfly_fl

ag 

stage_transition_flag_d2 stage_1_flag idle 

Outputs no_shift_flag_64_16 butterfly_counter count_valid 

 
− 

multiplie

r 

Inputs  stage_4_flag − − − 
Outputs − − − − 

fsm_butt

erfly 

Inputs  start_up_butterfly_fl

ag 

stage_transition_flag_d2 stage_1_flag 

stage_4_flag 

idle 

Outputs − − − − 
Inputs  stage_1_flag stage_2_flag  stage_3_flag  stage_4_flag 
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The state diagram of the FSM is shown in the following diagram: 

 

Figure 65: State diagram of FSM of butterfly 

 

 

 

 

 

 

 

twiddles_

generatio

n 

Outputs − − − − 

4 MUXs 

for inputs 

of 

butterfly 

Inputs  sel_butterfly_MUX

1 

sel_butterfly_MUX2 sel_butterfly_MUX3 sel_butterfly_MU

X4 
Outputs − − − − 
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Table 23: State table of FSM 

State  Description  Transition  

IDLE Idle state. - IDLE → STORING   if(symbol_valid) 

STORING Storing the input samples to the 

FIFOs of size 64 to be ready to start 

processing in stage 1. 

- STORING → STAGE1   if(full_64_3) 

 

STAGE1 Processing stage 1 iterations. - STAGE1→ STAGE2   if(butterfly_counter == 64 

&& iteration_done) 

STAGE2 Processing stage 2 iterations. - STAGE2→ STAGE3   if(butterfly_counter == 80) 

STAGE3 Processing stage 3 iterations. - STAGE3→ STAGE4  if((butterfly_counter == 84 || 

92 || 100 || 108) && iteration_done) 

STAGE4 Processing stage 4 iterations. - STAGE3→ STAGE4  if((butterfly_counter == 88 || 

96 || 104) && iteration_done) 

- SAMPLE4 → IDLE  if((butterfly_counter == 112) 

&& count_valid) 

 

 

 

Figure 66: Block diagram of top module of FSM 

Table 24: Ports description of FSM 

Port Direction Width Description 
clk Input 1 Clock signal 
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rst Input 1 Reset signal 

full_64_1 

full_64_2 

full_64_3 

Input 1 Signals coming from FIFOs_64 when they are full 

full_16_1 

full_16_2 

full_16_3 

full_16_4 

Input 1 Signals coming from FIFOs_16 when they are  full 

full_4_1 

full_4_2 

full_4_3 

full_4_4 

Input 1 Signals coming from first fifo_4 when they are full 

full_1_1 

full_1_2 

full_1_3 

full_1_4 

Input 1 Signals coming from first fifo_1 when they are full 

iteration_done Input 1 Coming from controller when data is ready to be 

written in FIFOs 

iteration_done_d1 Input 1 Delayed version of iteration_done 

new_iteration Input 1 Coming from controller to let butterfly take input to do 

a new operation 

new_iteration_d Input 1 Delayed version of iteration_done 

sample_valid Input 1 A signal that comes with every input be written in 

64_fifos sent by packet timers block 

count_valid Input 1 Coming from butterfly when processing on a symbol 

is finished. 

Symbol_valid Input 1 A signal that comes with new symbol sent by packet 

timers block. 

butterfly_counter Input 7 Coming from butterfly to identify how many 

times the butterfly was used to switch between states 

no_shift_flag_64_16 Input 1 It is a flag used to stop shifting from 64 FIFOs to 16 

FIFOs in last iteration of stage 2 in a symbol 

solver Input 1 Flag to ensure to write values in FIFOs before 

transition to another state 

solver_d1 Input  1 Delayed version of solver 

solver_2 Input 1 Flag to prevent reading from FIFOs at transition time 

between stages 

sel_64_1 

sel_64_2 

sel_64_3 

Output 1 Selection lines of mux of FIFOs_64 

sel_16_1 

sel_16_2 

sel_16_3 

sel_16_4 

Output 2 
3 
3 
3 

Selection lines of mux of FIFOs_16 
 

sel_4_1 

sel_4_2 

sel_4_3 

sel_4_4 

Output 2 
3 
3 
3 

Selection lines of mux of FIFOs_4 
 

sel_1_1 Output 2 Selection lines of mux of FIFOs_1 
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sel_1_2 

sel_1_3 

sel_1_4 

2 
2 
2 

 

write_en_64_1 

write_en_64_2 

write_en_64_3 

Output 1 Write enable signals to write data in FIFOs_64 

write_en_16_1 

write_en_16_2 

write_en_16_3 

write_en_16_4 

Output 1 Write enable signals to write data in FIFOs_16 

write_en_4_1 

write_en_4_2 

write_en_4_3 

write_en_4_4 

Output 1 Write enable signals to write data in FIFOs_4 

write_en_1_1 

write_en_1_2 

write_en_1_3 

write_en_1_4 

Output 1 Write enable signals to write data in FIFOs_1 

read_en_64_1 

read_en_64_2 

read_en_64_3 

read_en_64_4 

Output 1 Read enable signals to write data in FIFOs_64 

read_en_16_1 

read_en_16_2 

read_en_16_3 

read_en_16_4 

Output 1 Read enable signals to write data in FIFOs_16 

read_en_4_1 

read_en_4_2 

read_en_4_3 

read_en_4_4 

Output 1 Read enable signals to write data in FIFOs_4 

read_en_1_1 

read_en_1_2 

read_en_1_3 

read_en_1_4 

Output 1 Read enable signals to write data in FIFOs_1 

sel_butterfly_MUX1 

sel_butterfly_MUX2 

sel_butterfly_MUX3 

sel_butterfly_MUX4 

Output 2 Selection lines of mux of inputs of butterfly 

start_up_butterfly_flag Output 1 A signal given to the butterfly to start processing 

for the first time only 

stage_1_flag Output 1 A signal to butterfly that indicates that we are in stage 

1 

stage_2_flag Output 1 A signal to butterfly that indicates that we are in stage 

2 

stage_3_flag Output 1 A signal to butterfly that indicates that we are in stage 

3 

stage_4_flag Output 1 A signal that indicates that we are in stage 4 to be 

passed in multiplier without multiplication 

idle Output 1 Used to stop butterfly in idle state 

Stage_trans_flag_d2 Output 1 Used to start butterfly in the start of each state 
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4.6.3.2 Butterfly FSM 

It's a MEALY finite state machine that controls the following in the processing units: 

- Input of the multiplier 

- Control the quantized samples  

- Enable for ROM of twiddle factors 

This FSM arranges the 4 outputs of each iteration such as they are all produced from the butterfly at one 

clock cycle. But they are needed to go through the multiplier each one at a time since there is only one 

multiplier. So, it controls the two selection lines of MUXs (1 for the real part and the other for the 

imaginary part) at the input of the multiplier. It also controls the enable of the ROM of twiddle factors 

(twiddle_generation block) in order to extract the twiddle factor of each sample. It also sends a quant_valid 

signal to the controller to control the quantized samples. As shown in the following diagram. 

 

Figure 67: Timing diagram of butterfly_FSM 

Where ROM_valid precedes by one clock cycle than SAMPLE1, SAMPLE2, SAMPLE3 and SAMPLE4 

and it is raised in BUTTERFLY state in order to synchronize between the data sample and its twiddle 

factor as it takes one clock cycle to be extracted from Twiddles generation block. 

Table 25: State table of fsm_butterfly 

State  Description  Transition  Output  

IDLE Idle state. If(start_up_butterfly_flag==1) 

IDLE → BUTTERFLY 

ROM_valid = 0 

quant_valid = 0 

SEL = 00 

BUTTERFLY Butterfly operation is 

executed. 
BUTTERFLY → SAMPLE1 ROM_valid = 1 

quant_valid = 0 

SEL = 00 

SAMPLE1 1st sample to go through 

the multiplier. 
SAMPLE1 → SAMPLE2 ROM_valid = 1 

quant_valid = 0 

SEL = 00 

SAMPLE2 2nd sample to go through 

the multiplier. 
SAMPLE2 → SAMPLE3 ROM_valid = 1 

quant_valid = 1 

SEL = 01 

SAMPLE3 3rd sample to go through 

the multiplier. 
SAMPLE3 → SAMPLE4 ROM_valid = 1 

quant_valid = 0 

SEL = 10 

SAMPLE4 4th sample to go through 

the multiplier. 
SAMPLE4 → IDLE ROM_valid = 0 

quant_valid = 0 

SEL = 11 
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Figure 68: Block diagram of module of fsm_butterfly 

 

The state diagram of the FSM is shown in the following diagram: 

 

 

Figure 69: State diagram of FSM of butterfly 
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Table 26: Ports description of fsm_butterfly 

Port Direction Width Description 

clk Input 1 Clock signal 

rst Input 1 Reset signal 

stage_1_flag Input 1 Flag for stage 1 

stage_4_flag Input 1 Flag for stage 4 

start_up_butterfly_flag Input 1 Flag to enable the butterfly in stage 1 

stage_trans_flag_d2 Input 1 Delayed version by 2 cycles of transition to 
enable the butterfly in the beginning of each  
stage 

new_iteration_d Input 1 Enable for the butterfly to start processing 

iteration_done_d2 Input 1 Enable for the butterfly to start processing 
in the transition between the stages 

solver_d2 Input 1 Used to enable the butterfly in the proper 
time (after transition) 

idle Input 1 Used to stop butterfly in idle state 

butterfly_counter Input 7 Butterfly counter used for transition 
between stages 

ROM_valid Output 1 ROM enable 

quant_valid Output 1 Quantizer enable 

SEL Output 2 Selection line for the mux (input of 
multiplier) 

 

4.6.3.3 Controller 

After the 4 outputs of the iteration are quantized in the quantizer module, they are fed back to the FIFOs 

or sent to the external memory as an output depending on which stage we are in.  

- In stages 1, 2, and 3, the outputs are fed back to the FIFOs as explained in section 4.5.4. So, we need 

to register the 4 outputs one by one till the 4 outputs are ready then a signal (iteration_done) is sent to 

the main control unit to raise the write enables of the desired FIFOs. 

- In stage 4, the outputs are sent to the external memory of the FFT. So, they are sent one by one and 

the write enable (stage_4_out) to the external memory is sent with the output. 

In order to use the concept of pipelining, after the second output, a flag (new_iteration) is sent to read 

from the FIFOs to start a new iteration of the butterfly. This keeps pipelining between the butterfly, the 

multiplier and the quantizer. 

And that is shown in the next time diagram. 
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Figure 70: Timing diagram of quantizer_controller 

 

 

Figure 71: Block diagram of module of quantizer_controller 

Table 27: Ports description of controller 

Port Direction Width Description 
clk Input 1 Clock pulses 

rst Input 1 Reset signal 

out_real Input 12 Input real part 

out_imag Input 12 Input imaginary part 

quant_valid Input 1 Flag from butterfly_fsm to enable quantizer 

butterfly_counter Input 7 Butterfly counter 

output1_real Output 12 1st output real part 

output1_imag Output 12 1st output imaginary part 

output2_real Output 12 2nd output real part 

output2_imag Output 12 2nd output imaginary part 

output3_real Output 12 3rd output real part 

output3_imag Output 12 3rd output imaginary part 
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output4_real Output 12 4th output real part 

output4_imag Output 12 4th output imaginary part 

iteration_done Output 1 Output flag that quantizer has finished processing on 

4 samples and to enable write in FIFOs. 

iteration_done_d1 Output 1 Delayed version of iteration_done 

iteration_done_d2 Output 1 Iteration_done signal delayed by 2 clock cycles 

new_iteration Output 1 Output flag from quantizer to enable read from FIFOs 
(to pass new samples to butterfly) 

new_iteration_d Output 1 Delayed version of new_iteration used to 

enable el butterfly to process on new samples 

stage_4_out Output 1 Signal used as the write enable to the external 

memory of the FFT 

solver Output 1 Flag to ensure to write values in FIFOs before transition 
to another state 

solver_d1 Output 1 Delayed version of solver 

solver_d2 Output 1 Delayed version of solver with 2 cycles 

solver_2 Output 1 Flag to prevent reading from FIFOs at transition time 
between stages 

 

4.6.4 Others 

4.6.4.1 Twiddles Generation 

Stage 1, 2 and 3, each has 256 twiddle factors. So, there are in total 3 ∗ 256 = 768 twiddle factors each 

of them represented in 18 bits, with 9 bits were assigned to the real part and 9 bits to the imaginary part. 

This is going to take a huge memory (huge area) if they are stored as they are. Since the twiddle factors  

basically consist of sine and cosine functions, the symmetry of these two functions can be used to optimize 

this memory. 

In the case of the 256-point FFT radix-4, the twiddle factors exhibit a specific symmetry pattern. The 

twiddle factors can be grouped into four distinct sets, each containing 64 factors as shown in figure 72. 

Within each set, the factors are related by conjugation and cyclic permutations. Specifically, the twiddle 

factors in each set are obtained by raising a base factor to different powers. 

There are only 64 twiddle factors stored in the ROM and the other twiddle factors are generated from 

these 64 using the symmetry. And there are 4 quadrants as shown in figure 72. 

• 1st quadrant has the unique twiddle factors → 𝑊𝑄1. 

• 2nd quadrant has symmetry with 1st quadrant as any twiddle factor in this quadrant 𝑊𝑄2 + 𝑊𝑄1 =
𝑁

4
=

256

4
= 64, so we can conclude that: 

 𝑊𝑄2 = −𝑊𝑄1
∗   

→ 𝑟𝑒𝑎𝑙(𝑊𝑄2) = −𝑟𝑒𝑎𝑙(𝑊𝑄1),  𝑖𝑚𝑎𝑔(𝑊𝑄2) = 𝑖𝑚𝑎𝑔(𝑊𝑄1). 

• 3rd quadrant has symmetry with 1st quadrant as any twiddle factor in this quadrant 𝑊𝑄3 + 𝑊𝑄1 =
𝑁

2
=

256

2
= 128, so we can conclude that: 

 𝑊𝑄3 = −𝑊𝑄1. 
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• 4th quadrant has symmetry with 1st quadrant as any twiddle factor in this quadrant 𝑊𝑄4 + 𝑊𝑄1 = 𝑁 =

256, so we can conclude that 𝑊𝑄4 = 𝑊𝑄1
∗ , although there are no twiddle factors in the 4th quadrant in 

our case. 

 

 

Figure 72: Twiddle factor symmetry 

 

Figure 73: Block diagram of module twiddle_generation 

 

 

The inputs to this module are: 

• Valid signal works as enable to the ROM. 

• 4 flags indicating in which stage we are. 

• Selection line of the MUX that is before the multiplier to indicate in which sample of the 4 it is. 
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• Butterfly counter to specify in which iteration of the stage we are in. 

 

Table 28: Ports description of twiddle_generation 

Port Direction Width Description 

clk Input 1 Clock signal 

rst Input 1 Reset signal 

valid Input 1 ROM enable 

Stage_1_flag Input 1 Flag for stage 1 

Stage_2_flag Input 1 Flag for stage 2 

Stage_3_flag Input 1 Flag for stage 3 

Stage_4_flag Input 1 Flag for stage 4 

sel Input  2 Signal to indicate in which sample of 
the four samples we are 

Butterfly_counter Input  7 Butterfly counter is used to indicate in 
which loop of iterations we are 

twiddle_real Outp
ut 

9 Twiddle real part 

twiddle_imag Outp
ut 

9 Twiddle imaginary part 

 

4.6.4.2 Address generator 

In this module, the address in which the output data to be written in the memory is generated. Since the 

output is written in the memory in a specific sequence, so this sequence is generated here.  

• For the 4 outputs of each iteration , each one of them are in a quarter of the 4 quarters of locations 

(0 → 63, 64 → 127, 128 → 191, 192 → 255):  

- 1st output is at address 𝑥,  

- 2nd one is at 𝑥 + 64, 

- 3rd one is at 𝑥 + 128, 

- 4th one is at 𝑥 + 192 

• Let's call each 4 consequent iterations → group. Inside each group, there's an increase in the address 

by 16  

- 1st iteration is at address 𝑦,  

- 2nd one is at 𝑦 + 16, 

- 3rd one is at 𝑦 + 32, 

- 4th one is at 𝑦 + 48 

• Between each 4 consequent groups, there's an increase in the address by 4  

- 1st group is at address 𝑧,  

- 2nd one is at 𝑧 + 4, 

- 3rd one is at 𝑧 + 8, 

- 4th one is at 𝑧 + 12 
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• Each 4 groups represent a quarter of the 256 location of memory. After each 4 groups, the address is 

increased by 1 and all the above points are applied. 

The sequence is represented by the following flowchart in figure 74. As the address generated here is the 

first address of each iteration (including 4 outputs each is separated by 64). 

 

Figure 74: Flowchart represents the sequence of address 

 

Figure 75: Block diagram of module address_generator 
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Table 29: Ports description of address_generator 

Port Direction Width Description 

clk Input 1 Clock signal 

rst Input 1 Reset signal 

enable Input 1 Enable for address (after data is ready from the 
quantizer) 

stage_4_flag Input 1 Flag for stage 4 (address is generated for output of 
stage 4 only) 

symbol_done Output  1 Flag is raised when last sample of the symbol is 
written in the memory 

address Output 8 Address for the output to be written in the memory 

 

4.6.5 Packet timer 

The FFT subsystem takes only the useful data samples. In order to extract only the useful data, there 

should be a block to filter out the data received and that is the packet timer block.  

It has an input signal called stream_start indicates the start of the data stream. It has another input called 

time_stamp, this value indicates the position of the required SSB in the half frame. So, when these signals 

are received, the useful symbols location is known. The symbol received is 274 samples, including 18 

samples that are cyclic prefix (where the CP duration in 5G standard is 4.69 μsec and that is equivalent to 

289 clock cycles as mentioned in section 4.4.3, since the block receives a sample every 16 clock cycles. 

Therefore 
289

16
= 18 samples). CP removal is done in this module to transmit only the useful 256 samples 

of the symbol [9]. 

It does the following as an output to the FFT: 

- At the start of each useful symbol, it sends a symbol_valid signal to the FFT to start receiving the 

samples. 

- It passes the input_valid signal of the useful samples of the symbol. 

- It raises the TTI signal every 1ms from the start of the first useful symbol (which is transmitted to the 

processor as an interrupt). 

 

 

Figure 76: Block diagram of module packet_timer 
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Table 30: Ports description of packet_timer 

Port Direction Width Description 

clk Input 1 Clock signal 

rst Input 1 Reset signal 

stream_start Input 1 Signal to indicate the start of the stream and it resets the 
free running counter  

time_stamp Input 15 Value indicates the start of the first SSB in half 
frame(5ms) = first sample of PSS, it resets the primary 
counter 

input_valid Input  1 Valid for samples received each 16 clock cycles from the 
start of the free running counter 

symbol_valid Output  1 Signal indicates the start of the symbol 

sample_valid Output  1 A valid signal for the useful samples to be transmitted to 
the FFT 

TTI Output 1 Transmit Time Interval, a signal to be raised every 1 ms 
and this is the interval for 5G. 

 

4.6.6 Synthesis  

Timing analysis plays a crucial role in verifying the performance of digital designs implemented on 

FPGAs. Using the clock frequency 61.44 MHz, the FFT subsystem has been synthesized using FPGA part 

xc7a35tcpg236-1 on Vivado Xilinix. And the timing analysis reports have been generated in order to check 

if the timing constraints are met. The timing constraint is only the clock frequency (period is 16.276 nsec) 

as shown in figure 77. 

 

 

Figure 77: Timing constraints of the FFT Subsystem 

 

The worst negative slack was found to be 3.364 ns, and it's because of the critical path (which is of the 

complex multiplier logic path). 

We conclude that there is no time violation and the system can work on clock frequency 61.44 MHz with 

achieving 20.7 % slack. 

 

 

Figure 78: Timing analysis results of the FFT Subsystem 
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Chapter 5: Hardware Design of Post-FFT  
This block contains some mandatory building blocks, including channel estimation, channel 

equalization, and demodulation processes (soft de-mapper, de-scrambler, de-interleaver, and bit selection), 

as shown in Fig. 79. 

 

Figure 79: Post-FFT Subsystem 

 

5.1 Channel Estimation 

As discussed before, we modelled two modes of channel estimators, but as a hardware choice, we 

chose the model with the better performance, which is the MMSE. The MMSE needs the channel estimates 

at the DMRS positions as input, which means that we will use the LSE to get those estimates for the 

MMSE, and then the MMSE will calculate the estimates for the whole symbol (DMRS+PBCH). 
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Figure 80: Channel Estimation Architecture 

 

5.2  Tx- DMRS Generation 

We said before that the LSE estimation depends on the DMRS received and the DMRS generated in 

the receiver (pilots). So, we want both Rx_DMRS and Tx_DMRS. For Rx_DMRS, it’s an input from the 

FFT-subsystem memory based on the address location of the DMRS data in the FFT-subsystem memory 

(the address of the DMRS data will be discussed in the DMRS-indices generation section). For Tx_DMRS, 

it’s generated using the gold sequence as discussed in Section 3.1.4.  

The Tx_DMRS generation block architecture is shown in Fig. 81. 

 

Figure 81: Tx-DMRS generation Architecture 
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For the gold sequence generation, it’s described as having two linear feedback shift registers. Each of 

them is initialized with a seed value according to the standard specs as discussed in Section 3.1.4, and 

then the output of the two LFSRs is xored to obtain the gold sequence as shown in Fig. 82. 

 

 

Figure 82: Gold Sequence Generation for DMRS 

 

5.3  DMRS Indices generation 

The FFT-subsystem memory stores the 3 OFDM symbols (2nd, 3rd, and 4th symbols in the SSB). To 

obtain the DMRS data only, we should address the DMRS locations correctly. As discussed in Section 

3.1.5, the DMRS locations depend on the value of 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙. For the 2nd and 4th symbols, the first DMRS 

location is 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙mod 4, which is simply the least two significant bits in 𝑁𝐼𝐷

𝑐𝑒𝑙𝑙 (𝑁𝐼𝐷
𝑐𝑒𝑙𝑙[1:0]), then the counter 

starts to count by 4 to get the second DMRS location, and so on. Why did we add 8 to 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙[1:0]? Because 

the FFT-subsystem memory stores 256 subcarriers, not 240, the first 8 subcarriers and the last 8 subcarriers 

aren’t PBCH or DMRS data.  For the third symbol, DMRS exists only above and below SSS. We also start 

with address 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙[1:0] +8 and count by 4 until we reach the SSS, then jump to the first DMRS after the 

SSS and continue to count by 4 again. The architecture of this block is shown in Fig. 83. 
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Figure 83: DMRS indices Generation 

The timing diagrams shown describe how the DMRS indices are generated for the 3 symbols in the 

case of 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙  𝑚𝑜𝑑 4 = 0 ,1. 

For 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙𝑚𝑜𝑑 4 = 0, we know that the first sample is a DMRS, then three PBCH samples, and so on. 

The first sample address is 8, as we said before that we’re addressing 256 subcarriers, not 240 (the first 

and last 8 samples aren’t in our concern). So, the first DMRS data is at address 8. 

For the 3rd symbol in the SSB, there’s SSS data in the middle, so the DMRS address jumps from 52 to 

200 to skip the SSS data in the OFDM symbol. 

 

Figure 84: DMRS indices at 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙  mod 4=0 

For 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 𝑚𝑜𝑑 4 = 1, we know that the first sample is a PBCH, then 1 sample is a DMRS, then 3 

PBCH samples, and so on. So, the first DMRS address is 9 in this case. 

For the 3rd symbol in the SSB, there’s SSS data in the middle so the DMRS address jumps from 53 to 

201 to skip the SSS data in the OFDM symbol. 
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Figure 85:  DMRS indices at 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙  mod 4=1 

The same way is applied in case of 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 𝑚𝑜𝑑 4 = 2,3. 

This DMRS address generator addresses the FFT-subsystem memory to get the DMRS data received. 

We might have an offset to this address according to the design of the FFT-subsystem memory we address 

from. 

 

5.4  Lease Squares Estimator (LSE) 

Ĥ𝐿𝑆  =
 𝑌𝐿𝑆

𝑋𝐿𝑆
 

To implement this equation as hardware, we need a complex divider, which is not recommended to 

use, so we convert this equation to another suitable form. 

Ĥ𝐷𝑀𝑅𝑆  =
 𝑌𝐷𝑀𝑅𝑆

𝑋𝐷𝑀𝑅𝑆
 ∗  

 𝑐𝑜𝑛𝑗(𝑋𝐷𝑀𝑅𝑆)

 𝑐𝑜𝑛𝑗(𝑋𝐷𝑀𝑅𝑆)
  

As we discussed before, the 𝑋𝐷𝑀𝑅𝑆 values are all QPSK values ( ±
1

√2
±

1

√2
 ) which means the term 𝑋𝐷𝑀𝑅𝑆 ∗

𝑐𝑜𝑛𝑗(𝑋𝐷𝑀𝑅𝑆) = 1, so the LS equation can be deduced to: 

Ĥ𝐷𝑀𝑅𝑆  =  𝑌𝐷𝑀𝑅𝑆  ∗  𝑐𝑜𝑛𝑗(𝑋𝐷𝑀𝑅𝑆) 

Now the LS is a complex multiplication: 

Ĥ𝐷𝑀𝑅𝑆 = (𝑌𝑅 + 𝑗𝑌𝐼) ∗ (𝑋𝑅  − 𝑗𝑋𝐼) 

We have two choices to implement this complex multiplication: 

First Method:  

Ĥ𝐷𝑀𝑅𝑆 = (𝑌𝑅 ∗ 𝑋𝑅 + 𝑌𝐼 ∗ 𝑋𝐼) + 𝑗(𝑌𝐼 ∗ 𝑋𝑅 − 𝑌𝑅 ∗ 𝑋𝐼) 

This form requires 4 multipliers and 3 adders. 

Second Method:  

Ĥ𝐷𝑀𝑅𝑆 = (𝑌𝑅 ∗ (𝑋𝑅 − 𝑋𝐼) + 𝑋𝐼 ∗ (𝑌𝑅 + 𝑌𝐼)) + 𝑗(𝑌𝑅 ∗ (𝑋𝑅 − 𝑋𝐼) + 𝑋𝑅 ∗ (𝑌𝐼 − 𝑌𝑅)) 

This form requires 3 multipliers and 5 adders. 

So, there is a tradeoff between 1 multiplier vs 2 adders, we go with the second method. 
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5.5  Minimum Mean Square Estimator (MMSE) 

𝐻𝑀𝑀𝑆𝐸 = 𝑅𝐻𝑃 (𝑅𝐻𝐻 +
𝜎𝑧

2

𝜎𝑥
2
𝐼 )

−1

𝐻𝐿𝑆 

𝐻𝑀𝑀𝑆𝐸 = 𝐹(𝑛𝑇𝑎𝑝𝑠, 𝑆𝑁𝑅,𝐾) ∗ 𝐻𝐿𝑆 

To implement the above equation in hardware, we need to store the coefficients 𝐹(𝑛𝑇𝑎𝑝𝑠,𝑆𝑁𝑅) in an 

external memory that is filled by the software depending on the value of the SNR and the number of 

channel taps. Then matrix multiplication will be done. 

For the second and fourth OFDM symbols in SSB:  

We have the channel estimates at the DMRS subcarriers (HLS), which have a size 60×1 for each OFDM 

symbol (2nd, 4th). 

 

Coefficients matrix size = 240×60, HLS size = 60×1. As we have 60 DMRS values. 

𝐻𝑀𝑀𝑆𝐸  Size = (240×60) * (60×1) = 240×1, as we have 240 subcarriers in each OFDM symbol (2nd, 4th). 

Now we have the channel estimates at both DMRS and PBCH subcarriers for the second and fourth OFDM 

symbols in SSB. 

For the third OFDM symbols in SSB:  

This OFDM symbol has SSS in the middle of it, so we want to estimate the channel above and below 

the SSS. We have the channel estimates at the DMRS subcarriers HLS, which has a size 12×1 above and 

below the SSS. 
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Coefficients matrix size = 48×12, HLS size = 12×1. as we have 12 DMRS values above and below SSS. 

𝐻𝑀𝑀𝑆𝐸  Size = 48×1. as we have 48 subcarriers above and below the SSS. Now we have the channel 

estimates at both DMRS and PBCH subcarriers for the third OFDM symbol in SSB. 

 

 

Figure 86: MMSE Matrix Multiplication 

As shown above, this matrix multiplication requires many multipliers and adders. We have only 12 

multipliers to perform this operation. So, we do each row-column multiplication in 5 clock cycles (5*12) 

as shown below. The whole multiplication requires 5*240 clock cycles. 
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Figure 87: Detailed MMSE Matrix Multiplication 

As discussed above, we want 12 coefficients in each clock cycle to perform the multiplication process. 

The coefficients are stored in two memories, each of which is 1248×6. This is in order to obtain 12 

coefficients (6 from each memory) in each clock cycle. Why 1248? We have 240×60 coefficients (for the 

2nd and 4th symbols) and 48×12 coefficients (for the 3rd symbol). So, we have a total of 14976 

coefficients (240*60 + 48*12). Each memory has 14976/2 = 7488 coefficients. So, each memory is 1248*6 

to obtain 6 coefficients from each memory in one clock cycle. 
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Figure 88: Coefficients Memories 

 

5.6  Channel Average 

After the estimation of the channel at the three OFDM symbols (2nd, 3rd, and 4th in the SSB), these 

estimates are stored in RAM. The channel estimates of the 2nd and 4th symbols are 240 subcarriers each, 

and the channel estimates of the 3rd symbol are 96 channel estimates only (due to the SSS region in the 

middle). So, the RAM stores 240 * 2 + 96 = 576 channel estimates. After that, we get the average across 

the time to have one-symbol channel estimation per SSB having 240 subcarriers, as this reduces the 

estimation noise and increases the channel estimation accuracy. The channel average block takes the 

channel estimates of each symbol from the RAM and gets the channel average across the three symbols. 

The latest 240 channel estimates, which are outputs from the channel average block, are stored in the 

RAM. Now the size of the RAM is 576 + 240 = 816 samples. 

Now we have a problem: the channel average block takes 3 estimates to average above and below the 

SSS location and 2 estimates to average at the location of the SSS, as shown in Fig. 89. This means that 

we want a signal that identifies whether we are averaging 2 or 3 estimates. This signal is the parallel_mode 

signal, which takes the value 2 or 3 that is shown in Fig. 80.  

To summarize the process, the channel average block starts with the avg_start signal from the 

controller, then the average read address generator block starts to read the channel estimates from the 

RAM (which may be 2 or 3 estimates according to the parallel_mode signal) and pass them to the S/P 

block to pass 2 or 3 estimates to the channel average block, then the average starts to average these 

estimates to one estimate and write it back to the RAM in the average write address location. 
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Figure 89: Channel estimates averaging 

Now we have the channel estimate symbol with 240 subcarriers stored in the RAM, from which the 

equalizer will read and start equalization to get the estimated PBCH. 

 

5.7  Channel Equalization 

Channel Equalization is performed by using maximum ratio combining (MRC), which is simply 

getting the estimated PBCH data from the channel estimates by dividing them. The estimate of each 

OFDM symbol in the SSB data is given by: 

                                                �̂�𝑃𝐵𝐶𝐻  =  𝑐𝑜𝑛𝑗(Ĥ) ∗ 𝑌𝑃𝐵𝐶𝐻                                                  

So, we will do it the same as in the least squares estimator section. 

The equalizer needs the received PBCH and the channel estimates at the PBCH locations. For the 

channel estimates at the PBCH locations, we will get them from the RAM we discussed in the Channel 
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Average section. For the received PBCH data, we will get it from the FFT-subsystem memory based on 

the address of the PBCH data. 

Till now, we need the addresses of the PBCH data in the FFT-subsystem memory and in the RAM, 

which takes us to another block, the PBCH indices generation block. 

 

Figure 90: Post-FFT Processing Chain 

 

5.8  PBCH indices Generation 

The timing diagrams shown describe how the PBCH indices are generated for the 3 symbols in the 

case of 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙  𝑚𝑜𝑑 4 = 0 ,1. 

For 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙𝑚𝑜𝑑 4 = 0, we know that the first sample is a DMRS, then three PBCH samples, and so on. 

The first sample address is 8, as we said before that we’re addressing 256 subcarriers, not 240 (the first 

and last 8 samples aren’t in our concern). So, the first PBCH data is at address 9. 

For the 3rd symbol in the SSB, there’s SSS data in the middle, so the PBCH address jumps from 55 to 

201 to skip the SSS data in the OFDM symbol. 

 

Figure 91: PBCH indices at 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙  mod 4=0 

For 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 𝑚𝑜𝑑 4 = 1, we know that the first sample is a PBCH, then 1 sample of DMRS, then 3 PBCH 

samples, and so on. So, the first PBCH address is 8 in this case. 
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For the 3rd symbol in the SSB, there’s SSS data in the middle, so the PBCH address jumps from 55 to 

200 to skip the SSS data in the OFDM symbol. 

 

Figure 92: PBCH indices at 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙  mod 4=1 

The same way is applied in case of 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 𝑚𝑜𝑑 4 = 2,3. 

This PBCH address generator addresses both the FFT-subsystem memory and average channel 

estimates RAM to get the PBCH data received and the channel estimates at the PBCH locations, 

respectively. We might have an offset to this address according to the memory design we address from. 

 

5.9  De-Scrambler 

The equalizer passes the PBCH data estimates to the de-scrambler, which is complex data. The de-

scrambler works as we said before in Section 3.1.2. We have two linear feedback shift registers, and each 

of them is initialized with a seed value according to the standard specs. Then, a gold sequence is generated 

from the two linear feedback shift registers. This gold sequence is either 0 or 1. If the gold sequence output 

is 0, then the descrambled data will be the same as the equalized data. If the gold sequence output is 1, the 

descrambled data will be negative equalized data. 
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Figure 93: De-scrambler Architecture 

Now we have a problem: the equalizer passes complex data (equalized_i, equalized_q) each clock 

cycle. This means that the descrambler takes two PBCH equalized data each clock cycle, and the 

descrambler gold sequence generates one seq bit each clock cycle, so we need to stop the equalizer one 

clock cycle in order to get the gold sequence bits for both equalized_i and equalized_q. In other words, 

the equalizer should work one clock cycle and stop one clock cycle while the descrambler works each 

clock cycle. 

This approach is done using the pbch_indices_in_valid signal, which comes from the top controller, 

to enable the PBCH indices block for one clock cycle, disable it for one clock cycle, and so on. With this 

signal, the PBCH indices block won’t change the address of the PBCH received data nor the address of 

the channel estimates at the PBCH locations unless the pbch_indices_in_valid signal is enabled, so the 

equalizer won’t change its output data accordingly. 

 

5.10 De-Rate Matching 

De-Rate Matching consists of three blocks: de-interleaver, bit-selection, and sub-block de-interleaver. 

The first and third blocks re-arrange the data, but the second block selects some data and drops others. 

The input to the de-rate matching block is 864 LLRs, and the output is 512 LLRs. That’s why some LLRs 

are dropped, and others change their locations. To be clearer, descrambler throughput is 1 LLR per clock 

cycle, and the de-rate matching block checks whether this LLR will be dropped or stored in the LLRs 
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memory depending on the MSB of the addresses stored in the LUT. These addresses stored in the LUT 

are specified in the standard. 

For example, the first LLR coming from the descrambler will be stored at address 0 in the first LLR 

memory, and the sixteenth LLR coming from the descrambler will be dropped and won’t be stored. The 

counter counts with the descrambler output valid. This counter points to the LUT to select the address of 

the current LLR. If the current LLR will be dropped and won’t be stored in the memory, then the MSB in 

the address stored in the LUT will be 1, which disables the WE of the memory. 

The LLR memory size should have been 512 LLRs × 8 bits each, but the next stage, which is the polar 

decoder, needs this memory to be divided into two memories with a word length of 32 bits, which means 

that each word contains 4 LLRs. So, we have two memories with a size of 64 LLRs × 32 bits each. 

 

Figure 94: De-Rate Matching Architecture 
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5.11 Post-FFT Interfaces 

 

 

Figure 95: Post-FFT Interfaces 

Ports Description is shown in the following table: 

Table 31: post-FFT interfaces 

Port Name Port 

Direc. 

Port 

Width 

Active 

Low/

High 

Port Description 

issb input 2 NA The index of the SSB in the half 

frame. Range 0→3. 

ncellid input 10 NA Cell identifier number. 0→1007. 
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n_hf input 1 NA 0→ SSB in the first half in the 

frame. 1→ second half. 

clk input 1 NA System clock = 61.44 MHz 

rst input 1 Low Asynchronous reset. 

fft_mem_addr output 10 NA The address of the data stored in 

the fft_mem. It may be DMRS or 

PBCH address (selected internally). 

fft_mem_data_i input 12 NA The real part of the data is stored in 

fft_mem. It may be DMRS or 

PBCH data (selected internally). 

fft_mem_data_q input 12 NA The imaginary part. Same as above 

llrs output 8 NA The channel LLRs stored in the 

dec_mem. 

llr_mem_w_addr output 6 NA The address of the channel LLRs 

that will be stored in the dec_mem. 

llr_mem_1_w_enable output 1 High Write Enable Level of the first 

decoder memory. Decoder has 2 

memories each of width 32 bits and 

depth 64 bits. 

llr_mem_2_w_enable output 1 High Write Enable Level of the second 

decoder memory. 

mem_llr_slct output 2 NA Selects which part (byte) of the 

word in the decoder memory will 

be written into.  

est_strt input 1 High Pulse allows postFFT to start. 

llr_done output 1 High Pulse informs top_ctrl that all 

LLRs are stored in the dec_mem  

coeff_addr output 11 NA Coefficients address which are 

needed for MMSE calculations. 

rhp_inv_rpp input 8*12 NA This signal is the data comes from 

the coeff_mem to the MMSE. 
 

5.12  Block Level Testing for PBCH Processing Chain 

Using a self-checking testbench to verify the output of an RTL design is a common and effective way 

to ensure that the design works correctly. By comparing the output of the RTL design with the expected 

output from a reference model such as MATLAB, you can determine whether the RTL design is producing 

the correct results. 
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To implement a self-checking testbench, we typically use a file-based approach, where the testbench 

reads in input data and the expected output data from files generated in MATLAB. These files contain the 

test vectors that we want to use to verify the RTL design. 

In the testbench, we apply the inputs from the input file and compare the RTL output with the 

expected output file. If the outputs match, the test passes; if the outputs do not match, the test fails, and 

we would need to investigate and correct the RTL design. 

It's important to ensure that the input and output files are formatted correctly, and that the RTL design 

and the reference model use the same input data. Additionally, we consider using multiple test vectors to 

ensure that the design is working correctly for a range of inputs and not just a single test case. 

 

Figure 96: MATLAB vs RTL results 

We used 10,000 random test cases to ensure that we covered most of the cases, and all of them passed 

in the RTL. The inputs to the chain are 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙, 𝑖𝑆𝑆𝐵, 𝑎𝑛𝑑 𝑁ℎ𝑓 . These inputs are randomized in the MATLAB 

reference model 10,000 times and stored in a file, as well as the outputs from each stage in the MATLAB 

reference model. The following figure shows an example of the files generated by MATLAB. 
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Figure 97: Test Vectors MATLAB files 
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Chapter 6: PHY Integration 

6.1  MIB Decoding Process  

The PBCH decoding processor implements the typical receiver chain for PBCH detection. This 

processor has some mandatory building blocks, including the FFT, post-FFT (channel estimation and 

equalization, demodulation process), and the channel decoding stage, as shown in Fig. 98. 

 

Figure 98: PBCH Decoding Processor 

The input of the receiver chain should come from the RF transceiver, so we emulate the RF 

transceiver with a digital block that stores the received half frame data in a memory (RX Half Frame 

MEM) and provides the receiver chain with these data at the required time. 

As discussed before, the sampling rate is 3.84 MHz and the clock frequency is 16 * 3.84 MHz, so 

the FFT should receive one sample per 16 clock cycles. The interface block provides the FFT with the 

inputs at this rate (1 sample per 16 clock cycles). 

The FFT subsystem starts its operation with a start pulse that comes from the top controller, and 

then the outputs of the FFT subsystem are stored in a memory, which are the 256 samples of the 2nd, 3rd, 

and 4th OFDM symbols in the SSB. So, the memory size is 256∗3=768 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. Once all 768 outputs 

of the FFT are stored in the memory, the top controller sends a start pulse to the post-FFT subsystem. The 

post-FFT subsystem starts the channel estimation and equalization process using the data stored in the 

FFT memory as well as the MMSE coefficients that are stored in a coefficient memory that is filled by 

the RIF. After channel equalization, the processing chain (de-scrambler and de-rate matching) is 

implemented to store the final 512 LLRs in memory. Once the post-FFT subsystem stores the 512 LLRs 

in the memory, the top-controller sends a start pulse to the decoder subsystem. The decoder subsystem 

starts decoding the 512 LLRs to 56 bits (24-bit CRC and 32-bit payload). The decoder output is not only 
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the payload but also the CRC result, which tells the top-controller whether the CRC passed or failed to 

decode the payload. Once the decoder finishes, the top-controller checks whether the CRC result is passed 

or failed, to change the 𝑖𝑆𝑆𝐵 in case the CRC result is failed and starts the processing chain again. This is 

what we call "blind decoding." 

6.2  Blind Decoder  

In 5G systems, decoding the Master Information Block (MIB) transmitted by the base station is a 

critical process that enables a reliable connection between the UE and the base station. However, due to 

various factors such as channel impairments, multipath fading, and interference, accurately decoding the 

MIB can be challenging, especially when the Initial Synchronization Signal Block (ISSB) index is 

unknown. 

The term "blind decoding" refers to the process of decoding the MIB without prior knowledge of 

the ISSB index, relying solely on the received signal. The blind decoding algorithm is typically 

implemented in the receiver of the mobile device. It operates by searching through a set of possible ISSB 

indices and evaluating the likelihood of each index based on the received signal characteristics. 

The algorithm explores different possibilities until the correct ISSB index is found. This process 

involves using known synchronization signals and exploiting statistical properties of the received signal, 

such as signal strength, timing, and correlation. 

In this section, we will explore the used blind decoding algorithm and its hardware implementation. 

Blind Decoder Algorithm:  

The blind decoding algorithm connects the PHY subsystems to find the correct ISSB and to decode 

the MIB payload; the decoding steps are shown in Algorithm, [5]. The decoding algorithm acts like a 

controller and issues the enable signals required for each of the subsystems to operate, and this will be 

discussed in more detail in the following section. 

The decoded payload is reported whenever the CRC is valid. 
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Algorithm :  Blind decoding algorithm 

Inputs: Recovered SSB OFDM grid from SSB signal 

Inputs: PBCH and DMRS positions and samples  

1      Blind Decoding loop 

2       for ISSB ∈ [0, Lmax -1] then  

3             - Compute corresponding DMRS sequence  

4           - Perform channel estimation and equalization  

5          - Compute LLR values 

6           - Implement de-rate matching 

7  - Decode the input LLRs 

8  If CRC is valid then  

9             - Report the decoded MIB and the correct ISSB 

10           Break 

11               End 

           End 

 

6.3   PHY Testing 

We have implemented a self-checking testbench, we typically use a file-based approach, where the 

testbench reads in input data and the expected output data from files generated in MATLAB. These files 

contain the test vectors that we want to use to verify the RTL design. 

In the testbench, we apply the inputs from the input file and compare the RTL output with the 

expected output file. If the outputs match, the test passes; if the outputs do not match, the test fails, and 

we would need to investigate and correct the RTL design. 

It's important to ensure that the input and output files are formatted correctly, and that the RTL design 

and the reference model use the same input data. Additionally, we consider using multiple test vectors to 

ensure that the design is working correctly for a range of inputs and not just a single test case. 

The inputs to the chain are the half frame received data, timestamp, 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 , 𝑖𝑆𝑆𝐵, 𝑎𝑛𝑑 𝑁ℎ𝑓 . These inputs 

are randomized in the MATLAB reference model and stored in a file, along with the output from each 

stage in the MATLAB reference model. The testbench checks each stage, starting from the FFT output to 

the decoder output payload and the CRC pass signal that are stored in the RIF. 
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Chapter 7: Conclusion 
In this thesis, a 256-point radix-4 FFT is modeled using MATLAB. Then implemented in RTL 

using the architecture Single Delay Feedback (SDF). Optimization is done by running the 4 stages on only 

one engine instead of 4 engines. Testing is done using testbench by applying test vectors from the 

MATLAB model. In addition to that, synthesis is done to check that the timing constraints are met. The 

post-FFT processing chain has been modeled, implemented in RTL and tested using self-checking 

testbench with 10000 test cases. The PHY is integrated and tested with self-checking testbench. In the 

System on Chip, all IPs are integrated with the PHY and the system core through the AHB bus, the PHY 

application is written in C code, and loaded to the instruction memory and tested.  

The upcoming work is testing more test cases for the PHY and complete system verification using UVM 

as well as FPGA synthesis flow.  
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